Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
1.
J Vector Borne Dis ; 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-39373246

RESUMO

Japanese encephalitis (JE) is a mosquito-borne infectious disease caused by the Japanese encephalitis virus (JEV), posing a substantial threat to human health and property safety. Until now, there has been a lack of specific therapeutic options for treating JEV infections. In this review article, we provide a comprehensive discussion of JEV's characteristics, diagnostic methodologies, vaccine development efforts, and potential anti-JEV pharmaceuticals to provide insights and references that could be used to inform and enhance strategies for the prevention and control of Japanese encephalitis.

2.
Nature ; 2024 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-39401515

RESUMO

Obtaining micron-thick perovskite films of high quality is key to realizing efficient and stable positive (p)-intrinsic (i)-negative (n) perovskite solar cells1,2, but it remains a critical challenge. Here, we report an effective method for producing high-quality, micron-thick formamidinium-based perovskite films by forming coherent grain boundaries, where high-Miller-index-oriented grains grow on the low-Miller-index-oriented grains in a stabilized atmosphere. The resulting micron-thick perovskite films, with enhanced grain boundaries and grains, showed stable material properties and outstanding optoelectronic performances. The small-area solar cells achieved efficiencies of 26.1%. The 1-square-centimeter devices and 5 cm × 5 cm minimodules delivered efficiencies of 24.3% and 21.4%, respectively. The devices processed in a stabilized atmosphere presented a high reproducibility across all four seasons. The encapsulated devices exhibited superior long-term stability under both light and thermal stressors in ambient air.

3.
Nat Commun ; 15(1): 7782, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39237571

RESUMO

Floquet engineering is a promising tool to manipulate quantum systems coherently. A well-known example is the optical Stark effect, which has been used for optical trapping of atoms and breaking time-reversal symmetry in solids. However, as a coherent nonlinear optical effect, Floquet engineering typically requires high field intensities obtained in ultrafast pulses, severely limiting its use. Here, we demonstrate using cavity engineering of the vacuum modes to achieve orders-of-magnitude enhancement of the effective Floquet field, enabling Floquet effects at an extremely low fluence of 450 photons/µm2. At higher fluences, the cavity-enhanced Floquet effects lead to 50 meV spin and valley splitting of WSe2 excitons, corresponding to an enormous time-reversal breaking, non-Maxwellian magnetic field of over 200 T. Utilizing such an optically controlled effective magnetic field, we demonstrate an ultrafast, picojoule chirality XOR gate. These results suggest that cavity-enhanced Floquet engineering may enable the creation of steady-state or quasi-equilibrium Floquet bands, strongly non-perturbative modifications of materials beyond the reach of other means, and application of Floquet engineering to a wide range of materials and applications.

4.
Angew Chem Int Ed Engl ; : e202412590, 2024 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-39180505

RESUMO

As the initial synthesized colloidal quantum dots (CQDs) are generally capped with insulating ligands, ligand exchange strategies are essential in the fabrication of CQD films for solar cells, which can regulate the surface chemical states of CQDs to make them more suitable for thin-film optoelectronic devices. However, uncontrollable surface adsorption of water molecules during the ligand exchange process introduces new defect sites, thereby impairing the resultant device performance, which attracts more efforts devoted to it but remains a puzzle. Here, we develop a solvent-engineering-assisted ligand exchange strategy to revamp the surface adsorption, improve the exchange efficiency, and modulate the surface chemistry for the environmentally friendly lead-free silver bismuth disulfide (AgBiS2) CQDs. The optimized AgBiS2 CQD solar cells deliver an outstanding champion power conversion efficiency (PCE) of up to 8.95 % and improved long-term stability. Our strategy is less environment-dependent and can produce solar cells with negligible performance variance for several batches across several months. Our work demonstrates the critical role of solvents for ligand exchange in the surface chemistry of CQDs and the realization of high-performance photovoltaic devices in a highly reproducible manner.

