RESUMO
The voluntary nature of decision-making is fundamental to human behavior. The subthalamic nucleus is important in reactive decision-making, but its role in voluntary decision-making remains unclear. We recorded from deep brain stimulation subthalamic electrodes time-locked with acute stimulation using a Go/Nogo task to assess voluntary action and inaction. Beta oscillations during voluntary decision-making were temporally dissociated from motor function. Parkinson's patients showed an inaction bias with high beta and intermediate physiological states. Stimulation reversed the inaction bias highlighting its causal nature, and shifting physiology closer to reactive choices. Depression was associated with higher alpha during Voluntary-Nogo characterized by inaction or inertial status quo maintenance whereas apathy had higher beta-gamma during voluntary action or impaired effortful initiation of action. Our findings suggest the human subthalamic nucleus causally contributes to voluntary decision-making, possibly through threshold gating or toggling mechanisms, with stimulation shifting towards voluntary action and suggest biomarkers as potential clinical predictors.
RESUMO
Beta band oscillations in the sensorimotor cortex and subcortical structures, such as the subthalamic nucleus (STN) and internal pallidum (GPi), are closely linked to motor control. Recent research suggests that low-beta (14.5-23.5 Hz) and high-beta (23.5-35 Hz) cortico-STN coherence arise through distinct networks, possibly reflecting indirect and hyperdirect pathways. In this study, we sought to probe whether low- and high-beta coherence also exhibit different functional roles in facilitating and inhibiting movement. Twenty patients with Parkinson's disease who had deep brain stimulation electrodes implanted in either STN or GPi performed a classical go/nogo task while undergoing simultaneous magnetoencephalography and local field potentials recordings. Subjects' expectations were manipulated by presenting go- and nogo-trials with varying probabilities. We identified a lateral source in the sensorimotor cortex for low-beta coherence, as well as a medial source near the supplementary motor area for high-beta coherence. Task-related coherence time courses for these two sources revealed that low-beta coherence was more strongly implicated than high-beta coherence in the performance of go-trials. Accordingly, average pre-stimulus low-beta but not high-beta coherence or spectral power correlated with overall reaction time across subjects. High-beta coherence during unexpected nogo-trials was higher compared to expected nogo-trials at a relatively long latency of 3 s after stimulus presentation. Neither low- nor high-beta coherence showed a significant correlation with patients' symptom severity at baseline assessment. While low-beta cortico-subcortical coherence appears to be related to motor output, the role of high-beta coherence requires further investigation.
Assuntos
Ritmo beta , Estimulação Encefálica Profunda , Magnetoencefalografia , Doença de Parkinson , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Ritmo beta/fisiologia , Doença de Parkinson/fisiopatologia , Doença de Parkinson/terapia , Magnetoencefalografia/métodos , Estimulação Encefálica Profunda/métodos , Idoso , Núcleo Subtalâmico/fisiologia , Núcleo Subtalâmico/fisiopatologia , Movimento/fisiologia , Córtex Sensório-Motor/fisiopatologia , Córtex Sensório-Motor/fisiologia , Globo Pálido/fisiologia , Globo Pálido/fisiopatologia , Inibição Psicológica , Desempenho Psicomotor/fisiologiaRESUMO
People with Parkinson's disease (PwPD) who undergo deep brain stimulation (DBS) surgery could benefit from remote programming (RP), which has proven to be both effective and economical. However, there is limited research on PwPD with DBS implants who have completed all programming sessions exclusively through remote means (full remote programming, FRP). This case report documents the experiences of five PwPD who underwent FRP, with four demonstrating improvements in motor symptoms, quality of life, and medication reduction. A total of 22 postoperative programming sessions were conducted, all via RP. FRP integrates RP with online consultations. Our findings contribute preliminary evidence supporting the feasibility and safety of FRP in the postoperative care of PwPD with DBS implants.
