Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 211
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(37): e2406471121, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39226357

RESUMO

States have long used economic sanctions in response to violations of international law as a strategy to restore order. Increasingly, firms also reject doing business with violators. In response to the war in Ukraine, hundreds of multinational corporations voluntarily withdrew from Russia, even when policymakers were still debating the extent of sanctions. How did firm managers evaluate whether to withdraw from the Russian market? Using a survey experiment with Japanese firm managers conducted three months after the Russian invasion of Ukraine in 2022, we explore how peer effects-information on what other firms are doing in response to the crisis-influence support for withdrawal of business activity with Russia. Our findings show that information about withdrawal by other firms from a diverse set of countries promotes peer conformity that increases support. In contrast, information about ongoing business with Russia by Chinese firms fosters competition that reduces support. Market exposure moderates these reactions, although the concern about peer behavior does not appear to be driven by a reputation mechanism. Our research provides insight into how business actors perceive the strategic interplay of peer influence and market dynamics in the context of geopolitical conflicts.


Assuntos
Comércio , Federação Russa , Ucrânia , Humanos , Comportamento Competitivo , Grupo Associado
2.
Artigo em Inglês | MEDLINE | ID: mdl-39250368

RESUMO

Attributed graph clustering is an unsupervised learning task that aims to partition various nodes of a graph into distinct groups. Existing approaches focus on devising diverse pretext tasks to obtain suitable supervised information for representation learning, among which the predictive methods show great potential. However, these methods 1) generate auxiliary task bias toward the clustering target and 2) introduce label noise due to static thresholds. To address this issue, we propose a new self-supervised learning method, namely, pseudo-labeling with curriculum self-reflection (PLCSR), that learns reliable pseudo-labels by mining its information to achieve progressive processing of nodes in a self-reflection manner. First, a self-auxiliary encoder is constructed using the exponential moving average (EMA) of the original encoder's parameters to replace the auxiliary tasks, which provides an additional perspective of finding highly confident pseudo-labels. Second, a curriculum selection strategy using dynamic thresholds is designed to take full advantage of graph nodes more accurately. Besides simple nodes with high confidence at the initial stage, nodes that yield consistent predictions from both encoders are then assigned pseudo-labels to avoid the under-learning problem. For the rest difficult nodes that are highly uncertain, we abstain from making judgments to minimize their adverse impact on the model. Extensive experiments have shown that PLCSR significantly outperforms the state-of-the-art predictive method CDRS, achieving more than 6% improvements in terms of clustering accuracy. The code is available at: https://github.com/Jillian555/PLCSR.

3.
Adv Mater ; : e2404791, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39148169

RESUMO

Supported single-atom catalysts (SACs) are promising in heterogeneous catalysis because of their atom economy, unusual transformations, and mechanistic clarity. The metal SAs loading, however, limits the catalytic efficiency. Herein, an in situ pre-metallated monomer-based preparation strategy is shown to achieve ultrahigh Au SAs loading in catalyst formations. The polymerization of single-atom loaded monomers yield a new porous aromatic framework (PAF-164) with Au SAs loading up to a record high 45.3 wt.%. SACs of Au-PAFs exhibit excellent photocatalytic activity in hydrogen (H2) evolution, and the H2 evolution rate of Au100%-SAs-PAF-164 can reach 4.82 mmol g-1 h-1 with great recyclability.

4.
Nanomaterials (Basel) ; 14(15)2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39120388

RESUMO

The achievement of size uniformity and monodispersity in perovskite quantum dots (QDs) requires the implementation of precise temperature control and the establishment of optimal reaction conditions. Nevertheless, the accurate control of a range of reaction variables represents a considerable challenge. This study addresses the aforementioned challenge by employing manganese (Mn) doping to achieve size uniformity in CsPbBr3 perovskite QDs without the necessity for the precise control of the reaction conditions. By optimizing the Mn:Pb ratio, it is possible to successfully dope CsPbBr3 QDs with the appropriate concentrations of Mn²âº and achieve a uniform size distribution. The spectroscopic measurements on single QDs indicate that the appropriate Mn²âº concentrations can result in a narrower spectral linewidth, a longer photoluminescence (PL) lifetime, and a reduced biexciton Auger recombination rate, thus positively affecting the PL properties. This study not only simplifies the size control of perovskite QDs but also demonstrates the potential of Mn-doped CsPbBr3 QDs for narrow-linewidth light-emitting diode applications.

