Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 487
Filtrar
1.
EBioMedicine ; 107: 105281, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39142074

RESUMO

BACKGROUND: Coronavirus disease 2019 (COVID-19) is an immune-related disorder caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The complete pathogenesis of the virus remains to be determined. Unraveling the molecular mechanisms governing SARS-CoV-2 interactions with host cells is crucial for the formulation of effective prophylactic measures and the advancement of COVID-19 therapeutics. METHODS: We analyzed human lung single-cell RNA sequencing dataset to discern the association of butyrophilin subfamily 3 member A2 (BTN3A2) expression with COVID-19. The BTN3A2 gene edited cell lines and transgenic mice were infected by live SARS-CoV-2 in a biosafety level 3 (BSL-3) laboratory. Immunoprecipitation, flow cytometry, biolayer interferometry and competition ELISA assays were performed in BTN3A2 gene edited cells. We performed quantitative real-time PCR, histological and/or immunohistochemical analyses for tissue samples from mice with or without SARS-CoV-2 infection. FINDINGS: The BTN3A2 mRNA level was correlated with COVID-19 severity. BTN3A2 expression was predominantly identified in epithelial cells, elevated in pathological epithelial cells from COVID-19 patients and co-occurred with ACE2 expression in the same lung cell subtypes. BTN3A2 targeted the early stage of the viral life cycle by inhibiting SARS-CoV-2 attachment through interactions with the receptor-binding domain (RBD) of the Spike protein and ACE2. BTN3A2 inhibited ACE2-mediated SARS-CoV-2 infection by reducing ACE2 in vitro and in vivo. INTERPRETATION: These results reveal a key role of BTN3A2 in the fight against COVID-19. Identifying potential monoclonal antibodies which mimic BTN3A2 may facilitate disruption of SARS-CoV-2 infection, providing a therapeutic avenue for COVID-19. FUNDING: This study was supported by the National Natural Science Foundation of China (32070569, U1902215, and 32371017), the CAS "Light of West China" Program, and Yunnan Province (202305AH340006).

2.
J Am Soc Mass Spectrom ; 35(9): 2222-2229, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39092573

RESUMO

Angelicae sinensis radix (ASR) and Angelicae pubescentis radix (APR), as traditional herbal medicines, are often confused and doped in the material market. However, the traditional identification method is to characterize the whole herb with a single or a few components, which do not have representation and cannot realize the effective utilization of unknown components. Consequently, the result is not convincing. In addition, the whole process is time-consuming and labor-intensive. To avoid the confusion and adulteration of ASR and APR as well as to strengthen quality control and improve identification efficiency, in this study, a UHPLC-QTOF-MSE method was used to analyze ASR and APR. Based on digital representation, the shared data with high ionic strength were extracted from different batches of the same herbal medicine as their "digital identity". Further, the above "digital identity" was used as the benchmark for matching and identifying unknown samples to feedback on matching credibility (MC). The results showed that based on the "digital identities" of ASR and APR, the digital identification of two herbal samples can be realized efficiently and accurately at the individual level. And the matching credibility (MC) was higher than 94.00%, even if only 1% of APR or ASR in the mixed samples can still be identified efficiently and accurately. The study is of great practical significance for improving the efficiency of the identification of ASR and APR, cracking down on adulterated and counterfeit drugs, and strengthening the quality control of ASR and APR. In addition, it has important reference significance for developing nontargeted digital identification of herbal medicines at the individual level based on UHPLC-QTOF-MSE and "digital identity", which is beneficial to the construction of digital Chinese medicine and digital quality control.


Assuntos
Angelica sinensis , Medicamentos de Ervas Chinesas , Cromatografia Líquida de Alta Pressão/métodos , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/análise , Angelica sinensis/química , Espectrometria de Massas/métodos , Controle de Qualidade , Raízes de Plantas/química , Angelica/química
3.
Small ; : e2404711, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39150087