RESUMO
Background: Remote programming enables physicians to adjust implantable pulse generators over the internet for patients with Parkinson disease who have undergone deep brain stimulation (DBS) surgery. Despite these technological advances, the demand for and attitudes toward remote programming compared with standard programming among patients with Parkinson disease are still not well understood. Objective: This study aims to investigate the preferences and perceptions associated with these 2 programming methods among patients with Parkinson disease through a web-based survey. Methods: A web-based survey was administered to 463 patients with Parkinson disease who have undergone DBS surgery. The survey aimed to assess the burdens associated with postoperative programming and to compare patients' attitudes toward the 2 different programming methods. Results: A total of 225 patients completed the survey, all of whom had undergone standard programming, while 132 patients had also experienced remote programming. Among those who received standard programming, 191 (85%) patients required the support of more than 1 caregiver, 129 (58%) patients experienced over 2 days of lost work time, 98 (42%) patients incurred expenses ranging from US $42 to US $146, and 14 (6%) patients spent over US $421. Of the 132 patients who had used remote programming, 81 (62%) patients indicated a preference for remote programming in the future. However, challenges with remote programming persisted, including difficulties in obtaining official prescriptions, a lack of medical insurance coverage, and limited medical resources. Conclusions: Postoperative programming of DBS imposes significant burdens on patients and their caregivers during standard programming sessions-burdens that could be mitigated through remote programming. While patient satisfaction with remote programming is high, it is imperative for clinicians to develop personalized programming strategies tailored to the needs of different patients.
Assuntos
Estimulação Encefálica Profunda , Internet , Doença de Parkinson , Humanos , Estimulação Encefálica Profunda/métodos , Doença de Parkinson/terapia , Doença de Parkinson/psicologia , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Inquéritos e QuestionáriosRESUMO
OBJECTIVE: Intraventricular baclofen has been reported as an alternative to intrathecal baclofen for managing refractory spasticity and dystonia in some circumstances. In this report, we described a frame-based stereotactic approach for precisely positioning of the infusion catheter into the third ventricle. MATERIAL AND METHODS: High resolution contrast-enhanced anatomical MR sequences was acquired prior to surgery for pre-planning. Catheter trajectory was planned to pass from the lateral ventricle to the third ventricle through the Foramen of Monro. The surgical procedure was adapted from the frame-based deep brain stimulation surgery. The Touch-Loc kit (SceneRay, China) was used to temporarily secure the catheter in place during the surgery. From July 2022 to December 2022, three patients suffering from intractable spasticity and/or secondary dystonia received IVB successfully using the described technique. RESULTS: No severe adverse events, including death, intracranial hemorrhage, infection, catheter migration or fracture, were documented at the last follow-up (range: 12â24 months). Transient side effects included mild nausea following the initiation of infusion or the increase in infusion rate. All three patients responded to the IVB. CONCLUSIONS: The described frame-based stereotactic technique for IVB catheter implant is feasible and could be quickly mastered by neurosurgeons in related fields. Larger prospective cohorts with longer follow-up periods are necessary to further evaluate the long-term safety and efficacy of this procedure.
Assuntos
Baclofeno , Distonia , Relaxantes Musculares Centrais , Espasticidade Muscular , Humanos , Baclofeno/administração & dosagem , Baclofeno/uso terapêutico , Espasticidade Muscular/tratamento farmacológico , Espasticidade Muscular/cirurgia , Espasticidade Muscular/etiologia , Masculino , Relaxantes Musculares Centrais/administração & dosagem , Relaxantes Musculares Centrais/uso terapêutico , Feminino , Adulto , Pessoa de Meia-Idade , Distonia/tratamento farmacológico , Técnicas Estereotáxicas , Resultado do Tratamento , Infusões IntraventricularesRESUMO
Risk evaluation is ubiquitous in decisions. Deep brain stimulation of the subthalamic nucleus is effective for Parkinson's disease and obsessive-compulsive disorder, and can be associated with impulsivity and hypomania. Subthalamic stimulation has seemingly contrasting effects on impulsivity enhancing conflict-induced impulsivity but decreasing risk taking. Here, using a card gambling task paired with intracranial recordings (n = 25) and within-subject case control acute stimulation (n = 15) of the right subthalamic nucleus, we dissociated objective risk and uncertainty and subjective physiological markers of risk. Acute stimulation decreased risk taking (P = 0.010, Cohen's d = 0.72) and increased subthalamic theta activity (P < 0.001, Cohen's d = 0.72). Critically, stimulation negatively shifted the relationship between subthalamic physiology and a measure of evidence accumulation similar to observations with stimulation-induced conflict processing. This highlights the phenotypic and physiological heterogeneity of impulsivity, yet linking mechanisms underlying stimulation-induced conflict and risk. Finally, stimulation-induced risk seeking implicates the ventral subthalamic nucleus and dissociating anatomical and functional connectivity with the mesial prefrontal cortex. Our findings have implications for conceptualizations of impulsivity, and clinical relevance for neuropsychiatric disorders.
