Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Lancet Reg Health West Pac ; 48: 101126, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39040037

RESUMO

Background: Acute coronary syndrome (ACS) often co-occurs with depression, which adversely affects prognosis and increases medical costs, but effective treatment models are lacking, particularly in low-resource settings. This study aims to determine the effectiveness of an ACS and depression integrative care (IC) model compared to usual care (UC) in improving depression symptoms and other health outcomes among patients discharged for ACS in Chinese rural hospitals. Methods: A multicentre, randomised controlled trial was conducted in sixteen rural county hospitals in China, from October 2014 to March 2017, to recruit consecutively all ACS patients aged 21 years and older after the disease stablised and before discharge. Patients were randomly assigned in a 1:1 ratio to receive either the IC or UC, stratified by hospital and depression severity. Patients allocated to IC received an ACS secondary prevention program and depression care including case screening, group counselling, and individual problem-solving therapy. Patients allocated to UC received usual care. The primary outcome was change in Patient Health Questionnaire-9 (PHQ-9) from baseline to 6 and 12 months. Main secondary outcomes included major adverse events (MAEs) composed of all-cause death, non-fatal myocardial infarction and stroke, and all-cause re-hospitalisation. Participants were followed up till March 2018. All data were collected in person by trained assessors blinded to treatment group and MAEs were adjudicated centrally. This trial is registered with ClinicalTrials.gov, NCT02195193. Findings: Among 4041 eligible patients (IC: 2051; UC: 1990), the mean age was 61 ± 10 years and 63% were men. The mean PHQ-9 score lowered at both 6 and 12 months in both groups but was not lower in IC compared to UC at 6 months (mean difference (MD): -0.04, 95% confidence interval (CI): -0.20, 0.11) or 12 months (MD: -0.06, 95% CI: -0.21, 0.09). There were no treatment group differences for MAEs or other secondary outcomes except for secondary prevention medications at 12 months (45.2% in IC vs 40.8% in UC; relative risk: 1.21, 95% CI: 1.05-1.40). Pre-specified subgroup analyses showed that IC, compared to UC, may be more effective in lowering PHQ-9 scores in women, older patients, and patients with low social support, but less effective in moderately and severely depressed patients (all p for interaction <0.05). Interpretation: The study found that the cardiology nurse-led ACS- and depression-integrated care, compared to usual care, did not improve depression symptoms in all patients discharged with ACS. Greater benefits in certain subgroups warrants further studies. Funding: R01MH100332 National Institute of Mental Health.

2.
J Environ Manage ; 364: 121433, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38878574

RESUMO

Lake eutrophication caused by nitrogen and phosphorus has led to frequent harmful algal blooms (HABs), especially under the unknown challenges of climate change, which have seriously damaged human life and property. In this study, a coupled SWAT-Bayesian Network (SWAT-BN) model framework was constructed to elucidate the mechanisms between non-point source nitrogen pollution in agricultural lake watersheds and algal activities. A typical agricultural shallow lake basin, the Taihu Basin (TB), China, was chosen in this study, aiming to investigate the effectiveness of best management practices (BMPs) in controlling HABs risks in TB. By modeling total nitrogen concentration of Taihu Lake from 2007 to 2022 with four BMPs (filter strips, grassed waterway, fertilizer application reduction and no-till agriculture), the results indicated that fertilizer application reduction proved to be the most effective BMP with 0.130 of Harmful Algal Blooms Probability Reduction (HABs-PR) when reducing 40% of fertilizer, followed by filter strips with 0.01 of HABs-PR when 4815ha of filter strips were conducted, while grassed waterway and no-till agriculture showed no significant effect on preventing HABs. Furthermore, the combined practice between 40% fertilizer application reduction and 4815ha filter strips construction showed synergistic effects with HABs-PR increasing to 0.171. Precipitation and temperature data were distorted to model scenarios of extreme events. As a result, the combined approach outperformed any single BMP in terms of robustness under extreme climates. This research provides a watershed-level perspective on HABs risks mitigation and highlights the strategies to address HABs under the influence of climate change.


Assuntos
Agricultura , Teorema de Bayes , Proliferação Nociva de Algas , Lagos , Agricultura/métodos , Fertilizantes/análise , Nitrogênio/análise , China , Mudança Climática , Fósforo/análise , Eutrofização , Modelos Teóricos
3.
Heliyon ; 10(10): e30710, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38765023

RESUMO

In this paper, in order to establish the energy separation mechanism of the vortex tube, the hydrodynamic behavior of the compressible fluid in the asymmetric cavity space is investigated, and a numerical model of the trajectory deflection behavior is deduced and established; in order to form the optimal design method of the structural parameters of the vortex tube, the force situation of the fluid microelements entering different regions of the vortex chamber of the vortex tube is analyzed, and the trajectory deflection equations are corrected by combining with the expansion behavior of the fluid and the characterizing equations of vortex strength, transportability, and vortex initiation characteristics are given. The characterization equations of vortex strength, transportability and vortex initiation characteristics are given, and the numerical simulation of their influence parameters is carried out; in order to realize the prediction of the vortex tube performance of a given structure, the multifactor Pearson thermodynamic map is used to correlate and analyze the experimental data of vortex tubes reported publicly in the past years, and the polynomial regression equations are designed and established for the prediction of the vortex tube's energy separation effect and the confidence level and the degree of coincidence of the prediction results are examined. The confidence level and degree of agreement of the prediction results were examined. It is found that: the trajectory deflection motion of the compressible fluid in the asymmetric cavity space is the result of the combined effect of structural air pressure bias and the expansion behavior of the incident fluid; in order to improve the vortex strength in the vortex tube, the vortex initiation chamber space should be as small as possible; the increase of the diameters of the hot-end pipe and the cold-end pipe is conducive to the enhancement of vortex strength, but at the same time, it weakens the vortex transport in the heat pipe; the vortex initiation chamber size has a negative correlation with the hot-end temperature rise, and the inlet fluid pressure has a The negative correlation between the size of the vortex chamber and the temperature rise at the hot end, the positive correlation between the increase of inlet fluid pressure and the resulting temperature rise, and the strong correlation between the inlet fluid pressure and the friction coefficient on the effect of energy separation; the predictive equations for the effect of energy separation obtained by the fitting are in good agreement with the real situation.

