Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.161
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-39074021

RESUMO

Assessing communication abilities in patients with disorders of consciousness (DOCs) is challenging due to limitations in the behavioral scale. Electroencephalogram-based brain-computer interfaces (BCIs) and eye-tracking for detecting ocular changes can capture mental activities without requiring physical behaviors and thus may be a solution. This study proposes a hybrid BCI that integrates EEG and eye tracking to facilitate communication in patients with DOC. Specifically, the BCI presented a question and two randomly flashing answers (yes/no). The subjects were instructed to focus on an answer. A multimodal target recognition network (MTRN) is proposed to detect P300 potentials and eye-tracking responses (i.e., pupil constriction and gaze) and identify the target in real time. In the MTRN, the dual-stream feature extraction module with two independent multiscale convolutional neural networks extracts multiscale features from multimodal data. Then, the multimodal attention strategy adaptively extracts the most relevant information about the target from multimodal data. Finally, a prototype network is designed as a classifier to facilitate small-sample data classification. Ten healthy individuals, nine DOC patients and one LIS patient were included in this study. All healthy subjects achieved 100% accuracy. Five patients could communicate with our BCI, with 76.1±7.9% accuracy. Among them, two patients who were noncommunicative on the behavioral scale exhibited communication ability via our BCI. Additionally, we assessed the performance of unimodal BCIs and compared MTRNs with other methods. All the experimental results suggested that our BCI can yield more sensitive outcomes than the CRS-R and can serve as a valuable communication tool.

2.
Materials (Basel) ; 17(14)2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-39063709

RESUMO

Refractory metal single crystals have been applied in key high-temperature structural components of advanced nuclear reactor power systems, due to their excellent high-temperature properties and outstanding compatibility with nuclear fuels. Although electron beam floating zone melting and plasma arc melting techniques can prepare large-size oriented refractory metals and their alloy single crystals, both have difficulty producing perfect defect-free single crystals because of the high-temperature gradient. The mechanical properties of refractory metal single crystals under different loads all exhibit strong temperature and crystal orientation dependence. Slip and twinning are the two basic deformation mechanisms of refractory metal single crystals, in which low temperatures or high strain rates are more likely to induce twinning. Recrystallization is always induced by the combined action of deformation and annealing, exhibiting a strong crystal orientation dependence. The irradiation hardening and neutron embrittlement appear after exposure to irradiation damage and degrade the material properties, attributed to vacancies, dislocation loops, precipitates, and other irradiation defects, hindering dislocation motion. This paper reviews the research progress of refractory metal single crystals from three aspects, preparation technology, deformation behavior, and irradiation damage, and highlights key directions for future research. Finally, future research directions are prospected to provide a reference for the design and development of refractory metal single crystals for nuclear applications.

3.
Opt Lett ; 49(13): 3721-3724, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38950251

RESUMO

We demonstrate, for the first time, an actively Q switched red-diode-clad-pumped Er3+/Dy3+ codoped fluoride fiber oscillator. Its wavelength can be continuously tuned over the range of 2.906-3.604 µm (698 nm), representing the widest tuning span of pulsed fluoride fiber oscillators in the mid-infrared. In addition, the achieved pulse energy at each wavelength of >2.95 µm is also higher than that of a previously reported pulsed fluoride fiber oscillator at the corresponding wavelength, to the best of our knowledge. By tuning the wavelength to 3.204 µm, the highest pulse energy of 82 µJ has been gotten with a pulse width of 520 ns at a repetition rate of 500 Hz.

