Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
1.
Front Vet Sci ; 11: 1422012, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39100768

RESUMO

Introduction: The enteric microbiome and its possible modulation to improve feed conversion or vaccine efficacy is gaining more attention in pigs. Weaning pigs from their dam, along with many routine procedures, is stressful. A better understanding of the impact of this process on the microbiome may be important for improving pig production. The objective of this study was to develop a weaner pig cannulation model, thus allowing ileum content collection from the same pig over time for 16S rRNA sequencing under different porcine reproductive and respiratory syndrome virus (PRRSV) infection statuses. Methods: A total of 15 3-week-old pigs underwent abdominal surgery and were fitted with an ileum cannula, with ileum contents collected over time. In this pilot study, treatment groups included a NEG-CONTROL group (no vaccination, no PRRSV challenge), a POS-CONTROL group (no vaccination, challenged with PRRSV), a VAC-PRRSV group (vaccinated, challenged with PRRSV), a VAC-PRO-PRRSV group (vaccinated, supplemented with a probiotic, challenged with PRRSV), and a VAC-ANTI-PRRSV group (vaccinated, administered an antibiotic, challenged with PRRSV). We assessed the microbiome over time and measured anti-PRRSV serum antibodies, PRRSV load in serum and nasal samples, and the severity of lung lesions. Results: Vaccination was protective against PRRSV challenge, irrespective of other treatments. All vaccinated pigs mounted an immune response to PRRSV within 1 week after vaccination. A discernible impact of treatment on the diversity, structure, and taxonomic abundance of the enteric microbiome among the groups was not observed. Instead, significant influences on the ileum microbiome were observed in relation to time and treatment. Discussion: The cannulation model described in this pilot study has the potential to be useful in studying the impact of weaning, vaccination, disease challenge, and antimicrobial administration on the enteric microbiome and its impact on pig health and production. Remarkably, despite the cannulation procedures, all vaccinated pigs exhibited robust immune responses and remained protected against PRRSV challenge, as evidenced by the development of anti-PRRSV serum antibodies and viral shedding data.

2.
J Vet Diagn Invest ; : 10406387241268315, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39165089

RESUMO

Here we describe a case of fatal amebic gastritis associated with Naegleria australiensis infection in an 11-mo-old Linnaeus's two-toed sloth (Choloepus didactylus). The sloth had a history of weight loss and intermittent diarrhea for 18 d, and subsequently died despite empirical treatment. Postmortem findings included emaciation, gastric dilation with fluid content, and fibrinonecrotic gastritis with intralesional amebic trophozoites and cysts in the glandular region of the fundus. Transmission electron microscopy ruled out Amoebozoa of the family Entamoebidae based on the presence of mitochondria in the amoeboid organisms. PCR for pan-free-living amebae followed by next-generation sequencing of the PCR product revealed 99% identity with Naegleria australiensis. Gastric amebiasis has been reported sporadically in macropods and in leaf-eating monkeys with a sacculated stomach. To our knowledge, gastric amebiasis has not been reported previously in a sloth, which also has a sacculated and multi-chambered stomach.

3.
Viruses ; 16(7)2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-39066186

RESUMO

A diagnostic investigation into an outbreak of fatal respiratory disease among young goats in Iowa, USA revealed bronchitis lesions of unknown etiology and secondary bacterial bronchopneumonia. Hypothesis-free metagenomics identified a previously unreported picornavirus (USA/IA26017/2023), and further phylogenetic analysis classified USA/IA26017/2023 as an aphthovirus related to bovine rhinitis B virus. Viral nucleic acid was localized to lesions of bronchitis using in situ hybridization. This marks the first report of a picornavirus putatively causing respiratory disease in goats and highlights the potential for cross-species transmission of aphthoviruses.


