Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros













Base de dados
Intervalo de ano de publicação
1.
Mol Cells ; : 100079, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38871298

RESUMO

The nonsense-mediated mRNA decay (NMD) pathway and the p53 pathway, linked to tumorgenesis and are also promising targets for cancer treatment. NMD plays an important role in RNA quality control, while the p53 pathway is involved in cancer suppression. However, their individual and combined effects on cervical cancer (CC) are poorly understood. In this study, we evaluated the impacts of NMD inhibitor, MDM2 inhibitor, and their combination on cell apoptosis, cell cycle, and p53 target genes in HPV-18-positive HeLa cells. Our findings revealed that XR-2failed to activate p53 or induce apoptosis in HeLa cells, whereas SMG1i repressed cell proliferation at high concentrations. Notably the combination of these two agents significantly inhibited cell proliferation, arrested the cell cycle, and triggered cell apoptosis. Mechanistically, MDM2 inhibitor and NMD inhibitor likely exert a synergistically through the truncated E6 protein. These results underscore the potential of employing a combination of MDM2 inhibitor and NMD inhibitor as a promising candidate for the clinical treatment of HPV-infected tumors.

2.
Mol Carcinog ; 63(4): 677-687, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38362848

RESUMO

N6 -methyladenosine (m6 A) is the most prevalent epigenetic modification on eukaryotic messenger RNAs. Recent studies have focused on elucidating the key role of m6 A modification patterns in tumor progression. However, the relationship between m6 A and transcriptional regulation remains elusive. Nanopore technology enables the quantification of m6 A levels at each genomic site. In this study, a pair of tumor tissues and adjacent normal tissues from clear cell renal cell carcinoma (ccRCC) surgical samples were collected for Nanopore direct RNA sequencing. We identified 9644 genes displaying anomalous m6 A modifications, with 5343 genes upregulated and 4301 genes downregulated. Among these, 5224 genes were regarded as dysregulated genes, encompassing abnormal regulation of both m6 A modification and RNA expression. Gene Set Enrichment Analysis revealed an enrichment of these genes in pathways related to renal system progress and fatty acid metabolic progress. Furthermore, the χ2 test demonstrated a significant association between the levels of m6 A in dysregulated genes and their transcriptional expression levels. Additionally, we identified four obesity-associated genes (FTO, LEPR, ADIPOR2, and NPY5R) among the dysregulated genes. Further analyses using public databases revealed that these four genes were all related to the prognosis and diagnosis of ccRCC. This study introduced the novel approach of employing conjoint analysis of m6 A modification and RNA expression based on Nanopore sequencing to explore potential disease-related genes. Our work demonstrates the feasibility of the application of Nanopore sequencing technology in RNA epigenetic regulation research and identifies new potential therapeutic targets for ccRCC.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Sequenciamento por Nanoporos , Humanos , Carcinoma de Células Renais/patologia , Neoplasias Renais/patologia , Transcriptoma , Epigenoma , Epigênese Genética , RNA , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética
3.
Clin Transl Med ; 13(9): e1393, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37649244

RESUMO

BACKGROUND: Small extrachromosomal circular DNAs (eccDNAs) have the potential to be cancer biomarkers. However, the formation mechanisms and functions of small eccDNAs selected in carcinogenesis are not clear, and whether the small eccDNA profile in the plasma of cancer patients represents that in cancer tissues remains to be elucidated. METHODS: A novel sequencing workflow based on the nanopore sequencing platform was used to sequence naturally existing full-length small eccDNAs in tissues and plasma collected from 25 cancer patients (including prostate cancer, hepatocellular carcinoma and colorectal cancer), and from an independent validation cohort (including 7 cancer plasma and 14 healthy plasma). RESULTS: Compared with those in non-cancer tissues, small eccDNAs detected in cancer tissues had a significantly larger number and size (P = 0.040 and 2.2e-16, respectively), along with more even distribution and different formation mechanisms. Although small eccDNAs had different general characteristics and genomic annotation between cancer tissues and the paired plasma, they had similar formation mechanisms and cancer-related functions. Small eccDNAs originated from some specific genes had great multi-cancer diagnostic value in tissues (AUC ≥ 0.8) and plasma (AUC > 0.9), especially increasing the accuracy of multi-cancer prediction of CEA/CA19-9 levels. The high multi-cancer diagnostic value of small eccDNAs originated from ALK&ETV6 could be extrapolated from tissues (AUC = 0.804) to plasma and showed high positive predictive value (100%) and negative predictive value (82.35%) in a validation cohort. CONCLUSIONS: As independent and stable circular DNA molecules, small eccDNAs in both tissues and plasma can be used as ideal biomarkers for cost-effective multi-cancer diagnosis and monitoring.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Neoplasias da Próstata , Masculino , Humanos , Biomarcadores Tumorais/genética , DNA Circular/genética
4.
Clin Transl Med ; 13(5): e1261, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37221646