5.
J Am Chem Soc ; 146(34): 24033-24041, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39146528

RESUMO

Palladium (Pd)-based single-atom catalysts (SACs) have shown outstanding selectivity for semihydrogenation of alkynes, but most Pd single sites coordinated with highly electronegative atoms (such as N, O, and S) of supports will result in a decrease in the electron density of Pd sites, thereby weakening the adsorption of reactants and reducing catalytic performance. Constructing a rich outer-shell electron environment of Pd single-atom sites by changing the coordination structure offers a novel opportunity to enhance the catalytic efficiency with excellent alkene selectivity. Therefore, in this work, we first propose the in situ preparation of isolated Pd sites encapsulated within Al/Si-rich ZSM-5 structure using the one-pot seed-assisted growth method. Pd1@ZSM-5 features Pd-O-Al/Si bonds, which can boost the domination of d-electron near the Fermi level, thereby promoting the adsorption of substrates on Pd sites and reducing the energy barrier for the semihydrogenation of alkynes. In semihydrogenation of phenylacetylene, Pd1@ZSM-5 catalyst performs the highest turnover frequency (TOF) value of 33582 molC═C/molPd/h with 96% selectivity of styrene among the reported heterogeneous catalysts and nearly 17-fold higher than that of the commercial Lindlar catalyst (1992 molC═C/molPd/h). This remarkable catalytic performance can be retained even after 6 cycles of usage. Particularly, the zeolitic confinement structure of Pd1@ZSM-5 enables precise shape-selective catalysis for alkyne reactants with a size less than 4.3 Å.

6.
J Agric Food Chem ; 72(35): 19378-19394, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39166383

RESUMO

This study aimed to investigate the effects of corn gluten-derived soluble epoxide hydrolase (sEH) inhibitory peptides on nonalcoholic fatty liver fibrosis induced by a high-fat diet and carbon tetrachloride in mice. Mice treated with corn peptides at doses of 500 or 1000 mg/kg/d for 4 weeks exhibited reduced sEH activity in serum and liver, enhanced lipid metabolism, and decreased lipid accumulation and oxidative stress. Corn peptides effectively downregulated the mRNA levels of Pro-IL-1ß, Pro-IL-18, NOD-like receptor protein 3 (NLRP3), ASC, Pro-caspase-1, Caspase-1, and GSDMD in the liver. This hepatoprotective effect of corn peptides by inhibiting NLRP3 inflammasome activation was further validated in H2O2-induced HepG2 cells. Moreover, corn peptides restored the composition of the gut microbiota and promoted short-chain fatty acid production. This study provides evidence that corn-derived sEH inhibitory peptides have hepatoprotective activity against nonalcoholic fatty liver fibrosis by suppressing NLRP3 inflammasome activation and modulating gut microbiota.


Assuntos
Microbioma Gastrointestinal , Inflamassomos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR , Hepatopatia Gordurosa não Alcoólica , Peptídeos , Zea mays , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/imunologia , Camundongos , Microbioma Gastrointestinal/efeitos dos fármacos , Inflamassomos/metabolismo , Inflamassomos/genética , Masculino , Humanos , Zea mays/química , Peptídeos/farmacologia , Peptídeos/administração & dosagem , Fígado/metabolismo , Fígado/efeitos dos fármacos , Bactérias/classificação , Bactérias/genética , Bactérias/efeitos dos fármacos , Bactérias/isolamento & purificação , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/metabolismo , Células Hep G2 , Epóxido Hidrolases/genética , Epóxido Hidrolases/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Interleucina-1beta/metabolismo
7.
Nat Microbiol ; 9(9): 2292-2307, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39169124