RESUMO

Aluminum Scandium Nitride (Al1-xScxN) has received attention for its exceptional ferroelectric properties, whereas the fundamental mechanism determining its dynamic response and reliability remains elusive. In this work, an unreported nucleation-based polarization switching mechanism in Al0.7Sc0.3N (AlScN) is unveiled, driven by its intrinsic ferroelectricity rooted in the ionic displacement. Fast polarization switching, characterized by a remarkably low characteristic time of 0.00183 ps, is captured, and effectively simulated using a nucleation-limited switching (NLS) model, where the profound effect of defects on the nucleation and domain propagation is systematically studied. These findings are further integrated into Monte Carlo simulations to unravel the influence of the activation energy for ferroelectric switching on the distributions of switching thresholds. The long-term reliability of devices is also confirmed by time-dependent dielectric breakdown (TDDB) measurements, and the effect of thickness scaling is discussed. Ferroelectric field-effect transistors (FeFETs) are demonstrated through the integration of AlScN and 2D MoS2 channel, where biological synaptic functions can be emulated with optimized operation voltage. The artificial neural network built from AlScN-based FeFETs achieves 93.8% recognition accuracy of handwritten digits, demonstrating the potential of ferroelectric AlScN in future neuromorphic computing applications.

4.
Molecules ; 29(16)2024 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-39202886

RESUMO

Background:Periplocae Cortex (PC), Acanthopanacis Cortex (AC), and Lycii Cortex (LC), as traditional Chinese medicines, are all dried root bark, presented in a roll, light and brittle, easy to break, have a fragrant scent, etc. Due to their similar appearances, it is tough to distinguish them, and they are often confused and adulterated in markets and clinical applications. To realize the identification and quality control of three herbs, in this paper, Ultra Performance Liquid Chromatography-Quadrupole Time of Flight Mass Spectrometry Expression (UHPLC-QTOF-MSE) combined with chemometric analysis was used to explore the different chemical compositions. Methods: LC, AC, and PC were analyzed by UHPLC-QTOF-MSE, and the quantized MS data combined with Principal Component Analysis (PCA) and Partial Least Squares Discriminant Analysis (PLS-DA) were used to explore the different chemical compositions with Variable Importance Projection (VIP) > 1.0. Further, the different chemical compositions were identified according to the chemical standard substances, related literature, and databases. Results: AC, PC, and LC can be obviously distinguished in PCA and PLS-DA analysis with the VIP of 2661 ions > 1.0. We preliminarily identified 17 differential chemical constituents in AC, PC, and LC with significant differences (p < 0.01) and VIP > 1.0; for example, Lycium B and Periploside H2 are LC and PC's proprietary ingredients, respectively, and 2-Hydroxy-4-methoxybenzaldehyde, Periplocoside C, and 3,5-Di-O-caffeoylquinic acid are the shared components of the three herbs. Conclusions: UHPLC-QTOF-MSE combined with chemometric analysis is conducive to exploring the differential chemical compositions of three herbs. Moreover, the proprietary ingredients, Lycium B (LC) and Periploside H2 (PC), are beneficial in strengthening the quality control of AC, PC, and LC. In addition, limits on the content of shared components can be set to enhance the quality control of LC, PC, and AC.


Assuntos
Medicamentos de Ervas Chinesas , Espectrometria de Massas , Análise de Componente Principal , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/análise , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas/métodos , Quimiometria , Análise Discriminante , Análise dos Mínimos Quadrados , Casca de Planta/química , Medicina Tradicional Chinesa
5.
Front Microbiol ; 15: 1443526, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39132142