RESUMO

BACKGROUND: Vascular remodelling is an essential pathophysiological state in many circulatory diseases. Abnormal vascular smooth muscle cell (VSMC) behaviour leads to neointimal formation and may eventually results in major adverse cardiovascular events. The C1q/TNF-related protein (C1QTNF) family is closely associated with cardiovascular disease. Notably, C1QTNF4 has unique two C1q domains. However, the role of C1QTNF4 in vascular diseases remains unclear. METHODS: C1QTNF4 expression was detected in human serum and artery tissues using ELISA and multiplex immunofluorescence (mIF) staining. Scratch assay, transwell assay and confocal microscopy were used to investigate C1QTNF4 effects on VSMC migration. EdU incorporation, MTT assay and cell counting experiment revealed C1QTNF4 effects on VSMC proliferation. C1QTNF4-transgenic, C1QTNF4-/- and AAV9-mediated VSMC-specific C1QTNF4 restoration C1QTNF4-/- mouse and rat disease models were generated. RNA-seq, quantitative real-time PCR, western blot, mIF, proliferation and migration assays were used to investigate the phenotypic characteristics and underlying mechanisms. RESULTS: Serum C1QTNF4 levels were decreased in patients with arterial stenosis. C1QTNF4 shows colocalisation with VSMC in human renal arteries. In vitro, C1QTNF4 inhibits VSMC proliferation and migration and alters VSMC phenotype. In vivo, an adenovirus-infected rat balloon injury model, C1QTNF4-transgenic and C1QTNF4-/- mouse wire-injury models with or without VSMC-specific C1QTNF4 restoration were established to mimic the VSMC repair and remodelling. The results show that C1QTNF4 decreases intimal hyperplasia. Especially, we displayed the rescue effect of C1QTNF4 in vascular remodelling using AAV vectors. Next, transcriptome analysis of artery tissue identified the potential mechanism. In vitro and in vivo experiments confirm that C1QTNF4 ameliorates neointimal formation and maintains vascular morphology by downregulating the FAK/PI3K/AKT pathway. CONCLUSIONS: Our study demonstrated that C1QTNF4 is a novel inhibitor of VSMC proliferation and migration that acts by downregulating the FAK/PI3K/AKT pathway, thus protecting blood vessels from abnormal neointima formation. These results provide new insights into promising potent treatments for vascular stenosis diseases.


Assuntos
Doenças Cardiovasculares , Remodelação Vascular , Humanos , Animais , Camundongos , Ratos , Complemento C1q , Constrição Patológica , Músculo Liso Vascular , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Proliferação de Células
5.
Cancer Med ; 12(8): 9815-9825, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36965083

RESUMO

Immune checkpoints are protein molecules expressed on the immune cell membrane, which regulate the immune system to kill tumor cells. As an essential immune checkpoint, overexpressed PD-1 on tumor cells could inhibit T-cell activation after being bonded to PD-1. Due to this inhibitory effect, T-cell proliferation and cytokine secretion are suppressed, leading to immune escape of tumor cells. Here, we established a high-throughput method based on cell function screening technology to screen drugs regulating PD-L1 expression in tumor cells at the transcriptional level. After two screening rounds, 12 compounds that enhanced PD-L1 transcription while seven weakened were sorted out among 1018 FDA-approved drugs. Finally, a tumor cell line was used to verify the upregulation of endogenous PD-L1 expression for a drug named "vorinostat," a histone deacetylation inhibitor, after the two rounds of optional selection. Therefore, our research provides another perspective for using "vorinostat" in treating tumors and offers a convenient method to detect the transcriptional expression of other intracellular proteins besides PD-L1.


