Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 186
Filtrar
1.
Discov Oncol ; 15(1): 348, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39134820

RESUMO

This review explores the intricate roles of metal ions-iron, copper, zinc, and selenium-in glioma pathogenesis and immune evasion. Dysregulated metal ion metabolism significantly contributes to glioma progression by inducing oxidative stress, promoting angiogenesis, and modulating immune cell functions. Iron accumulation enhances oxidative DNA damage, copper activates hypoxia-inducible factors to stimulate angiogenesis, zinc influences cell proliferation and apoptosis, and selenium modulates the tumor microenvironment through its antioxidant properties. These metal ions also facilitate immune escape by upregulating immune checkpoints and secreting immunosuppressive cytokines. Targeting metal ion pathways with therapeutic strategies such as chelating agents and metalloproteinase inhibitors, particularly in combination with conventional treatments like chemotherapy and immunotherapy, shows promise in improving treatment efficacy and overcoming resistance. Future research should leverage advanced bioinformatics and integrative methodologies to deepen the understanding of metal ion-immune interactions, ultimately identifying novel biomarkers and therapeutic targets to enhance glioma management and patient outcomes.

2.
BMC Rheumatol ; 8(1): 36, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39164762

RESUMO

BACKGROUND: This study aimed to investigate the accuracy of identifying enthesitis along with other inflammatory lesions and structural lesions on the MRI of the sacroiliac joints (SIJ) by readers of varying experience and how training sessions and workshops could help improve the accuracy. METHODS: A total of 224 patients with clinical diagnosis of axial spondyloarthritis who underwent SIJ MRI examinations were retrospectively included in this study. Three readers with 5 years, 3 years and 1 year of experience in musculoskeletal imaging were invited to review the SIJ MRI images independently, while the imaging reports of a senior radiologist (> 10 years' experience) were used as reference. After the first round of image review, a training session and a workshop on the imaging of SIJ in spondyloarthritis were held and the three readers were asked to review the images in the second round. We calculated the accuracy of identifying inflammatory and structural lesions of the three readers as well as the intra-reader agreement. RESULTS: Enthesitis could be observed in 52.23% of the axial spondyloarthritis patients, while 81.58% of the patients with enthesitis were accompanied with bone marrow edema. All the three readers showed better accuracy at identifying structural lesions than inflammatory lesions. In the first round of image review, the three readers only correctly identified 15.07%, 2.94% and 0.74% of the enthesitis sites. After the training session and workshop, the accuracy rose to 61.03%, 39.34% and 20.22%. The intra-reader agreement of enthesitis calculated as Cohen's kappa was 0.23, 0.034 and 0.014, respectively. CONCLUSION: Readers with less experience in musculoskeletal imaging showed lower accuracy of identifying inflammatory lesions, notably enthesitis. Training sessions and workshops could help improve the diagnostic accuracy of the junior readers.

3.
Adv Mater ; : e2409983, 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39185797

RESUMO

Phosphorescent supramolecular hydrogels are currently a prevalent topic for their great promise in various photonic applications. Herein, an efficient near-infrared (NIR) phosphorescence supramolecular hydrogel is reported via the hierarchical assembly strategy in aqueous solution, which is fabricated from amphiphilic bromonaphthalimide pyridinium derivative (G), exfoliated Laponite (LP) nanosheets, and polymeric polyacrylamide (PAAm). Initially, G spontaneously self-aggregates into spherical nanoparticles covered with positively charged pyridinium units and emits single fluorescence at 410 nm. Driven by electrostatic interactions with negatively charged nanosheets, the nanoparticles subsequently function as the cross-linked binders and coassemble with LP into supramolecular hydrogels with an engendered red room-temperature phosphorescence (RTP) up to 620 nm. Benefiting from hydrogen-bonding interactions-mediated physical cross-linkage, the further introduction of PAAm not only significantly elevates the mechanical strength of the hydrogels showing fast self-healing capability, but also increases phosphorescence lifetime from 2.49 to 4.20 ms, especially generating phosphorescence at even higher temperature (τ 363 K = 2.46 ms). Additionally, efficient RTP energy transfer occurs after doping a small amount of organic dye heptamethine cyanine (IR780) as an acceptor into hydrogels, resulting in a long-lived NIR emission at 823 nm with a high donor/acceptor ratio, which is successfully applied for cell labeling in the NIR window.