RESUMO

Fusobacterium nucleatum can bind to host cells and potentiate intestinal tumorigenesis. Here we used a genome-wide screen to identify an adhesin, RadD, which facilitates the attachment of F. nucleatum to colorectal cancer (CRC) cells in vitro. RadD directly binds to CD147, a receptor overexpressed on CRC cell surfaces, which initiated a PI3K-AKT-NF-κB-MMP9 cascade, subsequently enhancing tumorigenesis in mice. Clinical specimen analysis showed that elevated radD gene levels in CRC tissues correlated positively with activated oncogenic signalling and poor patient outcomes. Finally, blockade of the interaction between RadD and CD147 in mice effectively impaired F. nucleatum attachment and attenuated F. nucleatum-induced oncogenic response. Together, our study provides insights into an oncogenic mechanism driven by F. nucleatum RadD and suggests that the RadD-CD147 interaction could be a potential therapeutic target for CRC.


Assuntos
Adesinas Bacterianas , Aderência Bacteriana , Basigina , Carcinogênese , Neoplasias Colorretais , Fusobacterium nucleatum , Fusobacterium nucleatum/patogenicidade , Fusobacterium nucleatum/genética , Fusobacterium nucleatum/fisiologia , Neoplasias Colorretais/microbiologia , Neoplasias Colorretais/patologia , Animais , Humanos , Camundongos , Basigina/metabolismo , Basigina/genética , Adesinas Bacterianas/metabolismo , Adesinas Bacterianas/genética , Carcinogênese/genética , Linhagem Celular Tumoral , Infecções por Fusobacterium/microbiologia , Infecções por Fusobacterium/complicações , Metaloproteinase 9 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/genética , Transdução de Sinais , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/genética , Feminino
8.
Nat Commun ; 15(1): 6185, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39039073

RESUMO

DSR2, a Sir2 domain-containing protein, protects bacteria from phage infection by hydrolyzing NAD+. The enzymatic activity of DSR2 is triggered by the SPR phage tail tube protein (TTP), while suppressed by the SPbeta phage-encoded DSAD1 protein, enabling phages to evade the host defense. However, the molecular mechanisms of activation and inhibition of DSR2 remain elusive. Here, we report the cryo-EM structures of apo DSR2, DSR2-TTP-NAD+ and DSR2-DSAD1 complexes. DSR2 assembles into a head-to-head tetramer mediated by its Sir2 domain. The C-terminal helical regions of DSR2 constitute four partner-binding cavities with opened and closed conformation. Two TTP molecules bind to two of the four C-terminal cavities, inducing conformational change of Sir2 domain to activate DSR2. Furthermore, DSAD1 competes with the activator for binding to the C-terminal cavity of DSR2, effectively suppressing its enzymatic activity. Our results provide the mechanistic insights into the DSR2-mediated anti-phage defense system and DSAD1-dependent phage immune evasion.


Assuntos
Microscopia Crioeletrônica , NAD , NAD/metabolismo , Ligação Proteica , NAD+ Nucleosidase/metabolismo , NAD+ Nucleosidase/química , Proteínas da Cauda Viral/metabolismo , Proteínas da Cauda Viral/química , Proteínas da Cauda Viral/genética , Modelos Moleculares , Bacteriófagos/metabolismo , Domínios Proteicos , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas Virais/metabolismo , Proteínas Virais/química
9.
J Am Chem Soc ; 146(29): 20518-20529, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38995120