Assuntos
Antígeno B7-H1 , Receptor de Morte Celular Programada 1 , Humanos , Antígeno B7-H1/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Linhagem Celular Tumoral
6.
Theranostics ; 13(1): 391-402, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36593954

RESUMO

With the surge of the high-throughput sequencing technologies, many genetic variants have been identified in the past decade. The vast majority of these variants are defined as variants of uncertain significance (VUS), as their significance to the function or health of an organism is not known. It is urgently needed to develop intelligent models for the clinical interpretation of VUS. State-of-the-art artificial intelligence (AI)-based variant effect predictors only learn features from primary amino acid sequences, leaving out information about the most important three-dimensional structure that is more related to its function. Methods: We proposed a deep convolutional neural network model named variant effect recognition network for BRCA1 (vERnet-B) to recognize the clinical pathogenicity of missense single-nucleotide variants in the BRCT domain of BRCA1. vERnet-B learned features associated with the pathogenicity from the tertiary protein structures of variants predicted by AlphaFold2. Results: After performing a series of validation and analyses on vERnet-B, we discovered that it exhibited significant advances over previous works. Recognizing the phenotypic consequences of VUS is one of the most daunting challenges in genetic informatics; however, we achieved 85% accuracy in recognizing disease BRCA1 variants with an ideal balance of false-positive and true-positive detection rates. vERnet-B correctly recognized the pathogenicity of variant A1708E, which was poorly predicted by AlphaFold2 as previously described. The vERnet-B web server is freely available from URL: http://ai-lab.bjrz.org.cn/vERnet. Conclusions: We applied protein tertiary structures to successfully recognize the pathogenic missense SNVs, which were difficult to be addressed by classical approaches based on sequences. Our work demonstrated that AlphaFold2-predicted structures were expected to be used for rich feature learning and revealed unique insights into the clinical interpretation of VUS in disease-related genes, using vERnet-B as a discovery tool.


Assuntos
Inteligência Artificial , Predisposição Genética para Doença , Humanos , Virulência , Sequência de Aminoácidos , Proteína BRCA1/genética
7.
Soft Robot ; 10(2): 380-394, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36318821

RESUMO

Soft robot hands have the advantage of remarkable adaptability for grasping. Especially for the soft and fragile objects, soft fingers had presented their much excellent potential compared with their rigid counterparts. However, less degree of freedom, lower force output, lack of proprioception, and poor controllability still limit the application. Inspired by the anatomical structure of the human hand and following the idea of combining soft joints, rigid skeletons and embedded soft curvature sensors, modular dexterous hands composed of multijoint fingers are proposed in this study. Each finger has three quasi-joints, in which metacarpophalangeal soft-joint can realize adduction/abduction and bending motions, and distal two interphalangeal soft-joints are actuated by one actuator. Similar to human hand, soft-joint so-called quasi-joint has a short length of constant curvature segment. The integrated Indium Gallium Alloy sensors with Kelvin Bridge for proprioception can accurately detect joint angles, while closed-loop control based on proprioception was accomplished. Kinematics and statics modeling method of the rigid-soft finger is proposed. To further verify the performance of this design, prototypes of three-fingered and five-fingered hands are developed. The multifingered hands had demonstrated their capability of adaptive grasp and dexterous manipulation, while the force output of the three-fingered hand is up to 31.82 N, and 32 grasp types had accomplished by the five-fingered hand.