RESUMO
BACKGROUND AND PURPOSE: The aim was to demonstrate the feasibility, reliability and validity of an in-home remote levodopa challenge test (LCT), as delivered through an online platform, for patients with Parkinson's disease (PwPD). METHODS: Patients with Parkinson's disease eligible for deep brain stimulation surgery screening were enrolled. Participants sequentially received an in-home remote LCT and an in-hospital standard LCT (separated by 2.71 weeks). A modified Movement Disorder Society Unified Parkinson's Disease Rating Scale Part III omitting rigidity and postural stability items was used in the remote LCT. The reliability of the remote LCT was evaluated using the intraclass correlation coefficient and the concurrent validity was evaluated using the Pearson's correlation coefficient r between the levodopa responsiveness of the remote and standard LCT. RESULTS: Out of 106 PwPD screened, 80 (75.5%) completed both the remote and standard LCT. There was a good reliability (intraclass correlation coefficient 0.81, 95% confidence interval 0.69-0.88) and a strong correlation (r = 0.84, 95% confidence interval 0.77-0.90) between the levodopa responsiveness of the remote and standard LCT. The mean cost for PwPD was estimated to be reduced by 91% by using the remote LCT. CONCLUSION: The remote LCT is feasible, reliable and valid and may reduce healthcare-related costs for PwPD and their caregivers.
Assuntos
Antiparkinsonianos , Estudos de Viabilidade , Levodopa , Doença de Parkinson , Humanos , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/diagnóstico , Doença de Parkinson/economia , Levodopa/uso terapêutico , Levodopa/economia , Masculino , Feminino , Reprodutibilidade dos Testes , Idoso , Pessoa de Meia-Idade , Antiparkinsonianos/uso terapêutico , Antiparkinsonianos/economiaRESUMO
The characterization of neural signatures within the somatosensory pathway is essential for elucidating the pathogenic mechanisms of central post-stroke pain (CPSP) and developing more effective treatments such as deep brain stimulation (DBS). We explored the characteristics of thalamic neural oscillations in response to varying pain levels under multi-day local field potential (LFP) recordings and examined the influences of continuous DBS on these thalamic activities. We recorded LFPs from the left ventral posterolateral thalamus (VPL) of a patient with CPSP in the resting state under both off- and on-stimulation conditions. We observed significant differences in the power spectral density (PSD) of different pain levels in the delta, theta and gamma frequency bands of the left VPL; 75Hz DBS significantly increased the PSD of delta and decreased the PSD of low-beta, while 130Hz DBS significantly reduced the PSD of theta and low-beta. Thalamic stimulation modulated the neural oscillations related to pain, and the changes in neural activities in response to stimulation could serve as quantitative indicators for pain relief.