4.
Int J Biol Macromol ; 278(Pt 4): 135098, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39197612

RESUMO

The importance of synergy has been underscored in recent medical research for augmenting the efficacy of therapeutic interventions, targeting multiple biological pathways simultaneously. Our prior research elucidated that Dendrobium officinale polysaccharide (DOP) has the potential to prolong the lifespan of Caenorhabditis elegans (C. elegans) via regulating gut microbiota. Concurrently, spermidine (Spd), as a mimicking caloric restriction, facilitates autophagy and exerts a pronounced anti-aging effect. To enhance the anti-aging capabilities of DOP, we conducted a comprehensive study examining the combined effects of DOP and Spd in C. elegans, incorporating metabolomics analysis to investigate the underlying mechanisms. A combination of 250 mg/L DOP and 29.0 mg/L Spd yielded the most favorable outcomes in lifespan extension, evidencing a synergistic effect with a combination index (CI) of 0.65. In oxidative and heat stress tolerance assays, the observed CIs were 0.50 and 0.33, respectively. Metabolomic analysis highlighted significant alterations in metabolites related to lipid, nucleotide and energy metabolism, notably regulating glycerol 3-phosphate, linoleoyl glycerol, docosapentaenoic acid and ß-nicotinamide mononucleotide, nicotinamide adenine dinucleotide. The effects of DS on lipid metabolism were further validated using Oil Red O staining and triglyceride level in C. elegans. The results indicated that DS may primarily be via modulating lipid metabolism. To further confirm these findings, a high-fat diet-induced mouse model was employed. Consequently, it can be inferred that the synergistic anti-aging impact of DOP and Spd is likely mediated primarily through alterations in lipid metabolic processes.


Assuntos
Caenorhabditis elegans , Dendrobium , Metabolismo Energético , Metabolismo dos Lipídeos , Metabolômica , Polissacarídeos , Espermidina , Animais , Polissacarídeos/farmacologia , Polissacarídeos/química , Dendrobium/química , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/metabolismo , Metabolômica/métodos , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Espermidina/farmacologia , Espermidina/metabolismo , Camundongos , Sinergismo Farmacológico , Nucleotídeos/metabolismo , Nucleotídeos/farmacologia , Envelhecimento/efeitos dos fármacos , Envelhecimento/metabolismo , Longevidade/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos
5.
CNS Neurosci Ther ; 30(8): e14836, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39097918

RESUMO

INTRODUCTION: Cerebral ischemia-reperfusion injury (CIRI) is a common and debilitating complication of cerebrovascular diseases such as stroke, characterized by mitochondrial dysfunction and cell apoptosis. Unraveling the molecular mechanisms behind these processes is essential for developing effective CIRI treatments. This study investigates the role of RACK1 (receptor for activated C kinase 1) in CIRI and its impact on mitochondrial autophagy. METHODS: We utilized high-throughput transcriptome sequencing and weighted gene co-expression network analysis (WGCNA) to identify core genes associated with CIRI. In vitro experiments used human neuroblastoma SK-N-SH cells subjected to oxygen and glucose deprivation (OGD) to simulate ischemia, followed by reperfusion (OGD/R). RACK1 knockout cells were created using CRISPR/Cas9 technology, and cell viability, apoptosis, and mitochondrial function were assessed. In vivo experiments involved middle cerebral artery occlusion/reperfusion (MCAO/R) surgery in rats, evaluating neurological function and cell apoptosis. RESULTS: Our findings revealed that RACK1 expression increases during CIRI and is protective by regulating mitochondrial autophagy through the PINK1/Parkin pathway. In vitro, RACK1 knockout exacerbated cell apoptosis, while overexpression of RACK1 reversed this process, enhancing mitochondrial function. In vivo, RACK1 overexpression reduced cerebral infarct volume and improved neurological deficits. The regulatory role of RACK1 depended on the PINK1/Parkin pathway, with RACK1 knockout inhibiting PINK1 and Parkin expression, while RACK1 overexpression restored them. CONCLUSION: This study demonstrates that RACK1 safeguards against neural damage in CIRI by promoting mitochondrial autophagy through the PINK1/Parkin pathway. These findings offer crucial insights into the regulation of mitochondrial autophagy and cell apoptosis by RACK1, providing a promising foundation for future CIRI treatments.