4.
Artigo em Inglês | MEDLINE | ID: mdl-38960945

RESUMO

This study aimed to assess the diagnostic efficacy of left ventricular synchrony (LVS) for detecting coronary artery disease (CAD). We explored whether the LVS index derived from phase analysis of D-SPECT provides superior diagnostic value compared to conventional perfusion analysis in identifying obstructive CAD. Patients with suspected or confirmed CAD underwent drug-stress/rest gated D-SPECT myocardial perfusion imaging (MPI) and coronary angiography (CAG). A 50% stenosis was set as the threshold for obstructive CAD. 110 participants were enrolled in this analysis. There were significant differences in phase standard deviation (PSD), phase histogram bandwidth (PHB) and entropy among the four groups. Patients without cardiac disease and those with mild-moderate stenosis exhibited no noticeable contraction asynchrony. However, LVS indices demonstrated a gradual increase with the progression of coronary stenosis when compared to NC (P < 0.001). Obstructive CAD was identified in 43 out of 110 participants (39%). Optimal cutoff values for diagnosing obstructive CAD during stress were determined as 7.6° for PSD, 24° for PHB, and 37% for entropy, respectively. Notably, PSD, PHB, and entropy indices exhibited higher sensitivity compared to MPI. The integration of the stress-induced LVS indices into routine MPI analysis resulted in a significantly greater area under the curve (AUC), leading to improved diagnostic performance and enhanced differential capacity. Stress-induced LVS indices increase with the severity of coronary artery stenosis by D-SPECT phase analysis. Further, the indices-derived phase analysis exhibits superior sensitivity and discriminatory ability compared to MPI in detecting obstructive CAD.

5.
Sci Total Environ ; 946: 174407, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-38964416

RESUMO

Shale gas extraction in China often faces inadequate reservoir stimulation after initial fracturing of the wells, leading to production challenges despite abundant residual gas. Refracturing is an effective approach to enhance gas recovery; however, its impact on water consumption remains understudied. This study analyzes two refracturing techniques employed in China's largest shale production field, Fuling: temporary plugging and diverting refracturing (TPD) and wellbore reconstruction refracturing (WR), focusing on fracturing efficiency and water consumption. The results demonstrate that WR refracturing exhibits superior fracturing performance but consumes 1.3 times more water than initial fracturing. Considering 315 wells that required refracturing from 2013 to 2017, this study reveals, for the first time, that the lifecycle water consumption for shale gas production with refracturing is more than twice that without refracturing. The estimated total water consumption for the Fuling shale gas field over the next decade, incorporating refracturing, is approximately 7594.53 × 104 m3. By including the water consumption of refracturing, this study provides a more comprehensive evaluation of water usage throughout the entire lifecycle of shale gas development. The findings offer new insights for assessing water consumption in global shale gas development and highlight the importance of considering refracturing when evaluating the environmental impacts and resource management strategies associated with shale gas extraction.

6.
Nat Nanotechnol ; 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39009756

RESUMO

The movement of ions along the pressure-driven water flow in narrow channels, known as downstream ionic transport, has been observed since 1859 to induce a streaming potential and has enabled the creation of various hydrovoltaic devices. In contrast, here we demonstrate that proton movement opposing the water flow in two-dimensional nanochannels of MXene/poly(vinyl alcohol) films, termed upstream proton diffusion, can also generate electricity. The infiltrated water into the channel causes the dissociation of protons from functional groups on the channel surface, resulting in a high proton concentration inside the channel that drives the upstream proton diffusion. Combined with the particularly sluggish water diffusion in the channels, a small water droplet of 5 µl can generate a voltage of ~400 mV for over 330 min. Benefiting from the ultrathin and flexible nature of the film, a wearable device is built for collecting energy from human skin sweat.

7.
Int J Biol Macromol ; : 134141, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39053823

RESUMO

Sodium alginate has good biocompatibility and is widely used in the study of drug carriers. In this paper, a method to prepare calcium alginate microspheres with high sphericity based on double emulsion droplets was proposed, in which sodium alginate is used as the innermost phase. By adjusting the density of the system, the double-emulsion droplets could be suspended in the collecting solution, leading to the homogeneous reaction between the sodium alginate droplets and the calcium ions. By changing the flow rate, the size of the droplets could be changed, and by changing the concentration of calcium ions in the collecting solution, the sphericity of the calcium alginate microspheres could be changed. Then the swelling properties and drug release properties of calcium alginate microspheres were determined. The drug delivery study revealed that the insulin-loaded Ca-Alginate microspheres were able to decrease blood glucose by 41.4 % after oral administration to mice. Thus, the Ca-Alginate microsphere is a suitable candidate for controlled pH-sensitive drug delivery.