RESUMO
Background: Remote programming (RP) is an emerging technology that enables the adjustment of implantable pulse generators (IPGs) via the Internet for people with Parkinson's disease (PwPD) who have undergone deep brain stimulation (DBS). Previous studies have not comprehensively explored the effectiveness of RP in managing motor symptoms, often omitting assessments such as the rigidity and retropulsion tests during the follow-up. This study evaluates the comprehensive improvements in motor performance and the potential cost benefits of RP for PwPD with DBS. Methods: A retrospective analysis was conducted on two groups of patients-those who received RP and those who received standard programming (SP). Clinical outcomes including motor improvement, quality of life, and daily levodopa dosage were compared between the groups during a 12 (± 3)-month in-clinic follow-up. Results: A total of 44 patients were included in the study, with 18 in the RP group and 26 in the SP group. No significant differences were observed in the frequency of programming sessions or clinical outcomes between the groups (p > 0.05). However, the RP group experienced significantly lower costs per programming session than the SP group (p < 0.05), despite patients in the former group living further from our center (p < 0.05). Conclusions: Our findings suggest that RP could significantly reduce the costs of programming for PwPD with DBS, especially without compromising the effectiveness of treatment across all motor symptoms in the short term.
RESUMO
Background: Structural imaging holds great potential for precise targeting and stimulation for deep brain stimulation (DBS). The anatomical information it provides may serve as potential biomarkers for predicting the efficacy of DBS in treatment-resistant depression (TRD). Aims: The primary aim is to identify preoperative imaging biomarkers that correlate with the efficacy of DBS in patients with TRD. Methods: Preoperative imaging parameters were estimated and correlated with the 6-month clinical outcome of patients with TRD receiving combined bed nucleus of the stria terminalis (BNST)-nucleus accumbens (NAc) DBS. White matter (WM) properties were extracted and compared between the response/non-response and remission/non-remission groups. Structural connectome was constructed and analysed using graph theory. Distances of the volume of activated tissue (VAT) to the main modulating tracts were also estimated to evaluate the correlations. Results: Differences in fibre bundle properties of tracts, including superior thalamic radiation and reticulospinal tract, were observed between the remission and non-remission groups. Distance of the centre of the VAT to tracts connecting the ventral tegmental area and the anterior limb of internal capsule on the left side varied between the remission and non-remission groups (p=0.010, t=3.07). The normalised clustering coefficient (γ) and the small-world property (σ) in graph analysis correlated with the symptom improvement after the correction of age. Conclusions: Presurgical structural alterations in WM tracts connecting the frontal area with subcortical regions, as well as the distance of the VAT to the modulating tracts, may influence the clinical outcome of BNST-NAc DBS. These findings provide potential imaging biomarkers for the DBS treatment for patients with TRD.
RESUMO
BACKGROUND: Deep brain stimulation (DBS) has been reported as a therapy option for the motor dysfunction of severe tardive dystonia (TD). The major psychiatric diseases, however, are contraindications to DBS treatment in TD patients. METHODS: Six severe, medically refractory TD patients undergoing bilateral anterior capsulotomy combined with bilateral subthalamic nucleus (STN)-DBS treatment were studied retrospectively at two time points: pre-operation, and 1-3 years post-operation. Burke-Fahn-Marsden Dystonia Rating Scale (BFMDRS) was used to assess the dystonia and disability. Depressive, anxiety, psychiatric symptoms, and Quality of Life (QoL) were evaluated using the 17-item Hamilton Depression Scale (HAMD-17), the 14-item Hamilton Anxiety Scale (HAMA-14), the Positive and Negative Syndrome Scale (PANSS), and 36-item Short-Form Health Survey (SF-36), respectively. RESULTS: After receiving the combination treatment for 25 ± 11.6 months (range, 12-41 months), significant clinical symptom improvements were reported in TD patients. BFMDRS motor and disability scores were ameliorated by 78.5 ± 32.0% (p = 0.031) and 76.5 ± 38.6% (p = 0.031), respectively. The HAMD-17 and HAMA-14 scores were reduced by 60.3 ± 27.9% (p = 0.007) and 60.0 ± 24.6% (p = 0.009), respectively. Furthermore, the PANSS scores of the comorbidity schizophrenia TD patients decreased by 58.1 ± 6.0% (p = 0.022), and the QoL improved by 59.7 ± 14.1% (SF-36, p = 0.0001). During the research, there were no notable adverse effects or problems. CONCLUSION: Bilateral anterior capsulotomy combined with bilateral STN-DBS may be an effective and relatively safe treatment option for severe TD comorbid with major psychiatric disorders.