Assuntos
Bronquite , Doenças das Cabras , Cabras , Filogenia , Animais , Doenças das Cabras/virologia , Bronquite/virologia , Bronquite/veterinária , Infecções por Picornaviridae/veterinária , Infecções por Picornaviridae/virologia , Iowa , Surtos de Doenças/veterinária , Metagenômica , Bovinos
4.
Emerg Microbes Infect ; 13(1): 2380421, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39008278

RESUMO

In March 2024, the emergence of highly pathogenic avian influenza (HPAI) A (H5N1) infections in dairy cattle was detected in the United Sates for the first time. We genetically characterize HPAI viruses from dairy cattle showing an abrupt drop in milk production, as well as from two cats, six wild birds, and one skunk. They share nearly identical genome sequences, forming a new genotype B3.13 within the 2.3.4.4b clade. B3.13 viruses underwent two reassortment events since 2023 and exhibit critical mutations in HA, M1, and NS genes but lack critical mutations in PB2 and PB1 genes, which enhance virulence or adaptation to mammals. The PB2 E627 K mutation in a human case associated with cattle underscores the potential for rapid evolution post infection, highlighting the need for continued surveillance to monitor public health threats.


Assuntos
Genoma Viral , Virus da Influenza A Subtipo H5N1 , Filogenia , Animais , Bovinos , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/patogenicidade , Virus da Influenza A Subtipo H5N1/isolamento & purificação , Virus da Influenza A Subtipo H5N1/classificação , Infecções por Orthomyxoviridae/virologia , Infecções por Orthomyxoviridae/veterinária , Doenças dos Bovinos/virologia , Influenza Aviária/virologia , Vírus Reordenados/genética , Vírus Reordenados/classificação , Vírus Reordenados/isolamento & purificação , Vírus Reordenados/patogenicidade , Humanos , Aves/virologia , Genótipo , Proteínas Virais/genética , Mutação
5.
Emerg Infect Dis ; 30(7): 1335-1343, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38683888

RESUMO

We report highly pathogenic avian influenza A(H5N1) virus in dairy cattle and cats in Kansas and Texas, United States, which reflects the continued spread of clade 2.3.4.4b viruses that entered the country in late 2021. Infected cattle experienced nonspecific illness, reduced feed intake and rumination, and an abrupt drop in milk production, but fatal systemic influenza infection developed in domestic cats fed raw (unpasteurized) colostrum and milk from affected cows. Cow-to-cow transmission appears to have occurred because infections were observed in cattle on Michigan, Idaho, and Ohio farms where avian influenza virus-infected cows were transported. Although the US Food and Drug Administration has indicated the commercial milk supply remains safe, the detection of influenza virus in unpasteurized bovine milk is a concern because of potential cross-species transmission. Continued surveillance of highly pathogenic avian influenza viruses in domestic production animals is needed to prevent cross-species and mammal-to-mammal transmission.


Assuntos
Doenças do Gato , Doenças dos Bovinos , Virus da Influenza A Subtipo H5N1 , Infecções por Orthomyxoviridae , Animais , Gatos , Bovinos , Doenças do Gato/virologia , Doenças do Gato/epidemiologia , Doenças dos Bovinos/virologia , Doenças dos Bovinos/epidemiologia , Doenças dos Bovinos/transmissão , Infecções por Orthomyxoviridae/virologia , Infecções por Orthomyxoviridae/veterinária , Infecções por Orthomyxoviridae/epidemiologia , Virus da Influenza A Subtipo H5N1/patogenicidade , Virus da Influenza A Subtipo H5N1/genética , Estados Unidos/epidemiologia , Influenza Aviária/virologia , Influenza Aviária/epidemiologia , Influenza Aviária/transmissão , Leite/virologia , Feminino
6.
Viruses ; 16(3)2024 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-38543774

RESUMO

(1) Background: equid alphaherpesvirus-1 (EHV-1) is a highly contagious viral pathogen prevalent in most horse populations worldwide. Genome-editing technologies such as CRISPR/Cas9 have become powerful tools for precise RNA-guided genome modifications; (2) Methods: we designed single guide RNAs (sgRNA) to target three essential (ORF30, ORF31, and ORF7) and one non-essential (ORF74) EHV-1 genes and determine their effect on viral replication dynamics in vitro; (3) Results: we demonstrated that sgRNAs targeting essential lytic genes reduced EHV-1 replication, whereas those targeting ORF74 had a negligible effect. The sgRNAs targeting ORF30 showed the strongest effect on the suppression of EHV-1 replication, with a reduction in viral genomic copy numbers and infectious progeny virus output. Next-generation sequencing identified variants with deletions in the specific cleavage site of selective sgRNAs. Moreover, we evaluated the combination between different sgRNAs and found that the dual combination of sgRNAs targeting ORF30 and ORF7 significantly suppressed viral replication to lower levels compared to the use of a single sgRNA, suggesting a synergic effect; (4) Conclusion: data demonstrate that sgRNA-guided CRISPR/Cas9 can be used to inhibit EHV-1 replication in vitro, indicating that this programmable technique can be used to develop a novel, safe, and efficacious therapeutic and prophylactic approach against EHV-1.