Assuntos
Mãos , Robótica , Humanos , Dedos , Movimento , Propriocepção
8.
Cell Death Discov ; 8(1): 402, 2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36180435

RESUMO

The restoration of the normal function of the tumour suppressors, such as p53, is an important strategy in tumour therapeutics. Nonsense-mediated mRNA decay (NMD) inhibition by NMD inhibitor (NMDi) upregulates functional p53 isoforms, p53ß and p53γ, and activates the p53 pathway. XR-2, a novel mouse double minute 2 homolog (MDM2) inhibitor, can disrupt the interaction between p53 and MDM2, thus decreasing the MDM2-mediated degradation of p53 and increasing the p53 protein levels. However, the combined effects of these two agents have not been thoroughly explored. This study combined XR-2 and NMDi in four TP53 wild-types and four TP53-mutated cancer cell lines. The combination of these two agents achieved significant synergistic effects on TP53 wild-type cancer cell lines by transactivating p53 target genes, inducing apoptosis, cell-cycle arrest and DNA damage repair. The p53ß isoform induced by NMDi enhances the transactivation ability of p53α induced by XR-2, which partially explains the mechanism of the synergistic effects of XR-2 and NMDi. This study identified a combination treatment of NMDi and XR-2 which could serve as a novel cancer therapeutic approach for MDM2-overexpressed TP53 wild-type cancers and delineated a future therapy based on the further reactivation of p53.

9.
Front Microbiol ; 13: 841458, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35572679

RESUMO

Chemotherapeutic agents, such as 5-fluorouracil (5-FU) and oxaliplatin (Oxi), can not only kill the cancer cell but also influence the proliferation of gut microbiota; however, the interaction between these drugs and gut microbiota remains poorly understood. In this study, we developed a powerful framework for taxonomy composition and genomic variation analysis to investigate the mutagenesis effect and proliferation influence of chemotherapeutic agents, such as 5-FU and Oxi, on gut microbiota and the interaction between these drugs and gut microbiota during chemotherapy. Using the gut microbiome data, we detected 1.45 million variations among the chemotherapy groups and found the drugs significantly affected mutation signatures of gut microbiota. Oxi notably increased transversion rate, whereas 5-FU reduced the rate. Traits related to cell division and nutrient mobilization showed evidence of strong selection pressure from chemotherapeutic agents. In addition, drug-associated bacteriome shift patterns and functional alterations were found: the metabolism changes in the 5-FU group implied that gut microbiota could provide additional nicotinamide adenine dinucleotide (NAD+) to inhibit cancer cell autophagy; in the Oxi group, the ribosome and lysine biosynthesis genes were obviously enriched. Our study provides a blueprint for characterizing the role of microbes and drug-microbe interaction in the gut microbiota response to chemotherapy.

10.
Microbiol Spectr ; 10(3): e0041422, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35608350

RESUMO

While circulating cell-free DNA (cfDNA) is becoming a powerful marker for noninvasive identification of infectious pathogens in liquid biopsy specimens, a microbial cfDNA baseline in healthy individuals is urgently needed for the proper interpretation of microbial cfDNA sequencing results in clinical metagenomics. Because noninvasive prenatal testing (NIPT) shares many similarities with the sequencing protocol of metagenomics, we utilized the standard low-pass whole-genome-sequencing-based NIPT to establish a microbial cfDNA baseline in healthy people. Sequencing data from a total of 107,763 peripheral blood samples of healthy pregnant women undergoing NIPT screening were retrospectively collected and reanalyzed for microbiome DNA screening. It was found that more than 95% of exogenous cfDNA was from bacteria, 3% from eukaryotes, and 0.4% from viruses, indicating the gut/environment origins of many microorganisms. Overall and regional abundance patterns were well illustrated, with huge regional diversity and complexity, and unique interspecies and symbiotic relationships were observed for TORCH organisms (Toxoplasma gondii, others [Treponema pallidum {causing syphilis}, hepatitis B virus {HBV}, and human parvovirus B19 {HPV-B19}], rubella virus, cytomegalovirus [CMV], and herpes simplex virus [HSV]) and another common virus, Epstein-Barr virus (EBV). To sum up, our study revealed the complexity of the baseline circulating microbial cfDNA and showed that microbial cfDNA sequencing results need to be interpreted in a more comprehensive manner. IMPORTANCE While circulating cell-free DNA (cfDNA) has been becoming a powerful marker for noninvasive identification of infectious pathogens in liquid biopsy specimens, a baseline for microbial cfDNA in healthy individuals is urgently needed for the proper interpretation of microbial cfDNA sequencing results in clinical metagenomics. Standard low-pass whole-genome-sequencing-based NIPT shares many similarities with the sequencing protocol for metagenomics and could provide a microbial cfDNA baseline in healthy people; thus, a reference cfDNA data set of the human microbiome was established with sequencing data from a total of 107,763 peripheral blood samples of healthy pregnant women undergoing NIPT screening. Our study revealed the complexity of circulating microbial cfDNA and indicated that microbial cfDNA sequencing results need to be interpreted in a more comprehensive manner, especially with regard to geographic patterns and coexistence networks.


