Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 5629, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965223

RESUMO

Mutations that decrease or increase the activity of the tyrosine phosphatase, SHP2 (encoded by PTPN11), promotes developmental disorders and several malignancies by varying phosphatase activity. We uncovered that SHP2 is a distinct class of an epigenetic enzyme; upon phosphorylation by the kinase ACK1/TNK2, pSHP2 was escorted by androgen receptor (AR) to chromatin, erasing hitherto unidentified pY54-H3 (phosphorylation of histones H3 at Tyr54) epigenetic marks to trigger a transcriptional program of AR. Noonan Syndrome with Multiple Lentigines (NSML) patients, SHP2 knock-in mice, and ACK1 knockout mice presented dramatic increase in pY54-H3, leading to loss of AR transcriptome. In contrast, prostate tumors with high pSHP2 and pACK1 activity exhibited progressive downregulation of pY54-H3 levels and higher AR expression that correlated with disease severity. Overall, pSHP2/pY54-H3 signaling acts as a sentinel of AR homeostasis, explaining not only growth retardation, genital abnormalities and infertility among NSML patients, but also significant AR upregulation in prostate cancer patients.


Assuntos
Epigênese Genética , Histonas , Homeostase , Camundongos Knockout , Neoplasias da Próstata , Proteína Tirosina Fosfatase não Receptora Tipo 11 , Receptores Androgênicos , Animais , Receptores Androgênicos/metabolismo , Receptores Androgênicos/genética , Histonas/metabolismo , Masculino , Humanos , Camundongos , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Fosforilação , Síndrome de Noonan/genética , Síndrome de Noonan/metabolismo , Transdução de Sinais , Cromatina/metabolismo
2.
Immunity ; 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38754432

RESUMO

The pancreatic islet microenvironment is highly oxidative, rendering ß cells vulnerable to autoinflammatory insults. Here, we examined the role of islet resident macrophages in the autoimmune attack that initiates type 1 diabetes. Islet macrophages highly expressed CXCL16, a chemokine and scavenger receptor for oxidized low-density lipoproteins (OxLDLs), regardless of autoimmune predisposition. Deletion of Cxcl16 in nonobese diabetic (NOD) mice suppressed the development of autoimmune diabetes. Mechanistically, Cxcl16 deficiency impaired clearance of OxLDL by islet macrophages, leading to OxLDL accumulation in pancreatic islets and a substantial reduction in intra-islet transitory (Texint) CD8+ T cells displaying proliferative and effector signatures. Texint cells were vulnerable to oxidative stress and diminished by ferroptosis; PD-1 blockade rescued this population and reversed diabetes resistance in NOD.Cxcl16-/- mice. Thus, OxLDL scavenging in pancreatic islets inadvertently promotes differentiation of pathogenic CD8+ T cells, presenting a paradigm wherein tissue homeostasis processes can facilitate autoimmune pathogenesis in predisposed individuals.

3.
Cancers (Basel) ; 16(1)2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38201640

RESUMO

Our objective was to identify variations in gene expression that could help elucidate the pathways for the development of prostate cancer (PCa) in men with Benign Prostatic Hyperplasia (BPH). We included 98 men with BPH, a positive prostate MRI (Prostate Imaging Reporting and Data System; PIRADS ≥ 4), and a negative biopsy from November 2014 to January 2018. RNA sequencing (RNA-Seq) was performed on tissue cores from the MRI lesion and a geographically distant region (two regions per patient). All patients were followed for at least three years to identify who went on to develop PCa. We compared the gene expressions of those who did not develop PCa ("BPH-only") vs. those who did ("BPH/PCa"). Then, we identified the subset of men with BPH who had the highest American Urological Association (AUA) symptom scores ("symptomatic BPH") and compared their gene expression to the BPH/PCa group. At a median follow-up of 47.5 months, 15 men had developed PCa while 83 did not. We compared gene expressions of 14 men with symptomatic BPH (AUAss ≥ 18) vs. 15 with BPH/PCa. We found two clusters of genes, suggesting the two groups had distinctive molecular features. Differential analysis revealed genes that were upregulated in BPH-only and downregulated in BPH/PCa, and vice versa. Symptomatic BPH men had upregulation of T-cell activation markers (TCR, CD3, ZAP70, IL-2 and IFN-γ and chemokine receptors, CXCL9/10) expression. In contrast, men with BPH/PCa had upregulation of NKX3-1 and HOXB13 transcription factors associated with luminal epithelial progenitors but depleted of immune cells, suggesting a cell-autonomous role in immune evasion. Symptomatic BPH with immune-enriched landscapes may support anti-tumor immunity. RNA sequencing of benign prostate biopsy tissue showing upregulation of NKX3-1 and HOXB13 with the absence of T-cells might help in identifying men at higher risk of future PCa development, which may be useful in determining ongoing PCa screening.