RESUMO

Introduction: Panax notoginseng, a medicinal herb in China, is attacked by several pathogens during its cultivation. Dazomet (DZ) is a soil fumigant that is effective in controlling soil-borne pathogens, but its long-term effects on P. notoginseng growth and soil properties are unknown. Methods: We conducted field experiments over two consecutive years to assess the impact of three concentrations of DZ fumigation (35 kg/666.7 m2, 40 kg/666.7 m2, and 45 kg/666.7 m2) on soil physicochemical properties, microbial diversity, and P. notoginseng growth. Correlation analyses were performed between microbial community changes and soil properties, and functional predictions for soil microorganisms were conducted. Results: DZ fumigation increased total nitrogen, total phosphorus, total potassium, available phosphorus, available potassium, and ammonia nitrogen levels in the soil. DZ fumigation promoted the nutrient accumulation and improvement of agronomic traits of P. notoginseng, resulted in a 2.83-3.81X yield increase, with the highest total saponin content increasing by 24.06%. And the 40 kg/666.7 m2 treatment had the most favorable impact on P. notoginseng growth and saponin accumulation. After DZ fumigation, there was a decrease in the relative abundance of pathogenic fungi such as Fusarium, Plectosphaerella, and Ilyonectria, while beneficial bacteria such as Ramlibacter, Burkholderia, and Rhodanobacteria increased. The effects of fumigation on soil microorganisms and soil physicochemical properties persisted for 18 months post-fumigation. DZ fumigation enhanced the relative abundance of bacteria involved in the biosynthesis of secondary metabolites and arbuscular mycorrhizal fungi, reduced the relative abundance of plant-animal pathogenic fungi, reduced the occurrence of soil-borne diseases. Conclusion: In conclusion, DZ fumigation enhanced soil physicochemical properties, increased the proportion of beneficial bacteria in the soil, and rebalanced soil microorganism populations, consequently improving the growth environment of P. notoginseng and enhancing its growth, yield, and quality. This study offers a theoretical foundation for DZ fumigation as a potential solution to the continuous cropping issue in perennial medicinal plants such as P. notoginseng.

6.
Eur Heart J Case Rep ; 8(7): ytae292, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39027214

RESUMO

Background: Anomalous pulmonary venous return involves the partial or complete absence of a connection between the pulmonary veins and the left atrium. The pulmonary vein potential plays a vital role in atrial fibrillation, and catheter ablation to isolate the pulmonary vein is crucial for treating this condition. However, when anomalous pulmonary venous return is present, it makes ablation more challenging and increases the risk of atrial fibrillation recurrence after the procedure. Case summary: A 49-year-old man was hospitalized because he had been experiencing occasional palpitations for 2 months. He had previously undergone surgery to repair an atrial septal defect when he was 11 years old, during which an issue with the right inferior pulmonary vein was identified but left unaddressed. Electrocardiography upon admission showed atrial fibrillation. Left atrial computed tomography angiography revealed that following atrial septal repair surgery, the right inferior pulmonary vein drained into the right atrium. The patient underwent transcatheter radiofrequency ablation to electrically isolate the pulmonary vein with anomalous return. After 12 months of follow-up, there was no atrial fibrillation recurrence. Discussion: When performing catheter ablation for anomalous pulmonary venous return and atrial fibrillation, it is essential to consider ablating the irregular pulmonary vein before surgery. This helps to reduce surgical complications and the likelihood of atrial fibrillation recurrence. This case report highlights the challenges encountered during ablation in patients with atrial fibrillation and anomalous pulmonary venous return. In addition, we have reviewed the literature to offer insights into the development of ablation strategies for similar patients.

7.
J Neurosci ; 44(33)2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39025678

RESUMO

The hippocampal CA3 region plays an important role in learning and memory. CA3 pyramidal neurons (PNs) receive two prominent excitatory inputs-mossy fibers (MFs) from dentate gyrus (DG) and recurrent collaterals (RCs) from CA3 PNs-that play opposing roles in pattern separation and pattern completion, respectively. Although the dorsoventral heterogeneity of the hippocampal anatomy, physiology, and behavior has been well established, nothing is known about the dorsoventral heterogeneity of synaptic connectivity in CA3 PNs. In this study, we performed Timm's sulfide silver staining, dendritic and spine morphological analyses, and ex vivo electrophysiology in mice of both sexes to investigate the heterogeneity of MF and RC pathways along the CA3 dorsoventral axis. Our morphological analyses demonstrate that ventral CA3 (vCA3) PNs possess greater dendritic lengths and more complex dendritic arborization, compared with dorsal CA3 (dCA3) PNs. Moreover, using ChannelRhodopsin2 (ChR2)-assisted patch-clamp recording, we found that the ratio of the RC-to-MF excitatory drive onto CA3 PNs increases substantially from dCA3 to vCA3, with vCA3 PNs receiving significantly weaker MFs, but stronger RCs, excitation than dCA3 PNs. Given the distinct roles of MF versus RC inputs in pattern separation versus completion, our findings of the significant dorsoventral variations of MF and RC excitation in CA3 PNs may have important functional implications for the contribution of CA3 circuit to the dorsoventral difference in hippocampal function.