Assuntos
Autofagia , Mitocôndrias , Proteínas Quinases , Receptores de Quinase C Ativada , Traumatismo por Reperfusão , Ubiquitina-Proteína Ligases , Animais , Humanos , Ratos , Apoptose/fisiologia , Autofagia/fisiologia , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Linhagem Celular Tumoral , Infarto da Artéria Cerebral Média/patologia , Infarto da Artéria Cerebral Média/metabolismo , Mitocôndrias/metabolismo , Proteínas de Neoplasias , Neuroproteção/fisiologia , Proteínas Quinases/metabolismo , Proteínas Quinases/genética , Ratos Sprague-Dawley , Receptores de Quinase C Ativada/metabolismo , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Transdução de Sinais/fisiologia , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética
6.
Sensors (Basel) ; 24(15)2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39124112

RESUMO

Given the complex powertrain of fuel cell electric vehicles (FCEVs) and diversified vehicle platooning synergy constraints, a control strategy that simultaneously considers inter-vehicle synergy control and energy economy is one of the key technologies to improve transportation efficiency and release the energy-saving potential of platooning vehicles. In this paper, an energy-oriented hybrid cooperative adaptive cruise control (eHCACC) strategy is proposed for an FCEV platoon, aiming to enhance energy-saving potential while ensuring stable car-following performance. The eHCACC employs a hybrid cooperative control architecture, consisting of a top-level centralized controller (TCC) and bottom-level distributed controllers (BDCs). The TCC integrates an eco-driving CACC (eCACC) strategy based on the minimum principle and random forest, which generates optimal reference velocity datasets by aligning the comprehensive control objectives of the platoon and addressing the car-following performance and economic efficiency of the platoon. Concurrently, to further unleash energy-saving potential, the BDCs utilize the equivalent consumption minimization strategy (ECMS) to determine optimal powertrain control inputs by combining the reference datasets with detailed optimization information and system states of the powertrain components. A series of simulation evaluations highlight the improved car-following stability and energy efficiency of the FCEV platoon.

7.
Adv Healthc Mater ; : e2402333, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39126238

RESUMO

Numerous hemorrhagic disorders, particularly those presenting deep hemorrhage, pose diagnostic challenges, often leading to delayed treatment and severe outcomes. Near-infrared (NIR)-II fluorescence imaging offers advantages such as deep tissue penetration, real-time visualization, and a high signal-to-background ratio, making it highly suitable for diagnosing hemorrhagic diseases. In this study, an NIR-II fluorescent probe LJ-2P carrying carboxylic and phosphoric acid groups is successfully applied for imaging hemorrhagic diseases. LJ-2P demonstrates a strong affinity for fibrinogen and fibrin clots both computationally and experimentally, thus exhibiting increased brightness upon coagulation. As compared to Indocyanine Green, LJ-2P provides a longer imaging window, higher imaging specificity, and signal-to-background ratio, as well as superior photobleaching resistance in three disease models: gastric, pulmonary, and cerebral hemorrhages. These results reveal that LJ-2P demonstrates enhanced imaging capabilities, enabling precise identification of hemorrhagic sites.