8.
Diabetes Metab Syndr ; 18(7): 103074, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39033649

RESUMO

AIMS: Little is known about the enrollment practice of both Black, Indigenous and People of Color (BIPOC) and females in the US diabetes trials. We aimed to perform a chronological survey to evaluate the enrollment of BIPOC and female participants in the US diabetes randomized controlled trials (RCTs) over the past two decades. METHODS: We searched databases to systematically include the US diabetes RCTs from 2000 January 1st to 2020 December 31st. Primary outcome was the adequate enrollment of both BIPOC and females, defined by the participation to prevalence ratio (PPR) > 0.8. We tested the temporal trend in adequate enrollment over time and used logistic regression analysis to explore the relationship between adequate enrollment and trial characteristics. RESULTS: A total of 69 US diabetes trials were included for analyses, with a median BIPOC and female enrollment percentage of 29.0 % and 45.4 % respectively. There were 22 (31.9 %) trials with adequate enrollment of both BIPOC and females. No significant trend of adequate enrollment percentage of BIPOC and females over time was observed (P = 0.16). Of trial types, those with medication interventions were significantly related to decreased odds of adequate enrollment, when compared to trials with non-drug interventions (odds ratio = 0.29, 95 % confidence interval: 0.11-0.84). CONCLUSIONS: Less than one third of the US diabetes trials adequately enrolled both BIPOC and females over the past two decades, and no temporal improvement in BIPOC and female participant enrollment was observed. These results highlight the need for more endeavors to mitigate inadequate representation regarding BIPOC and female enrollment in diabetes trials.

9.
aBIOTECH ; 5(2): 140-150, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38974862

RESUMO

The CRISPR/Cas9 technology revolutionizes targeted gene knockout in diverse organisms including plants. However, screening edited alleles, particularly those with multiplex editing, from herbicide- or antibiotic-resistant transgenic plants and segregating out the Cas9 transgene represent two laborious processes. Current solutions to facilitate these processes rely on different selection markers. Here, by taking advantage of the opposite functions of a d-amino acid oxidase (DAO) in detoxifying d-serine and in metabolizing non-toxic d-valine to a cytotoxic product, we develop a DAO-based selection system that simultaneously enables the enrichment of multigene edited alleles and elimination of Cas9-containing progeny in Arabidopsis thaliana. Among five DAOs tested in Escherichia coli, the one encoded by Trigonopsis variabilis (TvDAO) could confer slightly stronger d-serine resistance than other homologs. Transgenic expression of TvDAO in Arabidopsis allowed a clear distinction between transgenic and non-transgenic plants in both d-serine-conditioned positive selection and d-valine-conditioned negative selection. As a proof of concept, we combined CRISPR-induced single-strand annealing repair of a dead TvDAO with d-serine-based positive selection to help identify transgenic plants with multiplex editing, where d-serine-resistant plants exhibited considerably higher co-editing frequencies at three endogenous target genes than those selected by hygromycin. Subsequently, d-valine-based negative selection successfully removed Cas9 and TvDAO transgenes from the survival offspring carrying inherited mutations. Collectively, this work provides a novel strategy to ease CRISPR mutant identification and Cas9 transgene elimination using a single selection marker, which promises more efficient and simplified multiplex CRISPR editing in plants. Supplementary Information: The online version contains supplementary material available at 10.1007/s42994-023-00132-6.

10.
J Chem Phys ; 161(2)2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-38973762

RESUMO

Electrocatalytic CO2 reduction reaction (CO2RR) for CH4 production presents a promising strategy to address carbon neutrality, and the incorporation of a second metal has been proven effective in enhancing catalyst performance. Nevertheless, there remains limited comprehension regarding the fundamental factors responsible for the improved performance. Herein, the critical role of Pd in electrocatalytic CO2 reduction to CH4 on Cu-based catalysts has been revealed at a molecular level using in situ surface-enhanced Raman spectroscopy (SERS). A "borrowing" SERS strategy has been developed by depositing Cu-Pd overlayers on plasmonic Au nanoparticles to achieve the in situ monitoring of the dynamic change of the intermediate during CO2RR. Electrochemical tests demonstrate that Pd incorporation significantly enhances selectivity toward CH4 production, and the Faradaic efficiency (FE) of CH4 is more than two times higher than that for the catalysts without Pd. The key intermediates, including *CO2-, *CO, and *OH, have been directly identified under CO2RR conditions, and their evolution with the electrochemical environments has been determined. It is found that Pd incorporation promotes the activation of both CO2 and H2O molecules and accelerates the formation of abundant active *CO and hydrogen species, thus enhancing the CH4 selectivity. This work offers fundamental insights into the understanding of the molecular mechanism of CO2RR and opens up possibilities for designing more efficient electrocatalysts.