RESUMO

Despite the extensive development of non-noble metals for the N-alkylation of amines with alcohols, the exploitation of catalysts with high selectivity, activity, and stability still faces challenges. The controllable modification of single-atom sites through asymmetric coordination with a second heteroatom offers new opportunities for enhancing the intrinsic activity of transition metal single-atom catalysts. Here, we prepared the asymmetric N/P hybrid coordination of single-atom Co1-N3P1 by absorbing the Co-P complex on ZIF-8 using a concise impregnation-pyrolysis process. The catalyst exhibits ultrahigh activity and selectivity in the N-alkylation of aniline and benzyl alcohol, achieving a turnover number (TON) value of 3480 and a turnover frequency (TOF) value of 174-h. The TON value is 1 order of magnitude higher than the reported catalysts and even 37-fold higher than that of the homogeneous catalyst CoCl2(PPh3)2. Furthermore, the catalyst maintains its high activity and selectivity even after 6 cycles of usage. Controlling experiments and isotope labeling experiments confirm that in the asymmetric Co1-N3P1 system, the N-alkylation of aniline with benzyl alcohol proceeds via a transfer hydrogenation mechanism involving the monohydride route. Theoretical calculations prove that the superior activity of asymmetric Co1-N3P1 is attributed to the higher d-band energy level of Co sites, which leads to a more stable four-membered ring transition state and a lower reaction energy barrier compared to symmetrical Co1-N4.

10.
Environ Res ; 261: 119707, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39084507

RESUMO

Soil salinization poses a significant global challenge, exerting adverse effects on both agriculture and ecosystems. Planting halophytes has the potential ability to improve saline-alkali land and enhance ecosystem multifunctionality (EMF). However, it remains unclear which halophytes are effective in improving saline-alkali land and what impact they have on the rhizosphere microbial communities and EMF. In this study, we evaluated the Na+ absorption capability of five halophytes (Grubovia dasyphylla, Halogeton glomeratus, Suaeda salsa, Bassia scoparia, and Reaumuria songarica) and assessed their rhizosphere microbial communities and EMF. The results showed that S. salsa possessed the highest shoot (3.13 mmol g-1) and root (0.92 mmol g-1) Na+ content, and its soil Na+ absorption, along with B. scoparia, was significantly higher than that of other plants. The soil pH, salinity, and Na+ content of the halophyte rhizospheres decreased by 6.21%, 23.49%, and 64.29%, respectively, when compared to the bulk soil. Extracellular enzymes in the halophyte rhizosphere soil, including α-glucosidase, ß-glucosidase, ß-1,4-N-acetyl-glucosaminidase, neutral phosphatase, and alkaline phosphatase, increased by 70.1%, 78.4%, 38.5%, 79.1%, and 64.9%, respectively. Furthermore, the halophyte rhizosphere exhibited higher network complexity of bacteria and fungi and EMF than bulk soil. The relative abundance of the dominant phyla Proteobacteria, Firmicutes, and Ascomycota in the halophyte rhizosphere soil increased by 9.4%, 8.3%, and 22.25%, respectively, and showed higher microbial network complexity compared to the bulk soil. Additionally, keystone taxa, including Muricauda, Nocardioides, and Pontibacter, were identified with notable effects on EMF. This study confirmed that euhalophytes are the best choice for saline-alkali land restoration. These findings provided a theoretical basis for the sustainable use of saline-alkali cultivated land.


Assuntos
Rizosfera , Salinidade , Plantas Tolerantes a Sal , Microbiologia do Solo , Solo , Plantas Tolerantes a Sal/crescimento & desenvolvimento , Plantas Tolerantes a Sal/microbiologia , Solo/química , Ecossistema , Microbiota
12.
Front Microbiol ; 15: 1391553, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38841075

RESUMO

Introduction: The composition and structure of natural soil are very complex, leading to the difficult contact between hydrophobic organic compounds and degrading-bacteria in contaminated soil, making pollutants hard to be removed from the soil. Several researches have reported the bacterial migration in unsaturated soil mediated by fungal hyphae, but bacterial movement in soil of different particle sizes or in heterogeneous soil was unclear. The remediation of contaminated soil enhanced by hyphae still needs further research. Methods: In this case, the migration and biodegradation of Diaphorobacter sp. LW2 in soil was investigated in presence of Pythium ultimum. Results: Hyphae could promote the growth and migration of LW2 in culture medium. It was also confirmed that LW2 was able to migrate in the growth direction and against the growth direction along hyphae. Mediated by hyphae, motile strain LW2 translocated over 3 cm in soil with different particle size (CS1, 1.0-2.0 mm; CS2, 0.5-1.0mm; MS, 0.25-0.5 mm and FS, <0.25 mm), and it need shorter time in bigger particle soils. In inhomogeneous soil, hyphae participated in the distribution of introduced bacteria, and the total number of bacteria increased. Pythium ultimum enhanced the migration and survival of LW2 in soil, improving the bioremediation of polluted soil. Discussion: The results of this study indicate that the mobilization of degrading bacteria mediated by Pythium ultimum in soil has great potential for application in bioremediation of contaminated soil.