8.
Front Cell Dev Biol ; 12: 1396836, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39156969

RESUMO

Glioblastoma (GBM) displays an infiltrative growth characteristic that recruits neighboring normal cells to facilitate tumor growth, maintenance, and invasion into the brain. While the blood-brain barrier serves as a critical natural defense mechanism for the central nervous system, GBM disrupts this barrier, resulting in the infiltration of macrophages from the peripheral bone marrow and the activation of resident microglia. Recent advancements in single-cell transcriptomics and spatial transcriptomics have refined the categorization of cells within the tumor microenvironment for precise identification. The intricate interactions and influences on cell growth within the tumor microenvironment under multi-omics conditions are succinctly outlined. The factors and mechanisms involving microglia, macrophages, endothelial cells, and T cells that impact the growth of GBM are individually examined. The collaborative mechanisms of tumor cell-immune cell interactions within the tumor microenvironment synergistically promote the growth, infiltration, and metastasis of gliomas, while also influencing the immune status and therapeutic response of the tumor microenvironment. As immunotherapy continues to progress, targeting the cells within the inter-tumor microenvironment emerges as a promising novel therapeutic approach for GBM. By comprehensively understanding and intervening in the intricate cellular interactions within the tumor microenvironment, novel therapeutic modalities may be developed to enhance treatment outcomes for patients with GBM.

9.
Food Chem ; 458: 140270, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38959793

RESUMO

A compact antioxidant interfacial layer was fabricated by combining phosphorylation treatment with protocatechuic acid (PA) copolymerization to enhance the physical and oxidative stability of high internal phase emulsions (HIPEs) prepared using perilla protein isolate (PPI). The covalent binding between PPI and phosphate groups induced conformational changes, facilitating the interaction between PPI and PA. The formed phosphorylated PPI-PA conjugates (LPPI-PA) exhibited a reduced particle size of 196.75 nm, promoting their adsorption at the interface. HIPEs prepared by LPPI-PA conjugates showed higher storage stability due to decreased droplet size, increased interfacial protein adsorption content (90.48%), and the formation of an interconnected network within the system. Additionally, the combination of LPPI and PA anchored PA to the interface, significantly inhibiting lipid oxidation in HIPEs as evidenced by low levels of lipid hydroperoxide (30.33 µmol/g oil) and malondialdehyde (379.34 nmol/g oil). This study holds significant implications for improving the stability of HIPEs.


Assuntos
Emulsões , Hidroxibenzoatos , Oxirredução , Perilla , Proteínas de Plantas , Emulsões/química , Hidroxibenzoatos/química , Hidroxibenzoatos/farmacologia , Fosforilação , Proteínas de Plantas/química , Perilla/química , Polimerização , Tamanho da Partícula , Antioxidantes/química , Antioxidantes/farmacologia
10.
J Sci Food Agric ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39011982

RESUMO

BACKGROUND: Future applications of high-internal-phase emulsions (HIPEs) are highly regarded, but poor freeze-thaw stability limits their utilization in frozen products. This study aimed to characterize the structure of chickpea protein microgel particles (HCPI) induced by NaCl and to assess its impact on the freeze-thaw stability of HIPEs. RESULTS: The results showed that NaCl induction (0-400 mmol L-1) increased the surface hydrophobicity (175.9-278.9) and interfacial adsorbed protein content (84.9%-91.3%) of HCPI. HIPEs prepared with HCPI induced by high concentration of NaCl exhibited superior flocculation index and centrifugal stability, and their freeze-thaw stability was better than that of natural chickpea protein. The increase in NaCl concentration reduced the droplet aggregation and coalescence index of the freeze-thaw emulsions, diminishing the precipitation of oil from the emulsion. Linear and nonlinear rheology showed that the strengthened gel structure (higher G' values) restricted water flow and counteracted the damage to the interfacial film by ice crystals at 100-400 mmol L-1 NaCl, thus improving the viscoelasticity of the freeze-thaw emulsions. Finally, the thawing loss of surimi gel with HCPI-200 HIPE was reduced by 2.04% compared to directly adding oil. CONCLUSION: This study provided a promising strategy to improve the freeze-thaw stability of HIPEs and reduce the thawing loss of frozen products. © 2024 Society of Chemical Industry.