11.
Angew Chem Int Ed Engl ; : e202408537, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38973771

RESUMO

Achieving high electrical conductivity (σ) and power factor (PF) simultaneously remains a significant challenge for n-type organic themoelectrics (OTEs). Herein, we demonstrate the state-of-the-art OTEs performance through blending a fused bithiophene imide dimer-based polymer f-BTI2g-SVSCN and its selenophene-substituted analogue f-BSeI2g-SVSCN with a julolidine-functionalized benzimidazoline n-dopant JLBI, vis-à-vis when blended with commercially available n-dopants TAM and N-DMBI. The advantages of introducing a more lipophilic julolidine group into the dopant structure of JLBI are evidenced by the enhanced OTEs performance that JLBI-doped films show when compared to those doped with N-DMBI or TAM. In fact, thanks to the enhanced intermolecular interactions and the lower-lying LUMO level enabled by the increase of selenophene content in polymer backbone, JLBI-doped films of f-BSeI2g-SVSCN exhibit a unprecedent σ of 206 S cm-1 and a PF of 114 µW m-1 K-2. Interestingly, σ can be further enhanced up to 326 S cm-1 by using TAM dopant as a consequence of its favorable diffusion behavior into densely packed crystalline domains. These values are the highest to date for solution-processed molecularly n-doped polymers, demonstrating the effectiveness of the polymer-dopant matching approach carried out in this work.

12.
Front Immunol ; 15: 1417398, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38966636

RESUMO

Introduction: Acute myeloid leukemia (AML) is an aggressive blood cancer with high heterogeneity and poor prognosis. Although the metabolic reprogramming of nicotinamide adenine dinucleotide (NAD) has been reported to play a pivotal role in the pathogenesis of acute myeloid leukemia (AML), the prognostic value of NAD metabolism and its correlation with the immune microenvironment in AML remains unclear. Methods: We utilized our large-scale RNA-seq data on 655 patients with AML and the NAD metabolism-related genes to establish a prognostic NAD metabolism score based on the sparse regression analysis. The signature was validated across three independent datasets including a total of 1,215 AML patients. ssGSEA and ESTIMATE algorithms were employed to dissect the tumor immune microenvironment. Ex vivo drug screening and in vitro experimental validation were performed to identify potential therapeutic approaches for the high-risk patients. In vitro knockdown and functional experiments were employed to investigate the role of SLC25A51, a mitochondrial NAD+ transporter gene implicated in the signature. Results: An 8-gene NAD metabolism signature (NADM8) was generated and demonstrated a robust prognostic value in more than 1,800 patients with AML. High NADM8 score could efficiently discriminate AML patients with adverse clinical characteristics and genetic lesions and serve as an independent factor predicting a poor prognosis. Immune microenvironment analysis revealed significant enrichment of distinct tumor-infiltrating immune cells and activation of immune checkpoints in patients with high NADM8 scores, acting as a potential biomarker for immune response evaluation in AML. Furthermore, ex vivo drug screening and in vitro experimental validation in a panel of 9 AML cell lines demonstrated that the patients with high NADM8 scores were more sensitive to the PI3K inhibitor, GDC-0914. Finally, functional experiments also substantiated the critical pathogenic role of the SLC25A51 in AML, which could be a promising therapeutic target. Conclusion: Our study demonstrated that NAD metabolism-related signature can facilitate risk stratification and prognosis prediction in AML and guide therapeutic decisions including both immunotherapy and targeted therapies.