5.
Food Sci Biotechnol ; 33(12): 2845-2856, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39184984

RESUMO

Antibiotic associated diarrhea (AAD) was a common side effect of antibiotics, and fermented ginseng exhibited potential in treating AAD. In this study, the effects of fermented red, white, and black ginseng on AAD were investigated, with a focus on intestinal flora and inflammation. Clindamycin was used to induce AAD in mice, which caused severe diarrhea and weight loss. However, treatment with fermented ginseng effectively alleviated diarrhea, and reduced inflammation in colonic serosal tissue, thereby mitigating antibiotic-induced intestinal tissue damage. 16S rRNA sequencing revealed that clindamycin disrupted the Bacteroides/Firmicutes ratio (P < 0.001), which was reversed by fermented ginseng treatment. Furthermore, inflammatory cytokines like IL-1ß, IL-6, and TNF-α significantly decreased (P < 0.05) after clindamycin treatment but returned to normal levels following fermented ginseng treatment. In conclusion, fermented red, white, or black ginseng (at a dosage of 0.5 g/kg) exhibited efficacy against AAD in mice, reinstating gut flora balance and easing inflammation.

6.
Nano Lett ; 24(34): 10418-10425, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39158928

RESUMO

Surface ligand chemistry is vital to control the synthesis, diminish surface defects, and improve the electronic coupling of quantum dots (QDs) toward emerging applications in optoelectronic devices. Here, we successfully develop highly homogeneous and dispersed AgBiS2 QDs, focus on the control of interdot spacing, and substitute the long-chain ligands with ammonium iodide in solution. This results in improved electronic coupling of AgBiS2 QDs with excellent surface passivation, which greatly facilitates carrier transport within the QD films. Based on the stable AgBiS2 QD dispersion with the optimal ligand state, a homogeneous and densely packed QD film is prepared by a facile one-step coating process, delivering a champion power conversion efficiency of approximately 8% in the QD solar cells with outstanding shelf life stability. The proposed surface engineering strategy holds the potential to become a universal preprocessing step in the realm of high-performance QD optoelectronic devices.

7.
Chem Rev ; 124(9): 5695-5763, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38629390

RESUMO

The properties of colloidal quantum-confined semiconductor nanocrystals (NCs), including zero-dimensional (0D) quantum dots, 1D nanorods, 2D nanoplatelets, and their heterostructures, can be tuned through their size, dimensionality, and material composition. In their photovoltaic and photocatalytic applications, a key step is to generate spatially separated and long-lived electrons and holes by interfacial charge transfer. These charge transfer properties have been extensively studied recently, which is the subject of this Review. The Review starts with a summary of the electronic structure and optical properties of 0D-2D nanocrystals, followed by the advances in wave function engineering, a novel way to control the spatial distribution of electrons and holes, through their size, dimension, and composition. It discusses the dependence of NC charge transfer on various parameters and the development of the Auger-assisted charge transfer model. Recent advances in understanding multiple exciton generation, decay, and dissociation are also discussed, with an emphasis on multiple carrier transfer. Finally, the applications of nanocrystal-based systems for photocatalysis are reviewed, focusing on the photodriven charge separation and recombination processes that dictate the function and performance of these materials. The Review ends with a summary and outlook of key remaining challenges and promising future directions in the field.

8.
ACS Nano ; 18(11): 8157-8167, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38456777

RESUMO

Perovskite light-emitting diodes (PeLEDs) are the next promising display technologies because of their high color purity and wide color gamut, while two classical emitter forms, i.e., polycrystalline domains and quantum dots, are encountering bottlenecks. Weak carrier confinement of large polycrystalline domains leads to inadequate radiative recombination, and surface ligands on quantum dots are the main annihilation sites for injected carriers. Here, pinpointing these issues, we screened out an amphoteric agent, namely, 2-(2-aminobenzoyl)benzoic acid (2-BA), to precisely control the in situ growth of FAPbI3 (FA: formamidine) nanodomains with enhanced space confinement, preferred crystal orientation, and passivated trap states on the transport-layer substrate. The amphoteric 2-BA performs bidentate chelating functions on the formation of ultrasmall perovskite colloids (<1 nm) in the precursor, resulting in a smoother FAPbI3 emitting layer. Based on monodispersed and homogeneous nanodomain films, a near-infrared PeLED device with a champion efficiency of >22% plus enhanced T80 operational stability was achieved. The proposed perovskite nanodomain film tends to be a mainstream emitter toward the performance breakthrough of PeLED devices covering visible wavelengths beyond infrared.