11.
Arch Med Sci ; 20(3): 887-908, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39050162

RESUMO

Introduction: The study was designed to explore how cinobufagin (CB) regulates the development of non-small cell lung cancer (NSCLC) cells through lipid rafts. Material and methods: The effects of CB at gradient concentrations (0, 0.5, 1 and 2 µM) on NSCLC cell viability, apoptosis, reactive oxygen species (ROS) level, phosphorylation of Akt, and apoptosis- and lipid raft-related protein expression were assessed by MTT assay, flow cytometry and Western blot. Cholesterol and sphingomyelin were labeled with BODIPY to evaluate the effect of CB (2 µM) on them. Sucrose density gradient centrifugation was used to extract lipid rafts. The effect of CB on the expression and distribution of caveolin-1 was determined by immunofluorescence, quantitative reverse transcription polymerase chain reaction and Western blot. After overexpression of caveolin-1, the above experiments were performed again to observe whether the regulatory effect of CB was reversed. Results: CB inhibited NSCLC cell viability while promoting apoptosis and ROS level. CB redistributed the lipid content on the membrane surface and reduced the content of caveolin-1 in the cell membrane. In addition, CB repressed the activation of AKT. However, caveolin-1 overexpression reversed the effects of CB on apoptosis, AKT activation and lipid raft. Conclusions: CB regulates the activity of Akt in lipid rafts by inhibiting caveolin-1 expression to promote NSCLC cell apoptosis.

12.
J Sci Food Agric ; 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39082082

RESUMO

BACKGROUND: Xanthohumol is an isopentadienyl flavonoid in hops, which have several pharmacological effects. However, due to the poor bioavailability of xanthohumol, it cannot be widely used. RESULT: In this study, solvent extraction combined with preparative liquid chromatography was used to separate and purify xanthohumol in hop residue. And the purity, yield and recovery of xanthohumol was 983.0 ± 2.1 g kg-1, 921.61 ± 5.65 g kg-1, and 5.41 ± 0.07 g kg-1, respectively. Response surface methodology optimization revealed that 216.75 g kg-1 ethyl oleate, 574.1 g kg-1 polyoxyl-35 castor oil (EL35) and 209.15 g kg-1 polyethylene glycol 200 (PEG200) produced the xanthohumol nanoemulsion with a loading capacity of 85.40 ± 0.33 g kg-1, mean droplet diameter of 42.35 ± 0.06 nm, and zeta potential of -21.78 ± 0.18 mV. CONCLUSION: Xanthohumol nanoemulsion has better relative stability. The relative oral bioavailability of xanthohumol nanoemulsion was increased by 1.76 times. These results provide a theoretical basis for the application of nanoemulsion containing xanthohumol in food and pharmaceutical industry. © 2024 Society of Chemical Industry.

13.
Bioact Mater ; 39: 612-629, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38883315

RESUMO

As a "cold tumor", triple-negative breast cancer (TNBC) exhibits limited responsiveness to current immunotherapy. How to enhance the immunogenicity and reverse the immunosuppressive microenvironment of TNBC remain a formidable challenge. Herein, an "in situ nanovaccine" Au/CuNDs-R848 was designed for imaging-guided photothermal therapy (PTT)/chemodynamic therapy (CDT) synergistic therapy to trigger dual immunoregulatory effects on TNBC. On the one hand, Au/CuNDs-R848 served as a promising photothermal agent and nanozyme, achieving PTT and photothermal-enhanced CDT against the primary tumor of TNBC. Meanwhile, the released antigens and damage-associated molecular patterns (DAMPs) promoted the maturation of dendritic cells (DCs) and facilitated the infiltration of T lymphocytes. Thus, Au/CuNDs-R848 played a role as an "in situ nanovaccine" to enhance the immunogenicity of TNBC by inducing immunogenic cell death (ICD). On the other hand, the nanovaccine suppressed the myeloid-derived suppressor cells (MDSCs), thereby reversing the immunosuppressive microenvironment. Through the dual immunoregulation, "cold tumor" was transformed into a "hot tumor", not only implementing a "turning foes to friends" therapeutic strategy but also enhancing immunotherapy against metastatic TNBC. Furthermore, Au/CuNDs-R848 acted as an excellent nanoprobe, enabling high-resolution near-infrared fluorescence and computed tomography imaging for precise visualization of TNBC. This feature offers potential applications in clinical cancer detection and surgical guidance. Collectively, this work provides an effective strategy for enhancing immune response and offers novel insights into the potential clinical applications for tumor immunotherapy.