4.
ACS Omega ; 9(3): 4013-4018, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38284042

RESUMO

Molecular dynamics (MD) simulations were performed on the energetic molecular perovskite (C6H14N2)[NH4(ClO4)3], with excellent detonation properties, thermal stability, and high specific impulse, which is a potential replacement for AP as the next generation propellants. The cohesive energy density, binding energy, pair correlation function, maximum bond length (Lmax) of the N-H trigger bond, and mechanical properties of the (C6H14N2)[NH4(ClO4)3] were reported. The calculated cohesive energy density and binding energy decrease with increasing temperature, indicating a gradual decrease in the thermal stability with temperature. In addition, H···O hydrogen bonding interactions have been found based on the results of pairwise correlation functions. The maximum length (Lmax) of the N-H trigger bond was calculated and used as a criterion to theoretically judge the impact sensitivity. The maximum bond length of the N-H trigger bond grows gradually with temperature; however, it does very slightly yet gradually above 373 K. This suggests that an increase in temperature leads to a higher impact sensitivity and lower thermal stability. However, this effect becomes less pronounced when the temperature surpasses 373 K. Moreover, the calculated mechanical data indicate that as the temperature rises, the material's stiffness, hardness, yield strength, and fracture strength all decrease. The material's ductility shows an upward trend with increasing temperature, reaching its peak at 373 K and subsequently declining as the temperature continues to rise.

5.
Environ Res Lett ; 18(12)2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39036363

RESUMO

Previous studies have reported that atmospheric elemental carbon (EC) may pose potentially elevated toxicity when compared to total ambient fine particulate matter (PM2.5). However, most research on EC has been conducted in the US and Europe, whereas China experiences significantly higher EC pollution levels. Investigating the health impact of EC exposure in China presents considerable challenges due to the absence of a monitoring network to document long-term EC levels. Despite extensive studies on total PM2.5 in China over the past decade and a significant decrease in its concentration, changes in EC levels and the associated mortality burden remain largely unknown. In our study, we employed a combination of satellite remote sensing, available ground observations, machine learning techniques, and atmospheric big data to predict ground EC concentrations across China for the period 2005-2018, achieving a spatial resolution of 10 km. Our findings reveal that the national average annual mean EC concentration has remained relatively stable since 2005, even as total PM2.5 levels have substantially decreased. Furthermore, we calculated the all-cause non-accidental deaths attributed to long-term EC exposure in China using baseline mortality data and pooled mortality risk from a cohort study. This analysis unveiled significant regional disparities in the mortality burden resulting from long-term EC exposure in China. These variations can be attributed to varying levels of effectiveness in EC regulations across different regions. Specifically, our study highlights that these regulations have been effective in mitigating EC-related health risks in first-tier cities. However, in regions characterized by a high concentration of coal-power plants and industrial facilities, additional efforts are necessary to control emissions. This observation underscores the importance of tailoring environmental policies and interventions to address the specific challenges posed by varying emission sources and regional contexts.

6.
Res Sq ; 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38168284

RESUMO

Ambient PM2.5 pollution is recognized as a leading environmental risk factor, causing significant mortality and morbidity in China. However, the specific contributions of individual PM2.5 constituents remain unclear, primarily due to the lack of a comprehensive ground monitoring network for constituents. This issue is particularly critical for carbonaceous species such as organic carbon (OC) and elemental carbon (EC), which are known for their significant health impacts, and understanding the OC/EC ratio is crucial for identifying pollution sources. To address this, we developed a Super Learner model integrating Multi-angle Imaging SpectroRadiometer (MISR) retrievals to predict daily OC concentrations across China from 2003 to 2019 at a 10-km spatial resolution. Our model demonstrates robust predictive accuracy, as evidenced by a random cross-validation R2 of 0.84 and an RMSE of 4.9 µg/m3, at the daily level. Although MISR is a polar-orbiting instrument, its fractional aerosol data make a significant contribution to the OC exposure model. We then use the model to explore the spatiotemporal distributions of OC and further calculate the EC/OC ratio in China. We compared regional pollution discrepancies and source contributions of carbonaceous pollution over three selected regions: Beijing-Tianjin-Hebei, Fenwei Plain, and Yunnan Province. Our model observes that OC levels are elevated in Northern China due to industrial operations and central heating during the heating season, while in Yunnan, OC pollution is mainly contributed by local forest fires during fire seasons. Additionally, we found that OC pollution in China is likely influenced by climate phenomena such as the El Niño-Southern Oscillation. Considering that climate change is increasing the severity of OC concentrations with more frequent fire events, and its influence on OC formation and dispersion, we suggest emphasizing the role of climate change in future OC pollution control policies. We believe this study will contribute to future epidemiological studies on OC, aiding in refining public health guidelines and enhancing air quality management in China.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...