Assuntos
Biomarcadores Tumorais , Leucemia Mieloide Aguda , NAD , Microambiente Tumoral , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/terapia , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/imunologia , Prognóstico , NAD/metabolismo , Microambiente Tumoral/imunologia , Microambiente Tumoral/genética , Biomarcadores Tumorais/genética , Feminino , Masculino , Pessoa de Meia-Idade , Regulação Leucêmica da Expressão Gênica , Perfilação da Expressão Gênica , Transcriptoma , Linhagem Celular Tumoral
13.
J Alzheimers Dis ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38968051

RESUMO

Background: The current application effects of computerized cognitive intervention are inconsistent and limited to hospital rehabilitation settings. Objective: To investigate the effect of mobile intelligent cognitive training (MICT) on patients with post-stroke cognitive impairment (PSCI). Methods: This study was a multicenter, prospective, open-label, blinded endpoint, cluster-randomized controlled trial (RCT). 518 PSCI patients were stratified and assigned to four rehabilitation settings, and then patients were randomized into experimental and control groups in each rehabilitation setting through cluster randomization. All patients received comprehensive management for PSCI, while the experimental group additionally received MICT intervention. Treatment was 30 minutes daily, 5 days per week, for 12 weeks. Cognitive function, activities of daily living (ADL), and quality of life (QOL) were assessed before the treatment, at weeks 6 and 12 post-treatment, and a 16-week follow-up. Results: Linear Mixed Effects Models showed patients with PSCI were better off than pre-treatment patients on each outcome measure (p < 0.05). Additionally, the improvement of these outcomes in the experimental group was significantly better than in the control group at week 6 post-treatment and 16-week follow-up (p < 0.05). The rehabilitation setting also affected the cognitive efficacy of MICT intervention in improving PSCI patients, and the degree of improvement in each outcome was found to be highest in hospital, followed by community, nursing home, and home settings. Conclusions: Long-term MICT intervention can improve cognition, ADL, and QOL in patients with PSCI, with sustained effects for at least one month. Notably, different rehabilitation settings affect the cognitive intervention efficacy of MICT on PSCI patients. However, this still needs to be further determined in future studies.

14.
Neural Regen Res ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38993124

RESUMO

ABSTRACT: We previously demonstrated that inhibiting neural stem cells necroptosis enhances functional recovery after spinal cord injury. While exosomes are recognized as playing a pivotal role in neural stem cells exocrine function, their precise function in spinal cord injury remains unclear. To investigate the role of exosomes generated following neural stem cells necroptosis after spinal cord injury, we conducted single-cell RNA sequencing and validated that neural stem cells originate from ependymal cells and undergo necroptosis in response to spinal cord injury. Subsequently, we established an in vitro necroptosis model using neural stem cells isolated from embryonic mice aged 16-17 days and extracted exosomes. The results showed that necroptosis did not significantly impact the fundamental characteristics or number of exosomes. Transcriptome sequencing of exosomes in necroptosis group identified 108 differentially expressed messenger RNAs, 104 long non-coding RNAs, 720 circular RNAs, and 14 microRNAs compared with the control group. Construction of a competing endogenous RNA network identified the following hub genes: tuberous sclerosis 2 (Tsc2), solute carrier family 16 member 3 (Slc16a3), and forkhead box protein P1 (Foxpl). Notably, a significant elevation in TSC2 expression was observed in spinal cord tissues following spinal cord injury. TSC2-positive cells were localized around SRY-box transcription factor 2-positive cells within the injury zone. Furthermore, in vitro analysis revealed increased TSC2 expression in exosomal receptor cells compared with other cells. Further assessment of cellular communication following spinal cord injury showed that Tsc2 was involved in ependymal cellular communication at 1 and 3 days post-injury through the epidermal growth factor and midkine signaling pathways. In addition, Slc16a3 participated in cellular communication in ependymal cells at 7 days post-injury via the vascular endothelial growth factor and macrophage migration inhibitory factor signaling pathways. Collectively, these findings confirm that exosomes derived from neural stem cells undergoing necroptosis play an important role in cellular communication after spinal cord injury and induce TSC2 upregulation in recipient cells.