9.
Sci Rep ; 14(1): 6203, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38485713

RESUMO

Freeze-thaw cycles and compactness are two critical factors that significantly affect the engineering properties and safety of building foundations, especially in seasonally frozen regions. This paper investigated the effects of freeze-thaw cycles on the shear strength of naturally strongly chlorine saline soil with the compactness of 85%, 90% and 95%. Three soil samples with different compactness were made. Size and mass changes were measured and recorded during freeze-thaw cycles. Shear strength under different vertical pressures was determined by direct shear tests, and the cohesion and friction angle were measured and discussed. Microstructure characteristic changes of saline soil samples were observed using scanning electron microscopy under different freeze-thaw cycles. Furthermore, numerical software was used to calculate the subsoil-bearing capacity and settlement of the electric tower foundation in the Qarhan Salt Lake region under different freeze-thaw cycles. Results show that the low-density soil shows thaw settlement deformation, but the high-density soil shows frost-heaving deformation with the increase in freeze-thaw cycles. The shear strength of the soil samples first increases and then decreases with the increase in freeze-thaw cycles. After 30 freeze-thaw cycles, the friction angle of soil samples is 28.3%, 29.2% and 29.6% lower than the soil samples without freeze-thaw cycle, the cohesion of soil samples is 71.4%, 60.1% and 54.4% lower than the samples without freeze-thaw cycle, and the cohesion and friction angle of soil samples with different compactness are close to each other. Microstructural changes indicate that the freeze-thaw cycle leads to the breakage of coarse particles and the aggregation of fine particles. Correspondingly, the structure type of soil changes from a granular stacked structure to a cemented-aggregated system. Besides, the quality loss of soil samples is at about 2% during the freeze-thaw cycles. Results suggest that there may be an optimal compactness between 90 and 95%, on the premise of meeting the design requirements and economic benefits. This study can provide theoretical guidance for foundation engineering constructions in seasonally frozen regions.

10.
Eur J Pharmacol ; 967: 176391, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38325794

RESUMO

The microcirculation hemodynamics change and inflammatory response are the two main pathophysiological mechanisms of renal ischemia-reperfusion injury (IRI) induced acute kidney injury (AKI). The treatment of microcirculation hemodynamics and inflammatory response can effectively alleviate renal injury and correct renal function. Picroside II (P II) has a wide range of pharmacological effects. Still, there are few studies on protecting IRI-AKI, and whether P II can improve renal microcirculation perfusion is still being determined. This study aims to explore the protective effect of P II on IRI-AKI and evaluate its ability to enhance renal microcirculation perfusion. In this study, a bilateral renal IRI-AKI model in mice was established, and the changes in renal microcirculation and inflammatory response were quantitatively evaluated before and after P II intervention by contrast-enhanced ultrasound (CEUS). At the same time, serum and tissue markers were measured to assess the changes in renal function. The results showed that after P II intervention, the levels of serum creatinine (Scr), blood urea nitrogen (BUN), serum cystatin C (Cys-C), kidney injury molecule-1 (KIM-1), neutrophil gelatinase-associated lipocalin (NGAL), tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), malondialdehyde (MDA), and superoxide dismutase (SOD), as well as the time-to-peak (TTP), peak intensity (PI) and area under the curve (AUC), and the normalized intensity difference (NID) were all alleviated. In conclusion, P II can improve renal microcirculation perfusion changes caused by IRI-AKI, reduce inflammatory reactions during AKI, and enhance renal antioxidant stress capacity. P II may be a new and promising drug for treating IRI-AKI.