Assuntos
Região CA3 Hipocampal , Células Piramidais , Sinapses , Animais , Camundongos , Células Piramidais/fisiologia , Região CA3 Hipocampal/fisiologia , Região CA3 Hipocampal/citologia , Masculino , Feminino , Sinapses/fisiologia , Camundongos Endogâmicos C57BL , Fibras Musgosas Hipocampais/fisiologia , Dendritos/fisiologia , Vias Neurais/fisiologia
8.
J Physiol ; 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-39031543

RESUMO

Autonomic dysregulation, including sympathetic hyperactivity, is a common feature of hypertension (HT) and other cardiovascular diseases. The CNS plays a role in driving chronic sympathetic activation in disease, but several lines of evidence suggest that neuroplasticity in the periphery may also contribute. The potential contribution of postganglionic sympathetic neurons to sustained sympathetic hyperactivity is not well understood. We recently discovered that noradrenergic sympathetic neurons in the stellate ganglion (SG) have excitatory cholinergic collateral connections to other neurons within the ganglion. We hypothesize that remodelling of these neurons and increased cholinergic collateral transmission contributes to sustained sympathetic hyperactivity in cardiovascular diseases, including HT. To test that hypothesis, we examined the activity of sympathetic neurons in isolated SG under control conditions and after 1 week of HT induced by peripheral angiotensin II infusion, using whole-cell patch clamp recordings. Despite the absence of central inputs, we observed elevated spontaneous activity and synaptic transmission in sympathetic SG neurons from hypertensive mice that required generation of action potentials. Genetically disrupting cholinergic transmission in noradrenergic neurons decreased basal neuronal activity and prevented angiotensin II-mediated enhancement of activity. Similar changes in activity, driven by increased collateral transmission, were identified in cardiac projecting neurons and neurons projecting to brown adipose tissue. These changes were not driven by altered A-type K+ currents. This suggests that HT stimulates increased activity throughout the intraganglionic network of collateral connections, contributing to the sustained sympathetic hyperactivity characteristic in cardiovascular disease. KEY POINTS: Sympathetic neurons in ganglia isolated from angiotensin II-treated hypertensive mice are more active than neurons from control mice despite the absence of central activation. The enhanced activity is the result of a ganglionic network of cholinergic collaterals, rather than altered intrinsic excitability. Increased neuronal activity was observed in both cardiac neurons and brown adipose tissue-projecting neurons, which are not involved in cardiovascular homeostasis.

9.
Molecules ; 29(13)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38999096

RESUMO

BACKGROUND: As one of the four most valuable animal medicines, Fel Ursi, named Xiong Dan (XD) in China, has the effect of clearing heat, calming the liver, and brightening the eyes. However, due to the special source of XD and its high price, other animals' bile is often sold as XD or mixed with XD on the market, seriously affecting its clinical efficacy and consumers' rights and interests. In order to realize identification and adulteration analysis of XD, UHPLC-QTOF-MSE and multivariate statistical analysis were used to explore the differences in XD and six other animals' bile. METHODS: XD, pig gall (Zhu Dan, ZD), cow gall (Niu Dan, ND), rabbit gallbladder (Tu Dan, TD), duck gall (Yan Dan, YD), sheep gall (Yang Dan, YND), and chicken gall (Ji Dan, JD) were analyzed by UHPLC-QTOF-MSE, and the MS data, combined with multivariate analysis methods, were used to distinguish between them. Meanwhile, the potential chemical composition markers that contribute to their differences were further explored. RESULTS: The results showed that XD and six other animals' bile can be distinguished from each other obviously, with 27 ions with VIP > 1.0. We preliminarily identified 10 different bile acid-like components in XD and the other animals' bile with significant differences (p < 0.01) and VIP > 1.0, such as tauroursodeoxycholic acid, Glycohyodeoxycholic acid, and Glycodeoxycholic acid. CONCLUSIONS: The developed method was efficient and rapid in accurately distinguishing between XD and six other animals' bile. Based on the obtained chemical composition markers, it is beneficial to strengthen quality control for bile medicines.