Assuntos
Ácidos Nucleicos Livres , Infecções por Vírus Epstein-Barr , Microbiota , Teste Pré-Natal não Invasivo , Ácidos Nucleicos Livres/genética , Feminino , Herpesvirus Humano 4 , Humanos , Microbiota/genética , Gravidez , Estudos Retrospectivos
11.
Front Cell Dev Biol ; 10: 827391, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35321246

RESUMO

DNA methylation is a widespread epigenetic signal in human genome. With Nanopore technology, differential methylation modifications including 5-methylcytosine (5mC) and 6-methyladenine (6mA) can be identified. 5mC is the most important modification in mammals, although 6mA may also function in growth and development as well as in pathogenesis. While the role of 5mC at CpG islands in promoter regions associated with transcriptional regulation has been well studied, but the relationship between 6mA and transcription is still unclear. Thus, we collected two pairs of tumor tissues and adjacent normal tissues from hepatocellular carcinoma (HCC) surgical samples for Nanopore sequencing and transcriptome sequencing. It was found that 2,373 genes had both 5mC and 6mA, along with up- and down-regulated methylation sites. These genes were regarded as unstable methylation genes. Compared with 6mA, 5mC had more inclined distribution of unstable methylation sites. Chi-square test showed that the levels of 5mC were consistent with both up- and down-regulated genes, but 6mA was not significant. Moreover, the top three unstable methylation genes, TBC1D3H, CSMD1, and ROBO2, were all related to cancer. Transcriptome and survival analyses revealed four potential tumor suppressor genes including KCNIP4, CACNA1C, PACRG, and ST6GALNAC3. In this study, we firstly proposed to combine 5mC and 6mA methylation sites to explore functional genes, and further research found top of these unstable methylation genes might be functional and some of them could serve as potential tumor suppressor genes. Our study provided a new solution for epigenetic regulation research and therapy of HCC.

12.
Front Oncol ; 12: 842182, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35311085

RESUMO

Background: Bacillus Calmette-Guérin (BCG) is currently the most effective intravesical therapy for non-muscle-invasive bladder cancer (NMIBC) as it can prevent disease recurrence and progression and lower mortality. However, the response rates to BCG vary widely and are dependent on a multitude of factors. Methods: We performed a systematic discovery by analyzing the whole exome sequence, expression profile, and immune repertoire sequence of treatment-naive and 5-year time-serial relapsed tumors from 24 NMIBC patients. Results: BCG therapy showed bidirectional effects on tumor evolution and immune checkpoint landscape, along with a significant reduction of the percentage of neoantigen burden. In addition, a remarkable proportion of subclonal mutations were unique to the matched pre- or post-treatment tumors, suggesting the presence of BCG-induced and/or spatial heterogeneity. In the relapsed tumors, we identified and validated a shift in the mutational signatures in which mutations associated with aristolochic acid (AA) exposure were enriched, implying AA may be associated with tumor recurrence. Enhanced expressions of immune checkpoint regulation genes were found in the relapsed tumors, suggesting that the combination of immune checkpoint with BCG treatment may be an effective strategy to treat NMIBC. TCR sequencing revealed treatment-associated changes in the T-cell repertoire in the primary and relapsed tumors. Conclusion: Our results provide insight into the genomic and immune dynamics of tumor evolution with BCG treatment, suggest new mechanisms of BCG resistance, and inform the development of clinically relevant biomarkers and trials of potential immune checkpoint inhibitor combination therapies.