Assuntos
Estimulação Encefálica Profunda , Núcleo Subtalâmico , Discinesia Tardia , Humanos , Masculino , Estimulação Encefálica Profunda/efeitos adversos , Pessoa de Meia-Idade , Núcleo Subtalâmico/fisiologia , Feminino , Discinesia Tardia/terapia , Adulto , Estudos Retrospectivos , Cápsula Interna , Terapia Combinada , Idoso , Qualidade de VidaRESUMO
BACKGROUND: The efficacy of levodopa, the most crucial metric for Parkinson's disease diagnosis and treatment, is traditionally gauged through the levodopa challenge test, which lacks a predictive model. This study aims to probe the predictive power of T1-weighted MRI, the most accessible modality for levodopa response. METHODS: This retrospective study used two datasets: from the Parkinson's Progression Markers Initiative (219 records) and the external clinical dataset from Ruijin Hospital (217 records). A novel feature extraction method using MedicalNet, a pre-trained deep learning network, along with three previous approaches was applied. Three machine learning models were trained and tested on the PPMI dataset and included clinical features, imaging features, and their union set, using the area under the curve (AUC) as the metric. The most significant brain regions were visualized. The external clinical dataset was further evaluated using trained models. A paired one-tailed t-test was performed between the two sets; statistical significance was set at p < 0.001. RESULTS: For 46 test set records (mean age, 62 ± 9 years, 28 men), MedicalNet-extracted features demonstrated a consistent improvement in all three machine learning models (SVM 0.83 ± 0.01 versus 0.73 ± 0.01, XgBoost 0.80 ± 0.04 versus 0.74 ± 0.02, MLP 0.80 ± 0.03 versus 0.70 ± 0.07, p < 0.001). Both feature sets were validated on the clinical dataset using SVM, where MedicalNet features alone achieved an AUC of 0.64 ± 0.03. Key responsible brain regions were visualized. CONCLUSION: The T1-weighed MRI features were more robust and generalizable than the clinical features in prediction; their combination provided the best results. T1-weighed MRI provided insights on specific regions responsible for levodopa response prediction. CRITICAL RELEVANCE STATEMENT: This study demonstrated that T1w MRI features extracted by a deep learning model have the potential to predict the levodopa response of PD patients and are more robust than widely used clinical information, which might help in determining treatment strategy. KEY POINTS: This study investigated the predictive value of T1w features for levodopa response. MedicalNet extractor outperformed all other previously published methods with key region visualization. T1w features are more effective than clinical information in levodopa response prediction.
RESUMO
OBJECTIVE: Patients with coexisting spastic cerebral palsy (CP) and dystonia have limited treatment options. In this study, the authors aimed to evaluate the efficacy of deep brain stimulation (DBS) targeting the superior cerebellar peduncles (SCPs) in adults with CP. METHODS: Five patients with CP and medically refractory dystonia and spasticity underwent SCP DBS. Assessments included the Burke-Fahn-Marsden Dystonia Rating Scale (BFMDRS), modified Ashworth scale (mAS), and tests of cognition, mental status, and quality of life preoperatively and at 3, 6, and 12 months postoperatively (in both DBS ON and OFF states, double blinded). Active contacts and fiber bundles were examined. RESULTS: Four patients completed follow-up. The BFMDRS motor score decreased from 74 to 52 at 12 months postoperatively (30%, p = 0.008). The mean mAS score indicated significant spasticity reduction (from 2.9 ± 0.9 to 1.9 ± 0.6 after 12 months, p = 0.0454). Quality of life improved (p < 0.01), while cognition remained unaffected. Active contacts were found within the dentato-rubro-thalamic tract, with variable efficiency in decussating and nondecussating portions. CONCLUSIONS: In this pilot trial, SCP DBS showed promise as a well-tolerated treatment for CP, improving dystonic symptoms, spasticity, quality of life, and functional capacities. However, caution is needed when interpreting the results given the small sample size and heterogeneous motor outcomes.