Assuntos
Injúria Renal Aguda , Cinamatos , Glucosídeos Iridoides , Traumatismo por Reperfusão , Camundongos , Animais , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/patologia , Rim/patologia , Traumatismo por Reperfusão/complicações , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/patologia , Reperfusão , Isquemia/patologia
11.
Adv Mater ; 36(18): e2310421, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38270289

RESUMO

Vascular microenvironment is found to be closely related to immunotherapy efficacy. Identification and ultrasound imaging of the unique vascular characteristics, able to predict immune microenvironment, is important for immunotherapy decision-making. Herein, it is proved that high CD93 expression in the tumor vessels is closely related to the poor immune response of prostate cancer. For ultrasound molecular imaging of CD93, CD93-targeted microbubbles (MBs) consist a gaseous core and the MMRN2 (Multimerin-2) containing cell membrane (CM) /lipid hybrid membrane is then synthesized. In vitro and in vivo assays demonstrate that these MBs can recognize CD93 efficiently and then accumulate within tumor regions highly expressing CD93. Contrast-enhanced ultrasound (CEUS) imaging with CD93-targeted MBs demonstrates that targeted ultrasound intensity is negatively related to inflammatory tumor immune microenvironment (TIME) and cytotoxic T cell infiltration. Together, endothelial expression of CD93 in tumor is a unique predictor of immunosuppressive microenvironment and CD93-targeted MBs have a great potential to evaluate tumor immune status.


Assuntos
Meios de Contraste , Microbolhas , Neoplasias da Próstata , Microambiente Tumoral , Ultrassonografia , Animais , Ultrassonografia/métodos , Camundongos , Humanos , Linhagem Celular Tumoral , Masculino , Meios de Contraste/química , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/patologia
13.
Nature ; 625(7995): 516-522, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38233617

RESUMO

Perovskite solar cells (PSCs) comprise a solid perovskite absorber sandwiched between several layers of different charge-selective materials, ensuring unidirectional current flow and high voltage output of the devices1,2. A 'buffer material' between the electron-selective layer and the metal electrode in p-type/intrinsic/n-type (p-i-n) PSCs (also known as inverted PSCs) enables electrons to flow from the electron-selective layer to the electrode3-5. Furthermore, it acts as a barrier inhibiting the inter-diffusion of harmful species into or degradation products out of the perovskite absorber6-8. Thus far, evaporable organic molecules9,10 and atomic-layer-deposited metal oxides11,12 have been successful, but each has specific imperfections. Here we report a chemically stable and multifunctional buffer material, ytterbium oxide (YbOx), for p-i-n PSCs by scalable thermal evaporation deposition. We used this YbOx buffer in the p-i-n PSCs with a narrow-bandgap perovskite absorber, yielding a certified power conversion efficiency of more than 25%. We also demonstrate the broad applicability of YbOx in enabling highly efficient PSCs from various types of perovskite absorber layer, delivering state-of-the-art efficiencies of 20.1% for the wide-bandgap perovskite absorber and 22.1% for the mid-bandgap perovskite absorber, respectively. Moreover, when subjected to ISOS-L-3 accelerated ageing, encapsulated devices with YbOx exhibit markedly enhanced device stability.

14.
Adv Mater ; 36(2): e2305238, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37665975

RESUMO

The limited conductivity of existing transparent conducting oxide (TCO) greatly restricts the further performance improvement of perovskite solar cells (PSCs), especially for large-area devices. Herein, buried-metal-grid tin-doped indium oxide (BMG ITO) electrodes are developed to minimize the power loss caused by the undesirable high sheet resistance of TCOs. By burying 140-nm-thick metal grids into ITO using a photolithography technique, the sheet resistance of ITO is reduced from 15.0 to 2.7 Ω sq-1 . The metal step of BMG over ITO has a huge impact on the charge carrier transport in PSCs. The PSCs using BMG ITO with a low metal step deliver power conversion efficiencies (PCEs) significantly better than that of their counterparts with higher metal steps. Moreover, compared with the pristine ITO-based PSCs, the BMG ITO-based PSCs show a smaller PCE decrease when scaling up the active area of devices. The parallel-connected large-area PSCs with an active area of 102.8 mm2 reach a PCE of 22.5%. The BMG ITO electrodes are also compatible with the fabrication of inverted-structure PSCs and organic solar cells. The work demonstrates the great efficacy of improving the conductivity of TCO by BMG and opens up a promising avenue for constructing highly efficient large-area PSCs.