Assuntos
Contaminação de Medicamentos , Animais , Cromatografia Líquida de Alta Pressão/métodos , Bile/química , Quimiometria/métodos , Coelhos , Bovinos , China , Suínos , Análise Multivariada
11.
MedComm (2020) ; 5(8): e666, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39070180

RESUMO

Development of potent and broad-spectrum drugs against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remains one of the top priorities, especially in the cases of the emergence of mutant viruses and inability of current vaccines to prevent viral transmission. In this study, we have generated a novel membrane fusion-inhibitory lipopeptide IPB29, which is currently under clinical trials; herein, we report its design strategy and preclinical data. First, we surprisingly found that IPB29 with a rigid linker between the peptide sequence and lipid molecule had greatly improved α-helical structure and antiviral activity. Second, IPB29 potently inhibited a large panel of SARS-CoV-2 variants including the previously and currently circulating viruses, such as Omicron XBB.5.1 and EG.5.1. Third, IPB29 could also cross-neutralize the bat- and pangolin-isolated SARS-CoV-2-related CoVs (RatG13, PCoV-GD, and PCoV-GX) and other human CoVs (SARS-CoV, MERS-CoV, HCoV-NL63, and HCoV-229E). Fourth, IPB29 administrated as an inhalation solution (IPB29-IS) in Syrian hamsters exhibited high therapeutic and preventive efficacies against SARS-CoV-2 Delta or Omicron variant. Fifth, the pharmacokinetic profiles and safety pharmacology of IPB29-IS were extensively characterized, providing data to support its evaluation in humans. In conclusion, our studies have demonstrated a novel design strategy for viral fusion inhibitors and offered an ideal drug candidate against SARS-CoV-2 and other coronaviruses.

12.
Explor Target Antitumor Ther ; 5(3): 600-626, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38966167

RESUMO

Aim: The main objective of this study was to investigate the antitumor effect of a mouse anti-human glypican-1 (GPC1) monoclonal antibody (mAb) on non-small cell lung carcinoma (NSCLC) and associated molecular mechanisms. Methods: The anti-proliferative and anti-migratory activities of anti-GPC1 mAb were examined in A549 and H460 NSCLC cells and LL97A lung fibroblasts. The inhibitory effect of anti-GPC1 mAb on tumor growth was evaluated in an orthotopic lung tumor model. Results: The in vitro study showed that anti-GPC1 mAb profoundly inhibited the anchorage-independent growth of A549 and H460 NSCLC cells and exhibited relatively high cytotoxic activities towards LL97A lung fibroblasts, A549/LL97A and H460/LL97A coculture spheroids. Moreover, anti-GPC1 mAb significantly decreased the expression of phospho-Src (p-Src; Tyr416), p-Akt (Ser473) and ß-catenin in the co-cultured LL97A lung fibroblasts, and the expression of phospho-mitogen-activated protein kinase kinase (p-MEK; Ser217/221) and phospho-90 kDa ribosomal s6 kinase (p-p90RSK; Ser380) in co-cultured A549 cells. When anti-GPC1 mAb was administered to tumor-bearing mice, the inhibitory effect of anti-GPC1 mAb on the orthotopic lung tumor growth was not statistically significant. Nonetheless, results of Western blot analysis showed significant decrease in the phosphorylation of fibroblast growth factor receptor 1 (FGFR1) at Tyr766, Src at Tyr416, extracellular signal-regulated kinase (ERK) at Thr202/Tyr204, 90 kDa ribosomal S6 kinase (RSK) at Ser380, glycogen synthase kinases 3α (GSK3α) at Ser21 and GSK3ß at Ser9 in tumor tissues. These data implicate that anti-GPC1 mAb treatment impairs the interaction between tumor cells and tumor associated fibroblasts by attenuating the paracrine FGFR signal transduction. Conclusions: The relatively potent cytotoxicity of anti-GPC1 mAb in lung fibroblasts and its potential inhibitory effect on the paracrine FGFR signal transduction warrant further studies on the combined use of this mAb with targeted therapeutics to improve therapeutic outcomes in lung cancer.