Assuntos
Edição de Genes , Herpesvirus Equídeo 1 , Animais , Cavalos , Edição de Genes/métodos , RNA Guia de Sistemas CRISPR-Cas , Sistemas CRISPR-Cas , Herpesvirus Equídeo 1/genética , Genoma Viral
7.
Microbiol Resour Announc ; 13(2): e0105723, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38289056

RESUMO

Canine pneumovirus was detected by RT-qPCR in 2022 from nasal swabs collected from two dogs with upper respiratory disease in a shelter in Louisiana, United States. The genomes from the designated strains CPnV USA/LA/2022/124423 and USA/LA/2022/123696 were sequenced and show the closest similarity to the pneumonia virus of mice J3666.

8.
Proc Natl Acad Sci U S A ; 120(47): e2307773120, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37963246

RESUMO

The expansion and intensification of livestock production is predicted to promote the emergence of pathogens. As pathogens sometimes jump between species, this can affect the health of humans as well as livestock. Here, we investigate how livestock microbiota can act as a source of these emerging pathogens through analysis of Streptococcus suis, a ubiquitous component of the respiratory microbiota of pigs that is also a major cause of disease on pig farms and an important zoonotic pathogen. Combining molecular dating, phylogeography, and comparative genomic analyses of a large collection of isolates, we find that several pathogenic lineages of S. suis emerged in the 19th and 20th centuries, during an early period of growth in pig farming. These lineages have since spread between countries and continents, mirroring trade in live pigs. They are distinguished by the presence of three genomic islands with putative roles in metabolism and cell adhesion, and an ongoing reduction in genome size, which may reflect their recent shift to a more pathogenic ecology. Reconstructions of the evolutionary histories of these islands reveal constraints on pathogen emergence that could inform control strategies, with pathogenic lineages consistently emerging from one subpopulation of S. suis and acquiring genes through horizontal transfer from other pathogenic lineages. These results shed light on the capacity of the microbiota to rapidly evolve to exploit changes in their host population and suggest that the impact of changes in farming on the pathogenicity and zoonotic potential of S. suis is yet to be fully realized.


Assuntos
Infecções Estreptocócicas , Streptococcus suis , Doenças dos Suínos , Animais , Humanos , Suínos , Infecções Estreptocócicas/veterinária , Fazendas , Doenças dos Suínos/epidemiologia , Virulência/genética , Streptococcus suis/genética , Gado
9.
Viruses ; 15(11)2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-38005917

RESUMO

In this study, we developed and validated (1) singleplex real-time RT-PCR assays for specific detection of five PRRSV-2 MLV vaccine viruses (Ingelvac MLV, Ingelvac ATP, Fostera, Prime Pac, and Prevacent) and (2) a four-plex real-time RT-PCR assay (IngelvacMLV/Fostera/Prevacent/XIPC) including the internal positive control XIPC for detecting and distinguishing the three most commonly used vaccines in the USA (Prevacent, Ingelvac MLV, and Fostera). The singleplex and 4-plex vaccine-like PCRs and the reference PCR (VetMAXTM PRRSV NA&EU, Thermo Fisher Scientific, Waltham, MA, USA) did not cross-react with non-PRRSV swine viral and bacterial pathogens. The limits of detection of vaccine-like PCRs ranged from 25 to 50 genomic copies/reactions. The vaccine-like PCRs all had excellent intra-assay and inter-assay repeatability. Based on the testing of 531 clinical samples and in comparison to the reference PCR, the diagnostic sensitivity, specificity, and agreement were in the respective range of 94.67-100%, 100%, and 97.78-100% for singleplex PCRs and 94.94-100%, 100%, and 97.78-100% for the 4-plex PCR, with a CT cutoff of 37. In addition, 45 PRRSV-2 isolates representing different genetic lineages/sublineages were tested with the vaccine-like PCRs and the results were verified with sequencing. In summary, the vaccine-like PCRs specifically detect the respective vaccine-like viruses with comparable performances to the reference PCR, and the 4-plex PCR allows to simultaneously detect and differentiate the three most commonly used vaccine viruses in the same sample. PRRSV-2 vaccine-like PCRs provide an additional tool for detecting and characterizing PRRSV-2.