15.
Angew Chem Int Ed Engl ; 63(3): e202316154, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38058217

RESUMO

Additive engineering has emerged as one of the most promising strategies to improve the performance of perovskite solar cells (PSCs). Among additives, perovskite nanocrystals (NCs) have a similar chemical composition and matched lattice structure with the perovskite matrix, which can effectively enhance the efficiency and stability of PSCs. However, relevant studies remain limited, and most of them focus on bromide-involved perovskite NCs, which may undergo dissolution and ion exchange within the FAPbI3 host, potentially resulting in an enlarged band gap. In this work, we employ butylamine-capped CsPbI3 NCs (BPNCs) as additives in PSCs, which can be well maintained and serve as seeds for regulating the crystallization and growth of perovskite films. The resultant perovskite film exhibits larger domain sizes and fewer grain boundaries without compromising the band gap. Moreover, BPNCs can alleviate lattice strain and reduce defect densities within the active layer. The PSCs incorporating BPNCs show a champion power conversion efficiency (PCE) of up to 25.41 %, well over both Control of 22.09 % and oleic acid/oleylamine capped CsPbI3 NC (PNC)-based devices of 23.11 %. This work illustrates the key role of nanosized seed surfaces in achieving high-performance photovoltaic devices.

16.
Adv Sci (Weinh) ; 11(5): e2305439, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38050661

RESUMO

Photo-assisted uranium reduction from uranium mine wastewater is expected to overcome the competition between impurity ions and U(VI) in the traditional process. Here, B-TiO2 @Co2 P-X S-scheme heterojunction with metal-oxygen-hydrogen (M-O-H) is developed insitu modification for photo-assisted U(VI) (hexavalent uranium) reduction. Relying on the DFT calculation and Hard-Soft-Acid-Base (HSAB) theory, the introduction of metal-oxygen-hydrogen (M-O-H, hard base) metallic bonds in the B-TiO2 @Co2 P-X is found to enhance the hydrophilicity and the capture capability for uranyl ion (hard acid). Accordingly, B-TiO2 @Co2 P-500 hybrid nanosheets exhibit excellent U(VI) reduction ability (>98%) in the presence of competing ions. By self-consistent energy band calculations and in-situ KPFM spectral analysis, the formation of the internal electric field between B-TiO2 and Co2 P at the heterojunction is proven, offering a strong driving force and atomic transportation highway for accelerating the S-scheme charge carriers directed migration and promoting the photocatalytic reduction of uranium. This work provides a valuable route to explore the functionally modified photocatalyst with high-efficiency photoelectron separation for U(VI) reduction.

17.
Inorg Chem ; 62(51): 21518-21527, 2023 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-38087775

RESUMO

The electro-driven extraction of uranium from fluorine-containing uranium wastewater is anticipated to address the challenge of separating fluoro-uranium complexes in conventional technologies. Herein, we developed hydroxy-rich cobalt-based oxides (CoOx) for electro-assisted uranium extraction from fluorine-containing wastewater. Relying on theoretical calculations and other spectral measurements, the hydroxy-rich CoOx nanosheets can enhance the affinity for uranium due to the existence of a substantial quantity of hydroxyl groups. Accordingly, the CoOx nanosheets exhibit outstanding U(VI) removal efficiency in the presence of fluorine ions. Through the utilization of X-ray absorption fine structure (XAFS), we confirm that hydroxy-rich CoOx nanosheets capture free uranyl ions to form a sturdy 2Oax-1U-3Oeq configuration, which can be achieved through electro-driven fluorine-uranium separation. Notably, for the first time, the whole reaction process of uranium species on the CoOx surface from the initial uranium single atom growth to uranium oxide nanosheets is monitored by aberration-corrected transmission electron microscopes (AC-TEM). This work provides a paradigm for the advancement of novel functional materials as electrocatalysts for uranium extraction, as well as a new approach for studying the evolution mechanism of uranium species.