13.
Emerg Microbes Infect ; 13(1): 2372344, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38916407

RESUMO

The Orthopoxvirus (OPXV) genus of the Poxviridae includes human pathogens variola virus (VARV), monkeypox virus (MPXV), vaccinia virus (VACV), and a number of zoonotic viruses. A number of Bcl-2-like proteins of VACV are involved in escaping the host innate immunity. However, little work has been devoted to the evolution and function of their orthologues in other OPXVs. Here, we found that MPXV protein P2, encoded by the P2L gene, and P2 orthologues from other OPXVs, such as VACV protein N2, localize to the nucleus and antagonize interferon (IFN) production. Exceptions to this were the truncated P2 orthologues in camelpox virus (CMLV) and taterapox virus (TATV) that lacked the nuclear localization signal (NLS). Mechanistically, the NLS of MPXV P2 interacted with karyopherin α-2 (KPNA2) to facilitate P2 nuclear translocation, and competitively inhibited KPNA2-mediated IRF3 nuclear translocation and downstream IFN production. Deletion of the NLS in P2 or orthologues significantly enhanced IRF3 nuclear translocation and innate immune responses, thereby reducing viral replication. Moreover, deletion of NLS from N2 in VACV attenuated viral replication and virulence in mice. These data demonstrate that the NLS-mediated translocation of P2 is critical for P2-induced inhibition of innate immunity. Our findings contribute to an in-depth understanding of the mechanisms of OPXV P2 orthologue in innate immune evasion.


Assuntos
Imunidade Inata , Fator Regulador 3 de Interferon , Monkeypox virus , Sinais de Localização Nuclear , Proteínas Virais , Animais , Fator Regulador 3 de Interferon/metabolismo , Fator Regulador 3 de Interferon/genética , Camundongos , Humanos , Proteínas Virais/genética , Proteínas Virais/metabolismo , Proteínas Virais/imunologia , Sinais de Localização Nuclear/genética , Monkeypox virus/genética , Monkeypox virus/imunologia , Células HEK293 , alfa Carioferinas/genética , alfa Carioferinas/metabolismo , Evasão da Resposta Imune , Núcleo Celular/metabolismo , Interferons/genética , Interferons/imunologia , Interferons/metabolismo , Infecções por Poxviridae/imunologia , Infecções por Poxviridae/virologia , Infecções por Poxviridae/veterinária , Camundongos Endogâmicos C57BL
14.
Spectrochim Acta A Mol Biomol Spectrosc ; 321: 124709, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38945008

RESUMO

The convenience and high efficiency of recently developed I-III-VI group AgInS2 (AIS) fluorescence sensors have garnered considerable attention. In this study, glutathione (GSH) was employed as a stabilizer to synthesize Mn doped AgInS2 quantum dots (Mn-AIS QDs) via a one-step hydrothermal method at a lower temperature. The resultant samples displayed favorable photoluminescent characteristics and excellent water dispersibility. The photoluminescence of Mn-AIS QDs is quenched by Fe (III) via a photo-induced electron transfer mechanism (PET), and this quenching can be reversed by ascorbic acid (AA) as a result of the redox reaction between the Mn-AIS-Fe (III) complex and AA. Utilizing the on-off-on fluorescence principle, a fluorescence switch sensor based on Mn-AIS QDs was developed for the detection of Fe (III) and AA. The linear range for the detection of Fe (III) using the Mn-AIS QDs sensor was established to be 0.03-120 µM, with a detection limit (LOD) of 0.16 nM. For the detection of AA within the Mn-AIS-Fe (III) system, the linear range spanned from 0.05 to 180 µM, with a LOD of 0.031 µM. Both Mn-AIS and Mn-AIS-Fe (III) demonstrated robust anti-interference properties, facilitating the accurate detection of Fe (III) in tap water and AA in vitamin C tablets. This approach is notable for its simplicity, cost-effectiveness, and considerable potential for application in the creation of innovative biological and environmental sensors.