Assuntos
Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Vacinas Virais , Suínos , Animais , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Síndrome Respiratória e Reprodutiva Suína/diagnóstico , Síndrome Respiratória e Reprodutiva Suína/prevenção & controle , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Reação em Cadeia da Polimerase em Tempo Real , Vacinas Virais/genética
10.
Microbiol Spectr ; 11(6): e0152523, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37916813

RESUMO

IMPORTANCE: Enterotoxigenic Escherichia coli (ETEC) cause severe diarrhea in humans and animals, leading to death and huge economic loss worldwide. Thus, elucidation of ETEC's pathogenic mechanisms will provide powerful data for the discovery of drugs serving as prevention or therapeutics against ETEC-caused diarrheal diseases. Here, we report that ArcA plays an essential role in the pathogenicity and virulence regulation in ETEC by positively regulating the expression of several key virulence factors including F18 fimbriae, heat-labile and heat-stable toxins, Shiga toxin 2e, and hemolysin, under microaerobic conditions and in vivo. Moreover, we found that positive regulation of several virulence genes by ArcA requires a global repressor H-NS (histone-like nucleoid structuring), implying that ArcA may exert positive effects by antagonizing H-NS. Collectively, our data established a key role for ArcA in the pathogenicity of porcine ETEC and ETEC strains isolated from human infections. Moreover, our work reveals another layer of regulation in relation to oxygen control of virulence factors in ETEC.


Assuntos
Escherichia coli Enterotoxigênica , Infecções por Escherichia coli , Proteínas de Escherichia coli , Humanos , Animais , Suínos , Escherichia coli Enterotoxigênica/genética , Virulência/genética , Toxina Shiga , Infecções por Escherichia coli/genética , Diarreia/veterinária , Fatores de Virulência/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Enterotoxinas
11.
Infect Immun ; 91(11): e0003923, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37815368

RESUMO

Extraintestinal pathogenic Escherichia coli (ExPEC) is responsible for severe bloodstream infections in humans and animals. However, the mechanisms underlying ExPEC's serum resistance remain incompletely understood. Through the transposon-directed insertion-site sequencing approach, our previous study identified nhaA, the gene encoding a Na+/H+ antiporter, as a crucial factor for infection in vivo. In this study, we investigated the role of NhaA in ExPEC virulence utilizing both in vitro models and systemic infection models involving avian and mammalian animals. Genetic mutagenesis analysis revealed that nhaA deletion resulted in filamentous bacterial morphology and rendered the bacteria more susceptible to sodium dodecyl sulfate, suggesting the role of nhaA in maintaining cell envelope integrity. The nhaA mutant also displayed heightened sensitivity to complement-mediated killing compared to the wild-type strain, attributed to augmented deposition of complement components (C3b and C9). Remarkably, NhaA played a more crucial role in virulence compared to several well-known factors, including Iss, Prc, NlpI, and OmpA. Our findings revealed that NhaA significantly enhanced virulence across diverse human ExPEC prototype strains within B2 phylogroups, suggesting widespread involvement in virulence. Given its pivotal role, NhaA could serve as a potential drug target for tackling ExPEC infections.