13.
Chem Sci ; 12(35): 11805-11809, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34659719

RESUMO

We have developed a novel copper-catalyzed cyclization of cyclopropenes/diazo compounds and bromodifluoroacetamides, efficiently synthesizing a series of α,α-difluoro-ß-lactams in moderate to excellent yields under mild reaction conditions. This reaction represents the first example of [3 + 1] cyclization for the synthesis of ß-lactams utilizing a metal carbene intermediate as the C1 synthon.

14.
NPJ Genom Med ; 6(1): 84, 2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34642322

RESUMO

The integration of HBV DNA into the human genome can disrupt its structure in hepatocellular carcinoma (HCC), but the complexity of HBV genomic integration remains elusive. Here we applied long-read sequencing to precisely elucidate the HBV integration pattern in the human hepatocellular genome. The DNA library was sequenced using the long-read sequencing on GridION and PacBio Sequel II, respectively. The DNA and mRNA were sequenced using next-generation sequencing on Illumina NextSeq. BLAST (Basic Local Alignment Search Tool) and local scripts were used to analyze HBV integration patterns. We established an analytical strategy based on the long-read sequences, and analyzed the complexity of HBV DNA integration into the hepatocellular genome. A total of 88 integrated breakpoints were identified. HBV DNA integration into human genomic DNA was mainly fragmented with different orientations, rarely with a complete genome. The same HBV integration breakpoints were identified among the three platforms. Most breakpoints were observed at P, X, and S genes in the HBV genome, and observed at introns, intergenic sequences, and exons in the human genome. Tumor tissue harbored a much higher integrated number than the adjacent tissue, and the distribution of HBV integrated into human chromosomes was more concentrated. HBV integration shows different patterns between cancer cells and adjacent normal cells. We for the first time obtained the entire HBV integration pattern through long-read sequencing and demonstrated the value of long-read sequencing in detecting the genomic integration structures of viruses in host cells.

15.
Clin Respir J ; 15(10): 1046-1055, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34214256

RESUMO

OBJECTIVES: To present a review on the traditional and new biomarkers of pulmonary embolism (PE). DATA SOURCE: A systematic search has been carried out using keywords as PE, biomarker, diagnosis and risk stratification. RESULTS: The results of this work have been structured into three parts: first, conventional biomarkers for vascular, cardiac and inflammation, including static markers and dynamic markers for measuring the time course; next, a review of new biomarkers in recent years, such as RNAs and markers obtained through proteomics and mass spectrometry; finally, use of new detection methods to directly detect the activity of existing markers, such as the determination of coagulation factor II and plasmin activities based on the proteolytic activation of an engineered zymogen. CONCLUSIONS: This work summarized the characteristics of current traditional biomarkers for clinical diagnosis and risk stratification of PE, as well as a series of newly discovered biomarkers obtained through various clinical experimental methods.


Assuntos
Embolia Pulmonar , Biomarcadores , Humanos , Espectrometria de Massas , Proteômica , Embolia Pulmonar/diagnóstico , Medição de Risco
16.
J Thromb Haemost ; 19(7): 1738-1751, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33825327

RESUMO

BACKGROUND: Pulmonary embolism (PE) is a leading cause of cardiovascular mortality worldwide. Rapid and accurate diagnosis and risk stratification are crucial for timely treatment options, especially in high-risk PE. OBJECTIVES: The study aims to profile the comprehensive changes of plasma proteomes in PE patients and identify the potential biomarkers for both diagnosis and risk stratification. PATIENTS/METHODS: Based on the data-independent acquisition mass spectrometry and antibody array proteomic technology, we screened the plasma samples (13 and 32 proteomes, respectively) in two independent studies consisting of high-risk PE patients, non-high-risk PE patients, and healthy controls. Some significantly differentially expressed proteins were quantified by ELISA in a new study group with 50 PE patients and 26 healthy controls. RESULTS: We identified 207 and 70 differentially expressed proteins in PE and high-risk PE. These proteins were involved in multiple thrombosis-associated biological processes including blood coagulation, inflammation, injury, repair, and chemokine-mediated cellular response. It was verified that five proteins including SAA1, S100A8, TNC, GSN, and HRG had significant change in PE and/or in high-risk PE. The receiver operating characteristic curve analysis based on binary logistic regression showed that the area under the curve (AUC) of SAA1, S100A8, and TNC in PE diagnosis were 0.882, 0.788, and 0.795, and AUC of S100A8 and TNC in high-risk PE diagnosis were 0.773 and 0.720. CONCLUSION: As predictors of inflammation or injury repair, SAA1, S100A8, and TNC are potential plasma biomarkers for the diagnosis and risk stratification of PE.