4.
J Clin Invest ; 134(3)2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38051594

RESUMO

Challenging skeletal repairs are frequently seen in patients experiencing systemic inflammation. To tackle the complexity and heterogeneity of the skeletal repair process, we performed single-cell RNA sequencing and revealed that progenitor cells were one of the major lineages responsive to elevated inflammation and this response adversely affected progenitor differentiation by upregulation of Rbpjk in fracture nonunion. We then validated the interplay between inflammation (via constitutive activation of Ikk2, Ikk2ca) and Rbpjk specifically in progenitors by using genetic animal models. Focusing on epigenetic regulation, we identified Rbpjk as a direct target of Dnmt3b. Mechanistically, inflammation decreased Dnmt3b expression in progenitor cells, consequently leading to Rbpjk upregulation via hypomethylation within its promoter region. We also showed that Dnmt3b loss-of-function mice phenotypically recapitulated the fracture repair defects observed in Ikk2ca-transgenic mice, whereas Dnmt3b-transgenic mice alleviated fracture repair defects induced by Ikk2ca. Moreover, Rbpjk ablation restored fracture repair in both Ikk2ca mice and Dnmt3b loss-of-function mice. Altogether, this work elucidates a common mechanism involving a NF-κB/Dnmt3b/Rbpjk axis within the context of inflamed bone regeneration. Building on this mechanistic insight, we applied local treatment with epigenetically modified progenitor cells in a previously established mouse model of inflammation-mediated fracture nonunion and showed a functional restoration of bone regeneration under inflammatory conditions through an increase in progenitor differentiation potential.


Assuntos
Metilação de DNA , Fraturas Ósseas , Animais , Humanos , Camundongos , DNA (Citosina-5-)-Metiltransferases/genética , Epigênese Genética , Fraturas Ósseas/genética , Inflamação/genética , Camundongos Transgênicos
5.
PLoS One ; 18(11): e0294724, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38032891

RESUMO

MOTIVATION: Our study aimed to identify biologically relevant transcription factors (TFs) that control the expression of a set of co-expressed or co-regulated genes. RESULTS: We developed a fully automated pipeline, Motif Over Representation Analysis (MORA), to detect enrichment of known TF binding motifs in any query sequences. MORA performed better than or comparable to five other TF-prediction tools as evaluated using hundreds of differentially expressed gene sets and ChIP-seq datasets derived from known TFs. Additionally, we developed EnsembleTFpredictor to harness the power of multiple TF-prediction tools to provide a list of functional TFs ranked by prediction confidence. When applied to the test datasets, EnsembleTFpredictor not only identified the target TF but also revealed many TFs known to cooperate with the target TF in the corresponding biological systems. MORA and EnsembleTFpredictor have been used in two publications, demonstrating their power in guiding experimental design and in revealing novel biological insights.


Assuntos
Biologia Computacional , Fatores de Transcrição , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica , Ligação Proteica , Sítios de Ligação
7.
Commun Biol ; 6(1): 688, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37400526

RESUMO

High-grade serous ovarian cancer (HGSC) is the most lethal histotype of ovarian cancer and the majority of cases present with metastasis and late-stage disease. Over the last few decades, the overall survival for patients has not significantly improved, and there are limited targeted treatment options. We aimed to better characterize the distinctions between primary and metastatic tumors based on short- or long-term survival. We characterized 39 matched primary and metastatic tumors by whole exome and RNA sequencing. Of these, 23 were short-term (ST) survivors (overall survival (OS) < 3.5 years) and 16 were long-term (LT) survivors (OS > 5 years). We compared somatic mutations, copy number alterations, mutational burden, differential gene expression, immune cell infiltration, and gene fusion predictions between the primary and metastatic tumors and between ST and LT survivor cohorts. There were few differences in RNA expression between paired primary and metastatic tumors, but significant differences between the transcriptomes of LT and ST survivors in both their primary and metastatic tumors. These findings will improve the understanding of the genetic variation in HGSC that exist between patients with different prognoses and better inform treatments by identifying new targets for drug development.