Assuntos
Infecções por Escherichia coli , Proteínas de Escherichia coli , Escherichia coli Extraintestinal Patogênica , Animais , Humanos , Escherichia coli Extraintestinal Patogênica/metabolismo , Virulência/genética , Infecções por Escherichia coli/microbiologia , Fatores de Virulência/genética , Aves/metabolismo , Aves/microbiologia , Mamíferos , Trocadores de Sódio-Hidrogênio , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Lipoproteínas
12.
mSphere ; 8(6): e0040423, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37861318

RESUMO

IMPORTANCE: This study highlights a Streptococcus equi subspecies zooepidemicus (S. zooepidemicus) strain isolated from an outbreak in Indiana, which resulted in mortality events among a swine herd in 2021. The Indiana outbreak strain was found to be genetically and phylogenetically distant to a strain isolated from the 2019 outbreaks in Ohio and Tennessee, which caused high swine mortality. We also discovered multiple unique genetic features in the Indiana outbreak strain, including distinct S. zooepidemicus genomic islands, and notable S. zooepidemicus virulence genes-many of which could serve as biomarkers for the diagnosis of this strain. These findings provide significant insights into monitoring and potentially preventing severe outbreaks caused by the Indiana outbreak strain in the future.


Assuntos
Infecções Estreptocócicas , Streptococcus equi , Suínos , Animais , Feminino , Streptococcus equi/genética , Indiana/epidemiologia , Infecções Estreptocócicas/epidemiologia , Infecções Estreptocócicas/veterinária , Genômica , Surtos de Doenças
13.
BMC Vet Res ; 19(1): 135, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37641044

RESUMO

BACKGROUND: Glaesserella parasuis is the causative agent of Glässer's disease in pigs. Serotyping is the most common method used to type G. parasuis isolates. However, the high number of non-typables (NT) and low discriminatory power make serotyping problematic. In this study, 218 field clinical isolates and 15 G. parasuis reference strains were whole-genome sequenced (WGS). Multilocus sequence types (MLST), serotypes, core-genome phylogeny, antimicrobial resistance (AMR) genes, and putative virulence gene information was extracted. RESULTS: In silico WGS serotyping identified 11 of 15 serotypes. The most frequently detected serotypes were 7, 13, 4, and 2. MLST identified 72 sequence types (STs), of which 66 were novel. The most predominant ST was ST454. Core-genome phylogeny depicted 3 primary lineages (LI, LII, and LIII), with LIIIA sublineage isolates lacking all vtaA genes, based on the structure of the phylogenetic tree and the number of virulence genes. At least one group 1 vtaA virulence genes were observed in most isolates (97.2%), except for serotype 8 (ST299 and ST406), 15 (ST408 and ST552) and NT (ST448). A few group 1 vtaA genes were significantly associated with certain serotypes or STs. The putative virulence gene lsgB, was detected in 8.3% of the isolates which were predominantly of serotype 5/12. While most isolates carried the bcr, ksgA, and bacA genes, the following antimicrobial resistant genes were detected in lower frequency;  blaZ (6.9%), tetM (3.7%), spc (3.7%), tetB (2.8%), bla-ROB-1 (1.8%), ermA (1.8%), strA (1.4%), qnrB (0.5%), and aph3''Ia (0.5%).   CONCLUSION: This study showed the use of WGS to type G. parasuis isolates and can be considered an alternative to the more labor-intensive and traditional serotyping and standard MLST. Core-genome phylogeny provided the best strain discrimination. These findings will lead to a better understanding of the molecular epidemiology and virulence in G. parasuis that can be applied to the future development of diagnostic tools, autogenous vaccines, evaluation of antibiotic use, prevention, and disease control.


Assuntos
Haemophilus parasuis , Animais , Suínos , Tipagem de Sequências Multilocus/veterinária , Filogenia , Sorogrupo , Sorotipagem/veterinária , Haemophilus parasuis/genética , América do Norte
14.
BMC Vet Res ; 19(1): 126, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37596603