Assuntos
Proteômica , Embolia Pulmonar , Biomarcadores , Humanos , Espectrometria de Massas , Embolia Pulmonar/diagnóstico , Medição de Risco
17.
Thorac Cancer ; 12(9): 1312-1319, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33704915

RESUMO

BACKGROUND: Thymomas and thymic carcinomas are the most common tumor types among anterior mediastinal lesions. However, the relationship between molecular aberrations and thymoma patients are poorly understood, especially abnormal changes in the expression profiles of circRNAs. The purpose of the present study was to investigate the expression profiles of circRNAs in thymoma patients and their possible roles in the pathogenesis of thymoma. METHODS: Diseased tissues and surrounding normal thymic tissues in two thymoma patients were collected for circRNA sequencing. The top four upregulated circRNAs were selected as candidates and further validated with RT-PCR in 20 thymoma patients. Gene ontology and signal transduction network analyses of circRNA-related mRNAs were performed to analyze the functional properties. Survival analysis of their parental genes were also carried out to evaluate the clinical value of differentially expressed circRNA. RESULTS: A total of 73 circRNAs were differentially expressed in thymoma tissues using high-throughput sequencing. Among these circRNAs, hsa_circ_0001173, hsa_circ_0007291, hsa_circ_0003550, and hsa_circ_0001947 were significantly upregulated in thymoma tissues compared with normal thymic tissues. We identified that these four circRNA-related mRNAs were involved in cell-cell adhesion, MAPK pathways, and TNF pathway, which may contribute to the pathological immune disorder in thymoma. Finally, we also found that SCAP (hsa_circ_0007291 parental gene) and AFF2 (hsa_circ_0001947 parental gene) were all significantly related with progression-free survival (PFS) of thymoma patients in a Kaplan-Meier plot (p-value <0.05). CONCLUSIONS: The expression levels of hsa_circ_0001173, hsa_circ_0007291, hsa_circ_0003550, and hsa_circ_0001947 were significantly upregulated and positively correlated with immune imbalance in thymoma patients.


Assuntos
RNA Circular/genética , Timoma/genética , Humanos , Análise de Sobrevida , Timoma/mortalidade
18.
Front Genet ; 12: 636419, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33574834

RESUMO

Prostate cancer (PCa) is the most common malignant tumor in men, and its incidence increases with age. Serum prostate-specific antigen and tissue biopsy remain the standard for diagnosis of suspected PCa. However, these clinical indicators may lead to aggressive overtreatment in patients who have been treated sufficiently with active surveillance. Circular RNAs (circRNAs) have been recently recognized as a new type of regulatory RNA that is not easily degraded by RNases and other exonucleases because of their covalent closed cyclic structure. Thus, we utilized high-throughput sequencing data and bioinformatics analysis to identify specifically expressed circRNAs in PCa and filtered out five specific circRNAs for further analysis-hsa_circ_0006410, hsa_circ_0003970, hsa_circ_0006754, hsa_circ_0005848, and a novel circRNA, hsa_circ_AKAP7. We constructed a circRNA-miRNA regulatory network and used miRNA and differentially expressed mRNA interactions to predict the function of the selected circRNAs. Furthermore, survival analysis of their cognate genes and PCR verification of these five circRNAs revealed that they are closely related to well-known PCa pathways such as the MAPK signaling pathway, P53 pathway, androgen receptor signaling pathway, cell cycle, hormone-mediated signaling pathway, and cellular lipid metabolic process. By understanding the related metabolism of circRNAs, these circRNAs could act as metabolic biomarkers, and monitoring their levels could help diagnose PCa. Meanwhile, the exact regulatory mechanism for AR-related regulation in PCa is still unclear. The circRNAs we found can provide new solutions for research in this field.