14.
BMC Psychol ; 12(1): 357, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38890704

RESUMO

BACKGROUND: The mental health of university students during the COVID-19 pandemic has attracted the attention of researchers. For the present study researchers constructed a mediation model to explore the relationship between psychological resilience and post-traumatic growth, the mediating role of negative emotions and the moderating role of deliberate rumination in students. METHODS: The Psychological Resilience Scale, Posttraumatic Growth Inventory, Depression-Anxiety-Stress Scale (DASS-21) and Event Related Rumination Inventory were used in a survey of 881 college students. The data were analyzed using SPSS 26.0 and the PROCESS plugin (version 3.3). RESULTS: (1) Psychological resilience is positively related with post-traumatic growth. Deliberate rumination is positively related to psychological resilience, posttraumatic growth, and negative emotions. Psychological resilience, post-traumatic growth and negative emotions are negatively related. (2) Negative emotions mediated the relationship between psychological resilience and post-traumatic growth. (3) Deliberate rumination plays a moderating role in psychological resilience affecting negative emotions. Deliberate rumination plays a moderating role in the extent to which psychological resilience influences PTG through negative emotions. CONCLUSIONS: Psychological resilience affects post-traumatic growth directly and also indirectly through negative emotions. With the increase of mental resilience, the level of negative emotion tended to decrease. When individuals are experiencing negative emotions, high levels of active rumination are more likely to promote post-traumatic growth. This study helps to explore the factors affecting the mental health of college students during the epidemic, thus providing guidance for appropriate mental health interventions.


Assuntos
COVID-19 , Emoções , Crescimento Psicológico Pós-Traumático , Resiliência Psicológica , Ruminação Cognitiva , Estudantes , Humanos , COVID-19/psicologia , Estudantes/psicologia , Feminino , Masculino , Adulto Jovem , Universidades , Adulto , Adolescente , Saúde Mental , Depressão/psicologia
15.
J Chem Phys ; 160(17)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38748025

RESUMO

Determining the correlation between the size of a single quantum dot (QD) and its photoluminescence (PL) properties is a challenging task. In the study, we determine the size of each QD by measuring its absorption cross section, which allows for accurate investigation of size-dependent PL blinking mechanisms and volume scaling of the biexciton Auger recombination at the single-particle level. A significant correlation between the blinking mechanism and QD size is observed under low excitation conditions. When the QD size is smaller than their Bohr diameter, single CsPbI3 perovskite QDs tend to exhibit BC-blinking, whereas they tend to exhibit Auger-blinking when the QD size exceeds their Bohr diameter. In addition, by extracting bright-state photons from the PL intensity trajectories, the effects of QD charging and surface defects on the biexcitons are effectively reduced. This allows for a more accurate measurement of the volume scaling of biexciton Auger recombination in weakly confined CsPbI3 perovskite QDs at the single-dot level, revealing a superlinear volume scaling (τXX,Auger ∝ σ1.96).

16.
Langmuir ; 40(23): 12301-12312, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38809168

RESUMO

The design of Janus materials offers an effective means of regulating both their physical and chemical properties, leading to their application in various fields. However, the underlying mechanism governing the modulation of the thermal transport characteristics through the construction of Janus materials remains unclear. In this work, we introduce VI-group elements into the MoSi2N4 structure, yielding two-dimensional Janus MoXSiN2 (X = S, Se, and Te) and systematically investigate their thermal transport properties based on first-principles calculation methods. Our findings reveal that the lattice thermal conductivities (κl) of MoSSiN2, MoSeSiN2, and MoTeSiN2 are 47.2, 24.3, and 40.6 W/mK at 300 K, respectively, significantly lower than that of MoSi2N4 (224 W/mK). Such low κl values mainly come from the introduction of X atoms, which enhances phonon scattering and reduces phonon vibration frequencies. In addition, MoTeSiN2 exhibits a higher κl compared to MoSeSiN2, contrary to the trend observed in most materials containing VI-group elements, where κl decreases gradually from S to Te. This anomalous behavior can be attributed to the competitive result between its lower phonon vibrational frequency and weaker phonon anharmonicity of MoTeSiN2. This work elucidates the inherent mechanism governing the modulation of thermal transport properties in Janus materials, thereby enhancing the potential application of Janus MoXSiN2 in engineering thermal management.

17.
Cancer Imaging ; 24(1): 66, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38783331

RESUMO

BACKGROUND: To determine the predictive value of interstitial lung abnormalities (ILA) for epidermal growth factor receptor (EGFR) mutation status and assess the prognostic significance of EGFR and ILA in patients with non-small cell lung cancer (NSCLC). METHODS: We reviewed 797 consecutive patients with a histologically proven diagnosis of primary NSCLC from January 2013 to October 2018. Of these, 109 patients with NSCLC were found to have concomitant ILA. Multivariate logistic regression analysis was used to identify the significant clinical and computed tomography (CT) findings in predicting EGFR mutations. Cox proportional hazard models were used to identify significant prognostic factors. RESULTS: EGFR mutations were identified in 22 of 109 tumors (20.2%). Multivariate analysis showed that the models incorporating clinical, tumor CT and ILA CT features yielded areas under the receiver operating characteristic curve (AUC) values of 0.749, 0.838, and 0.849, respectively. When combining the three models, the independent predictive factors for EGFR mutations were non-fibrotic ILA, female sex, and small tumor size, with an AUC value of 0.920 (95% confidence interval[CI]: 0.861-0.978, p < 0.001). In the multivariate Cox model, EGFR mutations (hazard ratio = 0.169, 95% CI = 0.042-0.675, p = 0.012; 692 days vs. 301 days) were independently associated with extended overall survival compared to the wild-type. CONCLUSION: Non-fibrotic ILA independently predicts the presence of EGFR mutations, and the presence of EGFR mutations rather than non-fibrotic ILA serves as an independent good prognostic factor for patients with NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Receptores ErbB , Doenças Pulmonares Intersticiais , Neoplasias Pulmonares , Mutação , Tomografia Computadorizada por Raios X , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Feminino , Masculino , Receptores ErbB/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/mortalidade , Pessoa de Meia-Idade , Idoso , Prognóstico , Doenças Pulmonares Intersticiais/genética , Doenças Pulmonares Intersticiais/diagnóstico por imagem , Estudos Retrospectivos , Tomografia Computadorizada por Raios X/métodos , Valor Preditivo dos Testes , Adulto , Idoso de 80 Anos ou mais
18.
Artigo em Inglês | MEDLINE | ID: mdl-38683705

RESUMO

Graph neural networks (GNNs) have advanced graph classification tasks, where a global pooling to generate graph representations by summarizing node features plays a critical role in the final performance. Most of the existing GNNs are built with a global average pooling (GAP) or its variants, which however, take no full consideration of node specificity while neglecting rich statistics inherent in node features, limiting classification performance of GNNs. Therefore, this article proposes a novel competitive covariance pooling (CCP) based on observation of graph structures, i.e., graphs generally can be identified by a (small) key part of nodes. To this end, our CCP generates node-level second-order representations to explore rich statistics inherent in node features, which are fed to a competitive-based attention module for effectively discovering key nodes through learning node weights. Subsequently, our CCP aggregates node-level second-order representations in conjunction with node weights by summation to produce a covariance representation for each graph, while an iterative matrix normalization is introduced to consider geometry of covariances. Note that our CCP can be flexibly integrated with various GNNs (namely CCP-GNN) to improve the performance of graph classification with little computational cost. The experimental results on seven graph-level benchmarks show that our CCP-GNN is superior or competitive to state-of-the-arts. Our code is available at https://github.com/Jillian555/CCP-GNN.

19.
Int J Dermatol ; 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38682296

RESUMO

BACKGROUND: Our aim was to target the unsatisfied need for early detection of the at-risk population and determine the subgroup of patients whose psoriasis (PsO) could transform into psoriatic arthritis (PsA). METHODS: A retrospective and longitudinal case-control study was conducted at Beijing Chao-yang Hospital. It included 75 patients who were clinically diagnosed with PsA in the case group and 345 who solely suffered from PsO without PsA in the control group. A variety of baseline covariates were gathered from every patient with PsO. Univariate and multivariate analyses and receiver operating characteristic (ROC) curves were used to identify underlying risk factors and determine whether it was necessary to examine the imaging of PsO patients. RESULTS: In multivariate logistic regression analysis, age ≥40 (odds ratio (OR): 1.04, 95% confidence interval (CI): 1.02-1.06, P < 0.01), nail involvement (OR: 1.17, 95% CI: 1.09-1.32, P < 0.01), erythrocyte sedimentation rate (ESR) (OR: 1.03, 95% CI: 1.01-1.06, P < 0.05) and elevated high-sensitivity C-reactive protein (hs-CRP) (OR: 1.31, 95% CI: 1.13-1.53, P < 0.01) were perceived to be risk factors for the transformation from PsO into clinical PsA. By combining magnetic resonance imaging (MRI)-detected enthesitis with tenosynovitis, combined predictors demonstrated better diagnostic efficacy, with an improvement in specificity (94.3% vs. 69%) and similarities in sensitivity (89% vs. 84.6%). The areas under the ROC curve (AUCs) amounted to 0.925 (95% CI: 0.882-0.967, P < 0.01) and 0.858 (95% CI: 0.814-0.903, P < 0.01). CONCLUSIONS: It was identified that age ≥40, nail involvement, as well as an elevated ESR, and hs-CRP served as independent risk factors for PsO transforming into PsA. Additionally, MRI provides additional value for the early recognition of PsA.

20.
Adv Sci (Weinh) ; 11(25): e2308597, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38664984

RESUMO

The development of semi-artificial photosynthetic systems, which integrate metal-organic frameworks (MOFs) with industrial microbial cell factories for light-driven synthesis of fuels and valuable chemicals, represents a highly promising avenue for both research advancements and practical applications. In this study, an MOF (PCN-222) utilizing racemic-(4-carboxyphenyl) porphyrin and zirconium chloride (ZrCl4) as primary constituents is synthesized. Employing a self-assembly process, a hybrid system is constructed, integrating engineered Escherichia coli (E. coli) to investigate light-driven hydrogen and lysine production. These results demonstrate that the light-irradiated biohybrid system efficiently produce H2 with a quantum efficiency of 0.75% under full spectrum illumination, the elevated intracellular reducing power NADPH is also observed. By optimizing the conditions, the biohybrid system achieves a maximum lysine production of 18.25 mg L-1, surpassing that of pure bacteria by 332%. Further investigations into interfacial electron transfer mechanisms reveals that PCN-222 efficiently captures light and facilitates the transfer of photo-generated electrons into E. coli cells. It is proposed that the interfacial energy transfer process is mediated by riboflavin, with facilitation by secreted small organic acids acting as hole scavengers for PCN-222. This study establishes a crucial foundation for future research into the light-driven biomanufacturing using E. coli-based hybrid systems.


Assuntos
Escherichia coli , Luz , Estruturas Metalorgânicas , Escherichia coli/metabolismo , Escherichia coli/genética , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/metabolismo , Fotossíntese , Lisina/metabolismo , Lisina/química , Hidrogênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...