RESUMO

BACKGROUND: Infections caused by avian pathogenic Escherichia coli (APEC) result in significant economic losses in poultry industry. APEC strains are known to form biofilms in various conditions allowing them to thrive even under harsh and nutrient-deficient conditions on different surfaces, and this ability enables them to evade chemical and biological eradication methods. Despite knowing the whole genome sequences of various APEC isolates, little has been reported regarding their biofilm-associated genes. A random transposon mutant library of the wild-type APEC IMT 5155 comprising 1,300 mutants was analyzed for biofilm formation under nutrient deprived conditions using Videoscan technology coupled with fluorescence microscopy. Seven transposon mutants were found to have reproducibly and significantly altered biofilm formation and their mutated genes were identified by arbitrary PCR and DNA sequencing. The intact genes were acquired from the wild-type strain, cloned in pACYC177 plasmid and transformed into the respective altered biofilm forming transposon mutants, and the biofilm formation was checked in comparison to the wild type and mutant strains under the same conditions. RESULTS: In this study, we report seven genes i.e., nhaA, fdeC, yjhB, lysU, ecpR, AJB35136 and fdtA of APEC with significant contribution to biofilm formation. Reintroduction of AJB35136 and fdtA, reversed the altered phenotype proving that a significant role being played by these two O-antigen related genes in APEC biofilm formation. Presence of these seven genes across nonpathogenic E. coli and APEC genomes was also analyzed showing that they are more prevalent in the latter. CONCLUSIONS: The study has elucidated the role of these genes in APEC biofilm formation and compared them to adhesion expanding the knowledge and understanding of the economically significant pathogens.


Assuntos
Aves , Escherichia coli , Animais , Escherichia coli/genética , Biofilmes , Microscopia de Fluorescência/veterinária , Nutrientes
15.
Microb Pathog ; 180: 106172, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37230257

RESUMO

Mycoplasma hyorhinis (M. hyorhinis) is a commensal of the upper respiratory tract in swine with the typical clinical presentations of arthritis and polyserositis in postweaning pigs. However, it has also been associated with conjunctivitis and otitis media, and recently has been isolated from meningeal swabs and/or cerebrospinal fluid of piglets with neurological signs. The objective of this study is to evaluate the role of M. hyorhinis as a potential pathogen associated with neurological clinical signs and central nervous system lesions in pigs. The presence of M. hyorhinis was evaluated in a clinical outbreak and a six-year retrospective study by qPCR detection, bacteriological culture, in situ hybridization (RNAscope®), and phylogenetic analysis and with immunohistochemistry characterization of the inflammatory response associated with its infection. M. hyorhinis was confirmed by bacteriological culture and within central nervous system lesions by in situ hybridization on animals with neurological signs during the clinical outbreak. The isolates from the brain had close genetic similarities from those previously reported and isolated from eye, lung, or fibrin. Nevertheless, the retrospective study confirmed by qPCR the presence of M. hyorhinis in 9.9% of cases reported with neurological clinical signs and histological lesions of encephalitis or meningoencephalitis of unknown etiology. M. hyorhinis mRNA was confirmed within cerebrum, cerebellum, and choroid plexus lesions by in situ hybridization (RNAscope®) with a positive rate of 72.7%. Here we present strong evidence that M. hyorhinis should be included as a differential etiology in pigs with neurological signs and central nervous system inflammatory lesions.


Assuntos
Infecções por Mycoplasma , Mycoplasma hyorhinis , Doenças dos Suínos , Animais , Suínos , Mycoplasma hyorhinis/genética , Infecções por Mycoplasma/diagnóstico , Infecções por Mycoplasma/veterinária , Infecções por Mycoplasma/epidemiologia , Doenças dos Suínos/diagnóstico , Doenças dos Suínos/epidemiologia , Estudos Retrospectivos , Filogenia , Sistema Nervoso Central
16.
Front Vet Sci ; 10: 1149293, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37056231

RESUMO

A porcine reproductive and respiratory syndrome virus (PRRSV) type 2 (PRRSV-2) isolate was obtained from lung samples collected from a 4.5-month-old pig at a wean-to-finish site in Indiana, USA, although no gross or microscopic lesions suggestive of PRRSV infection were observed in the lung tissue. Phylogenetic and molecular evolutionary analyses based on the obtained virus sequences indicated that PRRSV USA/IN105404/2021 was a natural recombinant isolate from Ingelvac PRRS® MLV and Prevacent® PRRS, which are PRRSV-2-modified live virus vaccines commercially available in the United States. This study is the first to report the detection of a PRRSV-2 recombinant strain consisting entirely of two modified live virus vaccine strains under field conditions. Based on clinical data and the absence of lung lesions, this PRRSV-2 recombinant strain was not virulent in swine, although its pathogenicity needs to be confirmed by clinical trials.