19.
Front Immunol ; 12: 786666, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35069560

RESUMO

Objective: To date, there are no studies regarding the lactylation profile and its role in critically ill patients. Thus, we aimed to examine expression of histone H3 lysine 18 (H3K18) lactylation and its role in patients with septic shock. Methods: Thirteen healthy volunteers and 35 critically ill patients from the Department of Surgical Intensive Care Medicine, Beijing Hospital were enrolled in our study. Baseline information and clinical outcomes were obtained prospectively. Lactylation levels of all proteins and H3K18 from peripheral blood mononuclear (PBMC) were determined by western blotting and serum levels of inflammatory cytokines by flow cytometry. Arginase-1 (Arg1) and Krüppel-like factor-4 (Klf4) mRNA expression was evaluated by quantitative real-time PCR (qRT-PCR). Results: Lactylation was found to be an all-protein post-translational modification and was detected in PBMCs from both healthy volunteers and critically ill patients, with a significantly higher relative density in shock patients (t=2.172, P=0.045). H3K18la was expressed in all subjects, including healthy volunteers, with the highest level in septic shock patients (compared with non-septic shock patients, critically ill without shock patients and healthy volunteers P=0.033, 0.000 and 0.000, respectively). Furthermore, H3K18la protein expression correlated positively with APACHE II scores, SOFA scores on day 1, ICU stay, mechanical ventilation time and serum lactate (ρ=0.42, 0.63, 0.39, 0.51 and 0.48, respectively, ρ=0.012, 0.000, 0.019, 0.003 and 0.003, respectively). When we matched patients with septic shock and with non-septic shock according to severity, we found higher H3K18la levels in the former group (t=-2.208, P =0.040). Moreover, H3K18la exhibited a close correlation with procalcitonin levels (ρ=0.71, P=0.010). Patients with high H3K18la expression showed higher IL-2, IL-5, IL-6, IL-8, IL-10, IL-17, IFN-α levels (ρ=0.33, 0.37, 0.62, 0.55, 0.65, 0.49 and 0.374 respectively, P=0.024, 0.011, 0.000, 0.000, 0.000 and 0.000 respectively). H3K18la expression also displayed a positive correlation with the level of Arg1 mRNA (ρ=0.561, P=0.005). Conclusions: Lactylation is an all-protein post-translational modification occurring in both healthy subjects and critically ill patients. H3K18la may reflect the severity of critical illness and the presence of infection. H3K18la might mediate inflammatory cytokine expression and Arg1 overexpression and stimulate the anti-inflammatory function of macrophages in sepsis.


Assuntos
Histonas/metabolismo , Processamento de Proteína Pós-Traducional , Choque Séptico/diagnóstico , Choque Séptico/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Gravidade do Paciente
20.
Front Genet ; 11: 566080, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33240320

RESUMO

Staphylococcus epidermidis is one of the most commonly isolated species from human skin and the second leading cause of bloodstream infections. Here, we performed a large-scale comparative study without any pre-assigned reference to identify genomic determinants associated with the diversity and adaptation of S. epidermidis strains to various environments. Pan-genome of S. epidermidis was open with 435 core proteins and had a pan-genome size of 8,034 proteins. Genome-wide phylogenetic tree showed high heterogeneity and suggested that routine whole genome sequencing was a powerful tool for analyzing the complex evolution of S. epidermidis and for investigating the infection sources. Comparative genome analyses demonstrated a range of antimicrobial resistance (AMR) genes, especially those within mobile genetic elements. The complicated host-bacterium and bacterium-bacterium relationships help S. epidermidis to play a vital role in balancing the epithelial microflora. The highly variable and dynamic nature of the S. epidermidis genome may contribute to its success in adapting to broad habitats. Genes related to biofilm formation and cell toxicity were significantly enriched in the blood and skin, demonstrating their potentials in identifying risk genotypes. This study gave a general landscape of S. epidermidis pan-genome and provided valuable insights into mechanisms for genome evolution and lifestyle adaptation of this ecologically flexible species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA