Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Int Immunopharmacol ; 136: 112361, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38820961

RESUMO

OBJECTIVE: Natural killer (NK) cells are an integral part of the staunch defense line against malignant tumors within the tumor microenvironment. Existing research indicates that miRNAs can influence the development of NK cells by negatively modulating gene expression. In this study, we aim to explore how the miR-17-5p in Hepatocellular Carcinoma (HCC) exosomes regulates the killing function of NK cells towards HCC cells through the transcription factor RNX1. METHODS: The exosomes were isolated from HCC tissues and cell lines, followed by a second generation sequencing to compare differential miRNAs. Verification was performed using qRT-PCR and Western blot methods. The mutual interactions between miR-17-5p and RUNX1, as well as between RUNX1 and NKG2D, were authenticated using techniques like luciferase reporter gene assays, Western blotting, and Chromatin Immunoprecipitation (ChIP). The cytotoxic activity of NK cells towards HCC cells in vitro was measured using methods such as RTCA and ELISPOT. The zebrafish xenotransplantation was utilized to assess the in vivo killing capacity of NK cells against HCC cells. RESULTS: The level of miR-17-5p in exosomes from HCC tissue increased compared to adjacent tissues. We verified that RUNX1 was a target of miR-17-5p and that RUNX1 enhances the transcription of NKG2D. MiR-17-5p was found to downregulate the expression of RUNX1 and NKG2D, subsequently reducing the in vitro and in vivo cytotoxic capabilities of NK cells against HCC cells. CONCLUSIONS: The miR-17-5p found within HCC exosomes can target RUNX1, subsequently attenuating the cytotoxic activity of NK cells.


Assuntos
Carcinoma Hepatocelular , Subunidade alfa 2 de Fator de Ligação ao Core , Exossomos , Regulação Neoplásica da Expressão Gênica , Células Matadoras Naturais , Neoplasias Hepáticas , MicroRNAs , Subfamília K de Receptores Semelhantes a Lectina de Células NK , MicroRNAs/genética , MicroRNAs/metabolismo , Humanos , Exossomos/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Animais , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Subfamília K de Receptores Semelhantes a Lectina de Células NK/genética , Linhagem Celular Tumoral , Peixe-Zebra , Regulação para Baixo , Citotoxicidade Imunológica
2.
J Cell Mol Med ; 26(12): 3387-3395, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35524577

RESUMO

Solasonine, a steroidal glycoalkaloid isolated from the herbal plant Solanum nigrum Linn., has shown active against multiple human cancers; however, there is little knowledge on the activity of solasonine against gastric cancer until now. This study aimed to examine the effect of solasonine on the biological behaviours of human gastric cancer SGC-7901 cells. The results showed that solasonine suppressed SGC-7901 cell proliferation in a dose-dependent manner. Solasonine treatment mainly induced the cell cycle arrest at G2 phase in SGC-7901 cells. Treatment with solasonine resulted in significant down-regulation of Bcl-2 and Caspase-3 protein expression and reduced Bax and Bcl-xL protein expression in SGC-7901 cells. Solasonine shows a comparable inhibitory effect on the proliferation of human gastric cancer SGC-7901 cells with cisplatin, and solasonine induces of SGC-7901 cell apoptosis through triggering the endoplasmic reticulum stress pathway and the mitochondrial pathway. Our data indicate that solasonine may be a promising agent for the treatment of gastric cancer.


Assuntos
Neoplasias Gástricas , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Mitocôndrias/metabolismo , Alcaloides de Solanáceas , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...