17.
Pathogens ; 12(3)2023 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-36986367

RESUMO

Streptococcus zooepidemicus is an emerging zoonotic pathogen involved in septicemic infections in humans and livestock. Raising guinea pigs in South America is an important economic activity compared to raising them as pets in other countries. An outbreak of severe lymphadenitis was reported in guinea pigs from farms in the Andean region. S. zooepidemicus was isolated from multiple cervical and mandibular abscesses. Isolate was characterized by multilocus sequence typing and phylogenetic analysis. This is the first molecular characterization of a highly pathogenic strain, showing major important virulence factors such as the M-like protein genes szP and mlpZ, the fimbrial subunit protein gene fszF, and the protective antigen-like protein gene spaZ. Additionally, this guinea pig strain was phylogenetically related to equines but distant from zoonotic and pig isolates reported in other countries.

18.
mBio ; 14(2): e0315222, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36786613

RESUMO

Enterohemorrhagic Escherichia coli (EHEC) is a highly adaptive pathogen and has acquired diverse genetic elements, such as genomic islands and prophages, via horizontal gene transfer to promote fitness in vivo. Two-component signaling systems (TCSs) allow bacteria to sense, respond to, and adapt to various environments. This study identified a putative two-component signaling system composed of the histidine kinase EDL5436 (renamed LmvK) and the response regulator EDL5428 (renamed LmvR) in EHEC. lmvK and lmvR along with EDL5429 to EDL5434 (EDL5429-5434) between them constitute the OI167 genomic island and are highly associated with the EHEC pathotype. EDL5429-5434 encode transporters and metabolic enzymes that contribute to growth on mannose and are directly upregulated by LmvK/LmvR in the presence of mannose, as revealed by quantitative PCR (qPCR) and DNase I footprint assays. Moreover, LmvR directly activates the expression of the type III secretion system in response to mannose and promotes the formation of attaching and effacing lesions on HeLa cells. Using human colonoid and mouse infection models, we show that lmvK and lmvR contributed greatly to adherence and microcolony (MC) formation ex vivo and colonization in vivo. Finally, RNA sequencing and chromatin immunoprecipitation coupled with sequencing analyses identified additional direct targets of LmvR, most of which are involved in metabolism. Given that mannose is a mucus-derived sugar that induces virulence and is preferentially used by EHEC during infection, our data revealed a previously unknown mechanism by which EHEC recognizes the host metabolic landscape and regulates virulence expression accordingly. Our findings provide insights into how pathogenic bacteria evolve by acquiring genetic elements horizontally to adapt to host environments. IMPORTANCE The gastrointestinal tract represents a complex and challenging environment for enterohemorrhagic Escherichia coli (EHEC). However, EHEC is a highly adaptable pathogen, requiring only 10 to 100 CFUs to cause infection. This ability was achieved partially by acquiring mobile genetic elements, such as genomic islands, that promote overall fitness. Mannose is an intestinal mucus-derived sugar that stimulates virulence and is preferentially used by EHEC during infection. Here, we characterize the OI167 genomic island of EHEC, which encodes a novel two-component signaling system (TCS) and transporters and metabolic enzymes (EDL5429-5434) involved in mannose utilization. The TCS directly upregulates EDL5429-5434 and genes encoding the type III secretion system in the presence of mannose. Moreover, the TCS contributes greatly to EHEC virulence ex vivo and in vivo. Our data demonstrate an elegant example in which EHEC strains evolve by acquiring genetic elements horizontally to recognize the host metabolic landscape and regulate virulence expression accordingly, leading to successful infections.