14.
Materials (Basel) ; 17(12)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38930171

RESUMO

Iron red, a traditional Jingdezhen overglaze color, is primarily colored with iron oxide (Fe2O3). In traditional processes, the main ingredient for the iron red overglaze color, raw iron red, is produced by calcining iron vitriol (FeSO4·7H2O). Analysis of ancient iron red porcelain samples indicates that the coloration is unstable, ranging from bright red to dark red and occasionally to black. Addressing this, the present study, from a ceramic technology standpoint, conducts a series of calcination experiments on industrial iron vitriol at varying temperatures. Utilizing methodologies such as differential scanning calorimetry-thermogravimetry (DSC-TG), Raman spectroscopy, X-ray diffraction (XRD), scanning electron microscopy with X-ray energy dispersive spectrometry (SEM-EDS), and optical microscopy (OM), this research scientifically explores the impact of iron vitriol's calcination temperature on the coloration of traditional Jingdezhen iron red overglaze color. The findings indicate that from room temperature to 550 °C, the dehydration of iron vitriol resulted in the formation of Fe2(SO4)3 and a minimal amount of α-Fe2O3, rendering the iron red overglaze color a yellowish-red shade. At 650 °C, the coexistence of Fe2(SO4)3 and α-Fe2O3 imparted a brick-red color to the iron red. As the temperature was elevated to 700 °C, the desulfurization of Fe2(SO4)3 produced α-Fe2O3, transitioning the iron red to an orange red. With further temperature increase to 750 °C, the particle size of α-Fe2O3 grew and the crystal reflectivity decreased, resulting in a purplish-red hue. Throughout this stage, the powder remained in a single α-Fe2O3 phase. Upon further heating to 800 °C, the crystallinity of α-Fe2O3 enhanced, giving the iron red overglaze color a dark red or even black appearance.

15.
Heliyon ; 10(10): e31501, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38826739

RESUMO

Seven different substrates were prepared by mixing red soil, humus and river sand in different volume ratios and the growth and yield of Amorphophallus muelleri bulbils in different substrates was investigated. The growth of A. muelleri seedlings were tracked during the reproductive period, with measurements taken of indicators such as petiole length, petiole basal diameter and leaf size during the late period of leaf expansion. Number of surviving plants, weights and sizes of corms, and leaf bulbils were recorded after lodging. The results showed that there were differences in the physical and chemical properties of the seven substrates, but all met the growth requirements of A. muelleri. T1 (river sand), T2 (river sand: humus 1:1), T3 (humus), and T7 (river sand: humus: red soil 1:1:1) had higher emergence rates, reaching 95 %. T4 (humus: red soil 1:1) and T7 had better growth, with larger petiole and leaf sizes than other substrates. T3, T4, and T7 had higher yields, with a bulbil yield of 0.30 t hm-2 and a corm yield of 22.06 t hm-2. Compared to the use of a single substrate, whether river sand, humus, or red soil, the proportional mixture of the three test materials improved the physical structure and chemical composition of the substrate, contributing to the growth of A. muelleri. T7 (river sand: humus: red soil 1:1:1) was was found to be the best nursery substrate for A. muelleri.