Assuntos
Paralisia Cerebral , Estimulação Encefálica Profunda , Humanos , Estimulação Encefálica Profunda/métodos , Paralisia Cerebral/terapia , Paralisia Cerebral/complicações , Masculino , Adulto , Feminino , Resultado do Tratamento , Cerebelo , Distonia/terapia , Qualidade de Vida , Espasticidade Muscular/terapia , Espasticidade Muscular/etiologia , Adulto Jovem , Pessoa de Meia-Idade , Seguimentos , Método Duplo-CegoRESUMO
Introduction: Deep brain stimulation (DBS) of subthalamic nucleus (STN) has been well-established and increasingly applied in patients with isolated dystonia. Nevertheless, the surgical efficacy varies among patients. This study aims to explore the factors affecting clinical outcomes of STN-DBS on isolated dystonia and establish a well-performed prediction model. Methods: In this prospective study, thirty-two dystonia patients were recruited and received bilateral STN-DBS at our center. Their baseline characteristics and up to one-year follow-up outcomes were assessed. Implanted electrodes of each subject were reconstructed with their contact coordinates and activated volumes calculated. We explored correlations between distinct clinical characteristics and surgical efficacy. Those features were then trained for the model in outcome prediction via support vector regression (SVR) algorithm and testified through cross-validation. Results: Patients demonstrated an average clinical improvement of 56 ± 25 % after STN-DBS, significantly affected by distinct symptom forms and activated volumes. The optimal targets and activated volumes were concentratedly located at the dorsal posterior region to STN. Most patients had a rapid response to STN-DBS, and their motor score improvement within one week was highly associated with long-term outcomes. The trained SVR model, contributed by distinct weights of features, could reach a maximum prediction accuracy with mean errors of 11 ± 7 %. Conclusion: STN-DBS demonstrated significant and rapid therapeutic effects in patients with isolated dystonia, by possibly affecting the pallidofugal fibers. Early improvement highly indicates the ultimate outcomes. SVR proves valid in outcome prediction. Patients with predominant phasic and generalized symptoms, shorter disease duration, and younger onset age may be more favorable to STN-DBS in the long run.
RESUMO
OBJECTIVE: This study aimed to examine the structural alterations of the deep gray matter (DGM) in the basal ganglia circuitry of Parkinson's disease (PD) patients with freezing of gait (FOG) using quantitative susceptibility mapping (QSM) and neuromelanin-sensitive magnetic resonance imaging (NM-MRI). METHODS: Twenty-five (25) PD patients with FOG (PD-FOG), 22 PD patients without FOG (PD-nFOG), and 30 age- and sex-matched healthy controls (HCs) underwent 3-dimensional multi-echo gradient recalled echo and NM-MRI scanning. The mean volume and susceptibility of the DGM on QSM data and the relative contrast (NMRC-SNpc) and volume (NMvolume-SNpc) of the substantia nigra pars compacta on NM-MRI were analyzed among groups. A multiple linear regression analysis was performed to explore the associations of FOG severity with MRI measurements and disease stage. RESULTS: The PD-FOG group showed higher susceptibility in the bilateral caudal substantia nigra (SN) compared to the HC group. Both the PD-FOG and PD-nFOG groups showed lower volumes than the HC group in the bilateral caudate and putamen as determined from the QSM data. The NMvolume-SNpc on NM-MRI in the PD-FOG group was significantly lower than in the HC and PD-nFOG groups. Both the PD-FOG and PD-nFOG groups showed significantly decreased NMRC-SNpc. CONCLUSIONS: The PD-FOG patients showed abnormal neostriatum atrophy, increases in iron deposition in the SN, and lower NMvolume-SNpc. The structural alterations of the DGM in the basal ganglia circuits could lead to the abnormal output of the basal ganglia circuit to trigger the FOG in PD patients.
Assuntos
Gânglios da Base , Transtornos Neurológicos da Marcha , Ferro , Imageamento por Ressonância Magnética , Melaninas , Doença de Parkinson , Humanos , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/complicações , Doença de Parkinson/metabolismo , Feminino , Masculino , Imageamento por Ressonância Magnética/métodos , Gânglios da Base/diagnóstico por imagem , Gânglios da Base/metabolismo , Melaninas/metabolismo , Idoso , Ferro/metabolismo , Pessoa de Meia-Idade , Transtornos Neurológicos da Marcha/diagnóstico por imagem , Substância Negra/diagnóstico por imagem , Substância Negra/metabolismo , Substância Cinzenta/diagnóstico por imagemRESUMO
BACKGROUND: Postural abnormalities (PA) are common in the advanced stages of Parkinson's disease (PD), but effective therapies are lacking. A few studies suggested that spinal cord stimulation (SCS) could be a potential therapy whereas its effect is still uncertain. We aimed to investigate whether SCS had potential for benefiting PD patients with PA. METHODS: T8-12 SCS was operated on six PD patients with PA and all patients were followed for one year. Evaluations were made before and after SCS. Moreover, three patients were tested separately with SCS on-state and off-state to confirm the efficacy of SCS. RESULTS: Improvements in lateral trunk flexion degree, anterior thoracolumbar flexion degree and motor function were found after SCS. The improvements diminished while SCS was turned off. CONCLUSIONS: Lower thoracic SCS may be effective for improving PA in PD patients, but further studies are needed to confirm this conclusion. TRIAL REGISTRATION: Chinese Clinical Trial Registry, ChiCTR1900024326, Registered on 6th July 2019; https://www.chictr.org.cn/showproj.aspx?proj=40835 .
Assuntos
Doença de Parkinson , Equilíbrio Postural , Estimulação da Medula Espinal , Humanos , Estimulação da Medula Espinal/métodos , Doença de Parkinson/terapia , Doença de Parkinson/complicações , Doença de Parkinson/fisiopatologia , Projetos Piloto , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Estudos Prospectivos , Equilíbrio Postural/fisiologia , Resultado do TratamentoRESUMO
BACKGROUND: Depression is a chronic psychiatric disorder related to diminished dopaminergic neurotransmission. Deep brain stimulation (DBS) has shown effectiveness in treating patients with treatment-refractory depression (TRD). This study aimed to evaluate the effect of DBS on dopamine D2 receptor binding in patients with TRD. METHODS: Six patients with TRD were treated with bed nucleus of the stria terminalis (BNST)-nucleus accumbens (NAc) DBS were recruited. Ultra-high sensitivity [11C]raclopride dynamic total-body positron emission tomography (PET) imaging was used to assess the brain D2 receptor binding. Each patient underwent a [11C]raclopride PET scan for 60-min under DBS OFF and DBS ON, respectively. A simplified reference tissue model was used to generate parametric images of binding potential (BPND) with the cerebellum as reference tissue. RESULTS: Depression and anxiety symptoms improved after 3-6 months of DBS treatment. Compared with two-day-nonstimulated conditions, one-day BNST-NAc DBS decreased [11C]raclopride BPND in the amygdala (15.9 %, p < 0.01), caudate nucleus (15.4 %, p < 0.0001) and substantia nigra (10.8 %, p < 0.01). LIMITATIONS: This study was limited to the small sample size and lack of a healthy control group. CONCLUSIONS: Chronic BNST-NAc DBS improved depression and anxiety symptoms, and short-term stimulation decreased D2 receptor binding in the amygdala, caudate nucleus, and substantia nigra. The findings suggest that DBS relieves depression and anxiety symptoms possibly by regulating the dopaminergic system.