Assuntos
Escherichia coli Êntero-Hemorrágica , Infecções por Escherichia coli , Proteínas de Escherichia coli , Animais , Camundongos , Humanos , Escherichia coli Êntero-Hemorrágica/metabolismo , Virulência/genética , Histidina Quinase/genética , Histidina Quinase/metabolismo , Ilhas Genômicas , Manose , Células HeLa , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Sistemas de Secreção Tipo III/metabolismo , Infecções por Escherichia coli/microbiologia , Regulação Bacteriana da Expressão Gênica
19.
Microbiol Spectr ; 10(5): e0293422, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36073823

RESUMO

Porcine reproductive and respiratory syndrome (PRRS) is one of the most economically important diseases affecting the pig-raising industry. The PRRS virus (PRRSV) has high genetic diversity, partly owing to viral recombination. Some individual recombinant type 2 PRRSV (PRRSV-2) strains have been detected; however, the sequence composition characteristics of recombination hot spots and potential driving forces for recombinant PRRSV-2 are still unreported. Therefore, all available genomic sequences of PRRSV-2 (n = 949, including 29 genomes sequenced in this study) from 11 countries from 1991 to 2021 were collected and analyzed. The results revealed that the dominant major recombinant parent has been converted from lineage 3 (L3) to L1 since 2012. The recombination hot spots were located at nucleotides (nt) 7900 to 8200 (in NSP9, encoding viral RNA-dependent RNA polymerase) and nt 12500 to nt 13300 (in ORF2-ORF4, mean ORF2 to ORF4); no AU-rich characteristics were found in the recombination hot spots. Based on infectious clones of L1 and L8 PRRSV-2, recombinant PRRSVs were generated by switching complete or partial NSP9 (harboring the recombination hot spot). The results showed that recombinant PRRSVs based on the L1 backbone, but not the L8 backbone, acquired a higher replication capacity in pig primary alveolar macrophages. These findings will help to understand the reason behind the dominance of L1-based recombination in PRRSV-2 strains and provide new clues for an in-depth study of the recombination mechanism of PRRSV-2. IMPORTANCE Recombination is an important driver of the genetic shifts that are tightly linked to the evolution of RNA viruses. Viral recombination contributes substantially to the emergence of new variants, alterations in virulence, and pathogenesis. PRRSV is genetically diverse, partly because of extensive recombination. In this study, we analyzed interlineage recombination based on available genomic sequences of PRRSV-2 from 1991 to 2021. The study revealed the temporal and geographical distribution of recombinant PRRSVs and the recombination hot spot's location and showed that artificially constructed recombinant PRRSVs (harboring a high-frequency region) had more viral genomic copies than their parental virus, indicating that dominant recombination was shaped by a tendency to benefit viral replication. This finding will enrich our understanding of PRRSV recombination and provide new clues for an in-depth study of the recombination mechanism.


Assuntos
Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Suínos , Animais , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Recombinação Genética , Filogenia , Genoma Viral , Genômica , Replicação Viral , RNA Polimerase Dependente de RNA , Nucleotídeos , Variação Genética
20.
Front Vet Sci ; 9: 854905, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35873674

RESUMO

As one of the most important enteric viruses, sapovirus (SaV) can infect humans and a variety of animals. Until now, 19 SaV genogroups have been identified, among which 4 from human (GI, GII, GIV, and GV) and 8 from swine (GIII, GV-GXI). Porcine sapovirus (PoSaV) GIII has been prevalent in China; however, the status of PoSaV infection in Yunnan province remains unknown. In this study, 202 fecal samples were collected from piglets associated with outbreaks of acute diarrhea in Yunnan between January and May 2020. PoSaV detection revealed that the total PoSaV infection rate in Yunnan was 35.2%, with 21 PoSaV strains determined and phylogenetically analyzed. The phylogenetic tree analyses demonstrated that twenty PoSaV strains belonged to GIII and fell into five genotypes, whereas one PoSaV strain (YNQB) belonged to GV. Sequence alignments revealed deletions in VP2 region in 10 of the 20 GIII strains, as well as deletions and insertions in VP1 region of the GV strain (YNQB). Furthermore, genomic recombination analyses showed that two GIII strains (YNAN and YNJD) were recombinants, closely related to reference sequences MK965898 and LC215880, MK965898 and FJ387164, respectively. In summary, PoSaV-GIII strains were identified in Yunnan in 2020, and for the first time, a PoSaV-GV strain was identified from China, whereas the comprehensive analyses illustrated high genetic diversity of Yunnan PoSaV strains. This study may shed new light on the current PoSaV infections in Yunnan and pave the way toward further control of the PoSaV infections in China.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...