16.
Int J Biol Macromol ; 271(Pt 2): 132511, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38772471

RESUMO

Green Tea polyphenols (GTP) are important bioactive compounds with excellent physiological regulation functions. However, they are easily destroyed by the gastric environment during digestion. In this work, a sodium alginate (SA)-gellan gum (GG) interpenetrating network (IPN) hydrogel was synthesized to protect and delivery GTP. The ratio of SA/GG significantly affects the network structure of IPN hydrogels and the performance of delivering GTP. The hydrogel formed by interpenetrating 20 % GG with 80 % SA as the main network had the highest water uptake (55 g/g), holding capacity (950 mg/g), and freeze-thaw stability, with springiness reaching 0.933 and hardness reaching 1300 g, which due to the filling effect and non-covalent interaction. Rheological tests showed that the crosslink density of IPN hydrogel in SA-dominated network was improved by the addition of GG to make it better bound to GTP, and the higher water uptake meant that the system could absorb more GTP-containing solution. This IPN hydrogel maintained 917.3 mg/g encapsulation efficiency at the highest loading capacity (1080 mg/g) in tests as delivery system. In in vitro digestion simulations, owing to the pH responsiveness, the IPN hydrogel reduced the loss of GTP in gastric fluid, achieving a bioaccessibility of 71.6 % in the intestinal tract.


Assuntos
Disponibilidade Biológica , Hidrogéis , Polifenóis , Chá , Hidrogéis/química , Polifenóis/química , Polifenóis/farmacocinética , Chá/química , Alginatos/química , Polissacarídeos Bacterianos/química , Liberação Controlada de Fármacos , Concentração de Íons de Hidrogênio , Reologia , Portadores de Fármacos/química
17.
Sensors (Basel) ; 24(10)2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38793935

RESUMO

During the braking process of electric vehicles, both the regenerative braking system (RBS) and anti-lock braking system (ABS) modulate the hydraulic braking force, leading to control conflict that impacts the effectiveness and real-time capability of coordinated control. Aiming to enhance the coordinated control effectiveness of RBS and ABS within the electro-hydraulic composite braking system, this paper proposes a coordinated control strategy based on explicit model predictive control (eMPC-CCS). Initially, a comprehensive braking control framework is established, combining offline adaptive control law generation, online optimized control law application, and state compensation to effectively coordinate braking force through the electro-hydraulic system. During offline processing, eMPC generates a real-time-oriented state feedback control law based on real-world micro trip segments, improving the adaptiveness of the braking strategy across different driving conditions. In the online implementation, the developed three-dimensional eMPC control laws, corresponding to current driving conditions, are invoked, thereby enhancing the potential for real-time braking strategy implementation. Moreover, the state error compensator is integrated into eMPC-CCS, yielding a state gain matrix that optimizes the vehicle braking status and ensures robustness across diverse braking conditions. Lastly, simulation evaluation and hardware-in-the-loop (HIL) testing manifest that the proposed eMPC-CCS effectively coordinates the regenerative and hydraulic braking systems, outperforming other CCSs in terms of braking energy recovery and real-time capability.

18.
Sensors (Basel) ; 24(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38794003

RESUMO

With the rapid development of the intelligent driving technology, achieving accurate path planning for unmanned vehicles has become increasingly crucial. However, path planning algorithms face challenges when dealing with complex and ever-changing road conditions. In this paper, aiming at improving the accuracy and robustness of the generated path, a global programming algorithm based on optimization is proposed, while maintaining the efficiency of the traditional A* algorithm. Firstly, turning penalty function and obstacle raster coefficient are integrated into the search cost function to increase the adaptability and directionality of the search path to the map. Secondly, an efficient search strategy is proposed to solve the problem that trajectories will pass through sparse obstacles while reducing spatial complexity. Thirdly, a redundant node elimination strategy based on discrete smoothing optimization effectively reduces the total length of control points and paths, and greatly reduces the difficulty of subsequent trajectory optimization. Finally, the simulation results, based on real map rasterization, highlight the advanced performance of the path planning and the comparison among the baselines and the proposed strategy showcases that the optimized A* algorithm significantly enhances the security and rationality of the planned path. Notably, it reduces the number of traversed nodes by 84%, the total turning angle by 39%, and shortens the overall path length to a certain extent.