15.
JOR Spine ; 7(3): e1350, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38993525

RESUMO

Objectives: The main objective of this study was to establish a mouse model of spinal ligament ossification to simulate the chronic spinal cord compression observed in patients with ossification of the posterior longitudinal ligament (OPLL). The study also aimed to examine the mice's neurobiological, radiological, and pathological changes. Methods: In the previous study, a genetically modified mouse strain was created using Crispr-Cas9 technology, namely, Enpp1 flox/flox /EIIa-Cre (C57/B6 background), to establish the OPLL model. Wild-type (WT) mice without compression were used as controls. Functional deficits were evaluated through motor score assessment, inclined plate testing, and gait analysis. The extent of compression was determined using CT imaging. Hematoxylin and eosin staining, luxol fast blue staining, TUNEL assay, immunofluorescence staining, qPCR, and Western blotting were performed to evaluate levels of apoptosis, inflammation, vascularization, and demyelination in the study. Results: The results demonstrated a gradual deterioration of compression in the Enpp1 flox/flox /EIIa-Cre mice group as they aged. The progression rate was more rapid between 12 and 20 weeks, followed by a gradual stabilization between 20 and 28 weeks. The scores for spinal cord function and strength, assessed using the Basso Mouse Scale and inclined plate test, showed a significant decline. Gait analysis revealed a noticeable reduction in fore and hind stride lengths, stride width, and toe spread. Chronic spinal cord compression resulted in neuronal damage and activated astrocytes and microglia in the gray matter and anterior horn. Progressive posterior cervical compression impeded blood supply, leading to inflammation and Fas-mediated neuronal apoptosis. The activation of Bcl2 and Caspase 3 was associated with the development of progressive neurological deficits (p < 0.05). Conclusions: The study presents a validated model of chronic spinal cord compression, enabling researchers to explore clinically relevant therapeutic approaches for OPLL.

16.
Nat Commun ; 15(1): 5624, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965231

RESUMO

Graphene has been extensively utilized as an electrode material for nonaqueous electrochemical capacitors. However, a comprehensive understanding of the charging mechanism and ion arrangement at the graphene/electrolyte interface remain elusive. Herein, a gap-enhanced Raman spectroscopic strategy is designed to characterize the dynamic interfacial process of graphene with an adjustable number of layers, which is based on synergistic enhancement of localized surface plasmons from shell-isolated nanoparticles and a metal substrate. By employing such a strategy combined with complementary characterization techniques, we study the potential-dependent configuration of adsorbed ions and capacitance curves for graphene based on the number of layers. As the number of layers increases, the properties of graphene transform from a metalloid nature to graphite-like behavior. The charging mechanism shifts from co-ion desorption in single-layer graphene to ion exchange domination in few-layer graphene. The increase in area specific capacitance from 64 to 145 µF cm-2 is attributed to the influence on ion packing, thereby impacting the electrochemical performance. Furthermore, the potential-dependent coordination structure of lithium bis(fluorosulfonyl) imide in tetraglyme ([Li(G4)][FSI]) at graphene/electrolyte interface is revealed. This work adds to the understanding of graphene interfaces with distinct properties, offering insights for optimization of electrochemical capacitors.

17.
Front Microbiol ; 15: 1413538, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38989025

RESUMO

Phosphate-solubilizing bacteria (PSB) enhance plant phosphorus utilization through their ability to dissolve phosphorus. To address the low utilization of nitrogen, phosphorus, potassium, zinc, and selenium by tea plants in acidic, selenium-rich soils, the study aimed to investigate the impact of exogenous PSB on soil nutrients and the absorption of zinc and selenium by tea plants. Following the inoculation of potted Longjing and Huangjinya varieties with exogenous phosphorus-solubilizing bacteria, we determined the concentrations of AN, AP, AK, Zn, and Se in their rhizosphere soil, in addition to the Zn and Se contents in their aboveground and belowground parts. The results show that after respective treatment with the three PSB, the concentration of available P in the tea plant rhizosphere soil significantly increased, with PMS08 having the most pronounced effect.After the same treatment, In the rhizosphere soil of Longjing tea plants, the AN content increased by 26.47%, 18.41%, and 7.51%, respectively, relative to the control, while the AK content decreased in the rhizosphere soil of Huangjinya tea plants. Inoculation with the three PSB resulted in a greater content of available Se in both the aboveground and belowground parts of the two tea plants. After inoculation with PMS20, the available Zn content of the belowground parts of Longjing and Huangjinya tea plants respectively decreased by 13.42% and 15.69% in comparison with the control. Additionally, after inoculating Longjing tea plants with PSt09 and Huangjinya tea plants with PMS08, the content of available Zn in their belowground parts significantly decreased by 9.22% and 35.74%, respectively. Evidently, the inoculation with the three phosphorus-solubilizing bacteria is beneficial for the uptake of available P by tea plants, promoting the utilization and accumulation of available Se. However, the content of AN or AK in rhizosphere soil varies between different tea plant varieties inoculated with the same kind of phosphorus-solubilizing bacteria. Moreover, the content of available Zn in tea plants also differs, highlighting the need to further investigate the differential effects of phosphorus-solubilizing bacteria on different plant varieties.