15.
Front Cell Infect Microbiol ; 14: 1365221, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38711929

RESUMO

Bunyaviruses are a large group of important viral pathogens that cause significant diseases in humans and animals worldwide. Bunyaviruses are enveloped, single-stranded, negative-sense RNA viruses that infect a wide range of hosts. Upon entry into host cells, the components of viruses are recognized by host innate immune system, leading to the activation of downstream signaling cascades to induce interferons (IFNs) and other proinflammatory cytokines. IFNs bind to their receptors and upregulate the expression of hundreds of interferon-stimulated genes (ISGs). Many ISGs have antiviral activities and confer an antiviral state to host cells. For efficient replication and spread, viruses have evolved different strategies to antagonize IFN-mediated restriction. Here, we discuss recent advances in our understanding of the interactions between bunyaviruses and host innate immune response.


Assuntos
Infecções por Bunyaviridae , Imunidade Inata , Orthobunyavirus , Infecções por Bunyaviridae/imunologia , Infecções por Bunyaviridae/virologia , Humanos , Animais , Orthobunyavirus/imunologia , Interações Hospedeiro-Patógeno/imunologia , Interferons/imunologia , Interferons/metabolismo , Transdução de Sinais , Citocinas/metabolismo , Citocinas/imunologia , Doenças Transmitidas por Vetores/imunologia , Doenças Transmitidas por Vetores/virologia , Doenças Transmitidas por Vetores/prevenção & controle , Replicação Viral
16.
Invest Ophthalmol Vis Sci ; 65(4): 42, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38683565

RESUMO

Purpose: Despite strong evidence demonstrating that normal lens development requires regulation governed by microRNAs (miRNAs), the functional role of specific miRNAs in mammalian lens development remains largely unexplored. Methods: A comprehensive analysis of miRNA transcripts in the newborn mouse lens, exploring both differential expression between lens epithelial cells and lens fiber cells and overall miRNA abundance, was conducted by miRNA sequencing. Mouse lenses lacking each of three abundantly expressed lens miRNAs (miR-184, miR-26, and miR-1) were analyzed to explore the role of these miRNAs in lens development. Results: Mice lacking all three copies of miR-26 (miR-26TKO) developed postnatal cataracts as early as 4 to 6 weeks of age. RNA sequencing analysis of neonatal lenses from miR-26TKO mice exhibited abnormal reduced expression of a cohort of genes found to be lens enriched and linked to cataract (e.g., Foxe3, Hsf4, Mip, Tdrd7, and numerous crystallin genes) and abnormal elevated expression of genes related to neural development (Lhx3, Neurod4, Shisa7, Elavl3), inflammation (Ccr1, Tnfrsf12a, Csf2ra), the complement pathway, and epithelial to mesenchymal transition (Tnfrsf1a, Ccl7, Stat3, Cntfr). Conclusions: miR-1, miR-184, and miR-26 are each dispensable for normal embryonic lens development. However, loss of miR-26 causes lens transcriptome changes and drives cataract formation.


Assuntos
Catarata , Cristalino , MicroRNAs , Transcriptoma , Animais , MicroRNAs/genética , Cristalino/metabolismo , Cristalino/patologia , Catarata/genética , Catarata/metabolismo , Camundongos , Camundongos Knockout , Animais Recém-Nascidos , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
17.
Materials (Basel) ; 17(3)2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38591456

RESUMO

In this work, 10 nm scandium-doped aluminum nitride (AlScN) capacitors are demonstrated for the construction of the selector-free memory array application. The 10 nm Al0.7Sc0.3N film deposited on an 8-inch silicon wafer with sputtering technology exhibits a large remnant polarization exceeding 100 µC/cm2 and a tight distribution of the coercive field, which is characterized by the positive-up-negative-down (PUND) method. As a result, the devices with lateral dimension of only 1.5 µm show a large memory window of over 250% and a low power consumption of ~40 pJ while maintaining a low disturbance rate of <2%. Additionally, the devices demonstrate stable multistate memory characteristics with a dedicated operation scheme. The back-end-of-line (BEOL)-compatible fabrication process, along with all these device performances, shows the potential of AlScN-based capacitors for the implementation of the high-density selector-free memory array.