18.
Sensors (Basel) ; 23(22)2023 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-38005653

RESUMO

The energy harvesters used in self-powered wireless sensing technology, which has the potential to completely solve the power supply problem of the sensing nodes from the source, usually require mechanical movement or operate in harsh environments, resulting in a significant reduction in device lifespan and reliability. Therefore, the influencing factors and failure mechanisms of the operating status of self-powered wireless sensors were analyzed, and an innovative evaluation index system was proposed, which includes 4 primary indexes and 13 secondary indexes, including energy harvesters, energy management circuits, wireless communication units, and sensors. Next, the weights obtained from the subjective analytic hierarchy process (AHP) and objective CRITIC weight method were fused to obtain the weights of each index. A self-powered sensor evaluation scheme (FE-SPS) based on fuzzy comprehensive evaluation was implemented by constructing a fuzzy evaluation model. The advantage of this scheme is that it can determine the current health status of the system based on its output characteristics. Finally, taking vibration energy as an example, the operational status of the self-powered wireless sensors after 200 h of operation was comprehensively evaluated. The experimental results show that the test self-powered wireless sensor had the highest score of "normal", which is 0.4847, so the evaluation result was "normal". In this article, a reliability evaluation strategy for self-powered wireless sensor was constructed to ensure the reliable operation of self-powered wireless sensors.

19.
Nat Commun ; 14(1): 7273, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37949848

RESUMO

Vertical heterostructures of transition metal dichalcogenides (TMDs) host interlayer excitons with electrons and holes residing in different layers. With respect to their intralayer counterparts, interlayer excitons feature longer lifetimes and diffusion lengths, paving the way for room temperature excitonic optoelectronic devices. The interlayer exciton formation process and its underlying physical mechanisms are largely unexplored. Here we use ultrafast transient absorption spectroscopy with a broadband white-light probe to simultaneously resolve interlayer charge transfer and interlayer exciton formation dynamics in a MoSe2/WSe2 heterostructure. We observe an interlayer exciton formation timescale nearly an order of magnitude (~1 ps) longer than the interlayer charge transfer time (~100 fs). Microscopic calculations attribute this relative delay to an interplay of a phonon-assisted interlayer exciton cascade and thermalization, and excitonic wave-function overlap. Our results may explain the efficient photocurrent generation observed in optoelectronic devices based on TMD heterostructures, as the interlayer excitons are able to dissociate during thermalization.

20.
Cancer Med ; 12(24): 21694-21708, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37987209

RESUMO

The present study investigated ultrasound (US) phenotypes reflecting prostate cancer (PCa)-related genetic mutations. Herein, integration of radiotranscriptomic data, US and contrast-enhanced ultrasound (CEUS) radiomic images, and RNA sequencing was performed with the aim of significantly improving the accuracy of PCa prognosis. We performed radiotranscriptomic analysis of clinical, imaging, and two genomic (mRNA and microRNA expression) datasets from 48 and 22 men with PCa and benign prostatic hyperplasia (BPH), respectively. Twenty-three US texture features and four microvascular perfusion features were associated with various patterns of 52 differentially expressed genes related to PCa (p < 0.05); 17 overexpressed genes were associated with two key texture features. Twelve overexpressed genes were identified using microvascular perfusion features. Furthermore, mRNA and miRNA biomarkers could be used to distinguish between PCa and BPH. Compared with RNA sequencing, B-mode and CEUS features reflected genomic alterations associated with hormone receptor status, angiogenesis, and prognosis in patients with PCa. These findings indicate the potential of US to assess biomarker levels in patients with PCa.


Assuntos
MicroRNAs , Hiperplasia Prostática , Neoplasias da Próstata , Masculino , Humanos , Hiperplasia Prostática/diagnóstico por imagem , Hiperplasia Prostática/genética , MicroRNAs/genética , RNA Mensageiro/genética , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/genética , Biomarcadores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...