19.
CNS Neurosci Ther ; 30(5): e14783, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38797980

RESUMO

AIMS: The molecular mechanism of short-sleep conditions on cognition remains largely unknown. This research aimed to investigate associations between short sleep, inflammatory biomarkers and cognitive function in the US population (NHANES data 2011-2014) and explore cellular mechanisms in mice. METHODS: Systemic immune-inflammation index (SII) was calculated using blood-cell based biomarkers. Further, we employed integrated bioinformatics and single-cell transcriptomics (GSE137665) to examine how short sleep exposure influenced the molecular pathways associated with inflammation in the brain. To explore the signaling pathways and biological processes of sleep deprivation, we carried out enrichment analyses utilizing the GO and KEGG databases. RESULTS: Population results showed that, compared with normal sleep group, severe short sleep was associated with lower cognitive ability in all the four tests. Moreover, a higher SII level was correlated with lower scores of cognitive tests. In mice study, elevated activation of the inflammatory pathway was observed in cell subgroups of neurons within the sleep deprivation and recovery sleep cohorts. Additionally, heightened expression of oxidative stress and integrated stress response pathways was noted in GABAergic neurons during sleep deprivation. CONCLUSION: This study contributed to the understanding of the influence of short sleep on cognitive function and its cellular mechanisms.


Assuntos
Biomarcadores , Cognição , Inflamação , Privação do Sono , Animais , Camundongos , Masculino , Privação do Sono/complicações , Privação do Sono/psicologia , Feminino , Humanos , Cognição/fisiologia , Adulto , Inflamação/metabolismo , Pessoa de Meia-Idade , Camundongos Endogâmicos C57BL , Adulto Jovem , Disfunção Cognitiva/metabolismo , Sono/fisiologia
20.
Appl Physiol Nutr Metab ; 49(8): 1014-1024, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38569203

RESUMO

Current research has shown promising associations between factors such as diet, total physical activity, and mental health outcomes, acknowledging the intricate interplay between these variables. However, the role of dietary intake of live microbes, coupled with leisure-time physical activity (LTPA), in their relationship to depressive symptoms necessitates further exploration. The present study examined a cohort of 25 747 individuals who participated in the National Health and Nutrition Examination Survey between the years 2007 and 2018. Patient's Health Questionnaire (PHQ-9) was employed, whereby individuals scoring ≥ 10 were classified as exhibiting symptoms of depression. LTPA status was reported by the Global Physical Activity Questionnaire and calculated by metabolic equivalent-minutes/week. Foods consumed by participants were evaluated by live microbes per gram, which were categorized into three groups: low, medium, and high. After controlling for all covariates, findings indicated that LTPA was negatively associated with depressive symptoms (OR (95% confidence interval (CI): 0.983 (0.976, 0.990), p < 0.001). Participating in more LTPA was positively correlated with consuming all three levels of dietary live microbes (low, ß (95% CI): 0.086 (0.063, 0.109); medium, ß (95% CI): 0.009 (0.007, 0.012); high, ß (95% CI): 0.002 (0.001, 0.002)). Moreover, taking more foods with medium live microbes was associated with lower depressive likelihood (OR (95% CI): 0.931(0.882, 0.982), p = 0.010). Intake of medium and high levels of live microbes mediated the association between LTPA and depressive symptoms by 4.15% and 0.83%, respectively. Dietary intake of foods containing medium and high levels of live microbes may be a mediator of LTPA's negative association with depressive symptoms.


Assuntos
Depressão , Dieta , Exercício Físico , Atividades de Lazer , Inquéritos Nutricionais , Humanos , Masculino , Feminino , Depressão/epidemiologia , Exercício Físico/psicologia , Adulto , Pessoa de Meia-Idade , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...