18.
Artigo em Inglês | MEDLINE | ID: mdl-39024074

RESUMO

In most real world rehabilitation training, patients are trained to regain motion capabilities with the aid of functional/epidural electrical stimulation (FES/EES), under the support of gravity-assist systems to prevent falls. However, the lack of motion analysis dataset designed specifically for rehabilitation-related applications largely limits the conduct of pilot research. We provide an open access dataset, consisting of multimodal data collected via 16 electromyography (EMG) sensors, 6 inertial measurement unit (IMU) sensors, and 230 insole pressure sensors (IPS) per foot, together with a 26-sensor motion capture system, under different MOVEments and POstures for Rehabilitation Training (MovePort). Data were collected under diverse experimental paradigms. Twenty four participants first imitated multiple normal and abnormal body postures including (1) normal standing still, (2) leaning forward, (3) leaning back, and (4) half-squat, which in practical applications, can be detected as feedback to tune the parameters of FES/EES and gravity-assist systems to keep patients in a target body posture. Data under imitated abnormal gaits, e.g., (1) with legs raised higher under excessive electrical stimulation, and (2) with dragging legs under insufficient stimulation, were also collected. Data under normal gaits with low, medium and high speeds are also included. Pathological gait data from a subject with spastic paraplegia further increases the clinical value of our dataset. We also provide source codes to perform both intra- and inter-participant motion analyses of our dataset. We expect our dataset can provide a unique platform to promote collaboration among neurorehabilitation engineers.


Assuntos
Eletromiografia , Movimento , Postura , Humanos , Eletromiografia/métodos , Masculino , Postura/fisiologia , Adulto , Feminino , Movimento/fisiologia , Adulto Jovem , Pressão , Bases de Dados Factuais , Pé/fisiologia , Fenômenos Biomecânicos , Terapia por Estimulação Elétrica/métodos
19.
Synth Syst Biotechnol ; 9(4): 793-808, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39072145

RESUMO

Microorganisms, particularly extremophiles, have evolved multiple adaptation mechanisms to address diverse stress conditions during survival in unique environments. Their responses to environmental coercion decide not only survival in severe conditions but are also an essential factor determining bioproduction performance. The design of robust cell factories should take the balance of their growing and bioproduction into account. Thus, mining and redesigning stress-tolerance elements to optimize the performance of cell factories under various extreme conditions is necessary. Here, we reviewed several stress-tolerance elements, including acid-tolerant elements, saline-alkali-resistant elements, thermotolerant elements, antioxidant elements, and so on, providing potential materials for the construction of cell factories and the development of synthetic biology. Strategies for mining and redesigning stress-tolerance elements were also discussed. Moreover, several applications of stress-tolerance elements were provided, and perspectives and discussions for potential strategies for screening stress-tolerance elements were made.

20.
Int J Biol Macromol ; : 134234, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39074700

RESUMO

Biomass-based adhesives are gaining attention as environmentally friendly alternatives to toxic petroleum-based adhesives. However, biomass-based adhesives exhibit poor adhesive properties and are highly susceptible to failure in humid environments. In this study, a zein-based adhesive with high adhesive strength and good water resistance was prepared by optimizing the solvent composition and adding tannic acid. Adding 10 wt% acetic acid to an aqueous ethanol solvent increased the shear strength by 45.4 % to 3.09 MPa. Moreover, the addition of 6 wt% tannic acid improved the shear strength of the zein-based adhesive in humid environments from 0.63 to 1.58 MPa. The tannic acid-reinforced zein-based adhesive exhibited good adhesive strength in both humid and dry environments, which was maintained for 30 days on glass, and could be applied to a wide range of substrates. Moreover, the adhesive showed an antioxidant activity >94 %, excellent thermal stability, biocompatibility, and antibacterial effect. Therefore, this adhesive has great application prospects in medical, packaging, and other fields.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...