18.
Neurol Res ; 46(6): 525-537, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38563325

RESUMO

BACKGROUND: Vascular dementia (VD) is the second most common type of dementia worldwide. Previous studies have proven that transcranial direct current stimulation (tDCS) has potential applications in relieving cognitive impairment in VD animal models. The purpose of this study was to probe the mechanism by which tDCS combined with swimming exercise improves the learning and memory abilities of VD model rats. METHOD: The VD rat model was induced using the permanent bilateral common carotid artery occlusion (2-VO) method; tDCS was applied to the rats and then they took part in swimming exercises. Rat memory, platform crossing time, and platform crossing frequency were analyzed via a water maze experiment. Nerve damage in the cortex and hippocampal CA1 area of the rats was observed using Nissl staining. Western blotting, immunohistochemistry, immunofluorescence staining and reverse transcription quantitative polymerase chain reaction (RT - qPCR) were used to determine the expression of related proteins and genes. The levels of oxidative stress were detected by kits. RESULTS: We demonstrated that VD model rats treated with tDCS combined with swimming exercise exhibited significant improvement in memory, and VD model rats exhibited significantly reduced neuronal loss in the hippocampus, and reduced microglial activation and M1 polarization. tDCS combined with swimming exercise protects VD model rats from oxidative stress through the miR-223-3p/protein arginine methyltransferase 8 (PRMT8) axis and inhibits the activation of the TLR4/NF-κB signaling pathway. CONCLUSION: Our results suggest that tDCS combined with swimming exercise improved the learning and memory ability of VD model rats by regulating the expression of PRMT8 through miR-223-3p to affect microglial activation and M1 polarization.


Assuntos
Demência Vascular , Memória , MicroRNAs , Microglia , Natação , Estimulação Transcraniana por Corrente Contínua , Animais , MicroRNAs/metabolismo , MicroRNAs/genética , Masculino , Microglia/metabolismo , Demência Vascular/terapia , Ratos , Estimulação Transcraniana por Corrente Contínua/métodos , Memória/fisiologia , Ratos Sprague-Dawley , Condicionamento Físico Animal/fisiologia , Condicionamento Físico Animal/métodos , Modelos Animais de Doenças , Aprendizagem em Labirinto/fisiologia
19.
Adv Mater ; 36(26): e2312704, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38615260

RESUMO

Sputtered indium tin oxide (ITO) fulfills the requirements of top transparent electrodes (TTEs) in semitransparent perovskite solar cells (PSCs) and stacked tandem solar cells (TSCs), as well as of the recombination layers in monolithic TSCs. However, the high-energy ITO particles will cause damage to the devices. Herein, the interface reactive sputtering strategy is proposed to construct cost-effective TTEs with high transmittance and excellent carrier transporting ability. Polyethylenimine (PEI) is chosen as the interface reactant that can react with sputtered ITO nanoparticles, so that, coordination compounds can be formed during the deposition process, facilitating the carrier transport at the interface of C60/PEI/ITO. Besides, the impact force of energetic ITO particles is greatly alleviated, and the intactness of the underlying C60 layer and perovskite layer is guaranteed. Thus, the prepared semitransparent subcells achieve a significantly enhanced power conversion efficiency (PCE) of 19.17%, surpassing those based on C60/ITO (11.64%). Moreover, the PEI-based devices demonstrate excellent storage stability, which maintains 98% of their original PCEs after 2000 h. On the strength of the interface reactive sputtering ITO electrode, a stacked all-perovskite TSC with a PCE of 26.89% and a monolithic perovskite-organic TSC with a PCE of 24.33% are successfully fabricated.

20.
RSC Adv ; 14(18): 12947-12953, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38650682

RESUMO

A novel noncovalent surface modification of commercial single-walled carbon nanotubes (SWCNTs) was successfully carried out by using ball grinding technology between SWCNTs and mixed dispersants (polyvinylpyrrolidone (PVP) and alkanolamine), affording a highly homogeneous and stable PA-SWCNTs dispersion in water. The homogeneous dispersibility and long storage stability were systematically investigated by transmittance spectroscopy, absorption spectroscopy, zeta potential analyzer, sedimentation photo and transmittance electron microscopy. Under the optimized conditions, the PA-SWCNTs dispersion modified with 0.7 wt% PVP and 0.25 wt% alkanolamine under the condition of total 6 h ball grinding time using paint shaker can be easily well-dispersed in water and has good storage stability, and no sedimentation is observed more than one month. From an industrial perspective, this method is green and easy to operate in industry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...