Assuntos
Estimulação Encefálica Profunda , Transtorno Depressivo Resistente a Tratamento , Núcleo Accumbens , Tomografia por Emissão de Pósitrons , Racloprida , Receptores de Dopamina D2 , Humanos , Receptores de Dopamina D2/metabolismo , Estimulação Encefálica Profunda/métodos , Masculino , Feminino , Pessoa de Meia-Idade , Transtorno Depressivo Resistente a Tratamento/terapia , Transtorno Depressivo Resistente a Tratamento/metabolismo , Transtorno Depressivo Resistente a Tratamento/diagnóstico por imagem , Núcleo Accumbens/metabolismo , Núcleo Accumbens/diagnóstico por imagem , Adulto , Núcleos Septais/metabolismo , Núcleos Septais/diagnóstico por imagem , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagem , Resultado do TratamentoRESUMO
Background: Patients suffering from refractory obsessive-compulsive disorder (OCD) who have undergone deep brain stimulation (DBS) surgery require repeated in-person programming visits. These sessions could be labor-intensive and may not always be feasible, particularly when in-person hospital visits are restricted. Telemedicine is emerging as a potential supplementary tool for post-operative care. However, its reliability and feasibility still require further validation due to the unconventional methods of interaction. Methods: A study was conducted on three patients with refractory OCD who had undergone DBS. Most of their programming sessions were completed via a remote programming system. These patients were recruited and monitored for a year. Changes in their clinical symptoms were assessed using the Yale-Brown Obsessive-Compulsive Scale-Second Edition (Y-BOCS-II), the Hamilton Anxiety Scale-14 (HAMA), the Hamilton Depression Scale-17 (HAMD), and the Short Form 36 Health Survey Questionnaire (SF-36). The scores from these assessments were reported. Results: At the last follow-up, two out of three patients were identified as responders, with their Y-BOCS-II scores improving by more than 35% (P1: 51%, P3: 42%). These patients also experienced some mood benefits. All patients observed a decrease in travel expenses during the study period. No severe adverse events were reported throughout the study. Conclusion: The group of patients showed improvement in their OCD symptoms within a 1-year follow-up period after DBS surgery, without compromising safety or benefits. This suggests that telemedicine could be a valuable supplementary tool when in-person visits are limited.
RESUMO
Objectives: The aim of this study was to investigate the impact of nonmotor symptoms (NMS) on the quality of life (QoL) outcome after subthalamic nucleus deep brain stimulation (STN-DBS) at the 1-year follow-up. Methods: Ninety-three patients diagnosed with Parkinson's disease (PD), who underwent subthalamic nucleus deep brain stimulation (STN-DBS) between April 2020 and August 2021, were included in this study. Demographic information was gathered through a self-designed questionnaire. The severity of both motor and non-motor symptoms, along with the quality of life (QoL), was assessed using the Unified Parkinson's Disease Rating Scale-III (UPDRS-III), Nonmotor Symptoms Scale (NMSS), and 8-item Parkinson's Disease Questionnaire (PDQ-8), respectively. Results: Significant differences were observed in the UPDRS-III score, NMSS summary index (SI), and subscores of six domains (sleep/fatigue, mood/cognition, perceptual problems/hallucinations, attention/memory, urinary, and sexual function) between the baseline and the 6- and 12-month follow-ups. The correlation analysis revealed positive correlations between the preoperative NMSS SI and subscores of seven domains (cardiovascular, sleep/fatigue, mood/cognition, perceptual problems/hallucinations, attention/memory, gastrointestinal, and urinary) and ΔPDQ-8. Moreover, the preoperative PDQ-8 SI (ß = 0.869, P < 0.001) and the preoperative attention/memory subscore (ß = -0.154, P = 0.026) were predictive of the postsurgery improvement in quality of life (QoL). Conclusion: Deep brain stimulation (DBS) led to an improvement in the patients' nonmotor symptoms (NMS) at the 1-year follow-up, along with a correlation observed between NMS and the patients' quality of life (QoL). Notably, the severity of preoperative attention/memory problems emerged as the most significant predictor of NMS influencing the QoL outcome after STN-DBS at the 1-year follow-up.