Assuntos
Neoplasias Ovarianas , Humanos , Feminino , Neoplasias Ovarianas/patologia , Prognóstico , Variações do Número de Cópias de DNA
8.
Oncogene ; 42(29): 2263-2277, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37330596

RESUMO

Hormone receptor-positive, HER2-negative advanced breast cancers exhibit high sensitivity to CDK4/6 inhibitors such as palbociclib. However, most patients inevitably develop resistance, thus identification of new actionable therapeutic targets to overcome the recurrent disease is an urgent need. Immunohistochemical studies of tissue microarray revealed increased activation of non-receptor tyrosine kinase, ACK1 (also known as TNK2) in most of the breast cancer subtypes, independent of their hormone receptor status. Chromatin immunoprecipitation studies demonstrated that the nuclear target of activated ACK1, pY88-H4 epigenetic marks, were deposited at cell cycle genes, CCNB1, CCNB2 and CDC20, which in turn initiated their efficient transcription. Pharmacological inhibition of ACK1 using its inhibitor, (R)-9b dampened CCNB1, CCNB2 and CDC20 expression, caused G2/M arrest, culminating in regression of palbociclib-resistant breast tumor growth. Further, (R)-9b suppressed expression of CXCR4 receptor, which resulted in significant impairment of metastasis of breast cancer cells to lung. Overall, our pre-clinical data identifies activated ACK1 as an oncogene that epigenetically controls the cell cycle genes governing the G2/M transition in breast cancer cells. ACK1 inhibitor, (R)-9b could be a novel therapeutic option for the breast cancer patients that have developed resistance to CDK4/6 inhibitors.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Proteínas Tirosina Quinases/genética , Genes cdc , Apoptose , Linhagem Celular Tumoral , Pontos de Checagem da Fase G2 do Ciclo Celular , Epigênese Genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Quinase 4 Dependente de Ciclina/genética , Quinase 4 Dependente de Ciclina/metabolismo
9.
Nat Commun ; 14(1): 3357, 2023 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-37296155

RESUMO

The testicular androgen biosynthesis is well understood, however, how cancer cells gauge dwindling androgen to dexterously initiate its de novo synthesis remained elusive. We uncover dual-phosphorylated form of sterol regulatory element-binding protein 1 (SREBF1), pY673/951-SREBF1 that acts as an androgen sensor, and dissociates from androgen receptor (AR) in androgen deficient environment, followed by nuclear translocation. SREBF1 recruits KAT2A/GCN5 to deposit epigenetic marks, histone H2A Lys130-acetylation (H2A-K130ac) in SREBF1, reigniting de novo lipogenesis & steroidogenesis. Androgen prevents SREBF1 nuclear translocation, promoting T cell exhaustion. Nuclear SREBF1 and H2A-K130ac levels are significantly increased and directly correlated with late-stage prostate cancer, reversal of which sensitizes castration-resistant prostate cancer (CRPC) to androgen synthesis inhibitor, Abiraterone. Further, we identify a distinct CRPC lipid signature resembling lipid profile of prostate cancer in African American (AA) men. Overall, pY-SREBF1/H2A-K130ac signaling explains cancer sex bias and reveal synchronous inhibition of KAT2A and Tyr-kinases as an effective therapeutic strategy.


Assuntos
Androgênios , Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Androgênios/metabolismo , Neoplasias de Próstata Resistentes à Castração/metabolismo , Histonas/metabolismo , Acetilação , Linhagem Celular Tumoral , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Lipídeos
10.
Am J Physiol Heart Circ Physiol ; 325(2): H203-H231, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37204871

RESUMO

Heart failure (HF) is a leading cause of morbidity and mortality particularly in older adults and patients with multiple metabolic comorbidities. Heart failure with preserved ejection fraction (HFpEF) is a clinical syndrome with multisystem organ dysfunction in which patients develop symptoms of HF as a result of high left ventricular (LV) diastolic pressure in the context of normal or near normal LV ejection fraction (LVEF; ≥50%). Challenges to create and reproduce a robust rodent phenotype that recapitulates the multiple comorbidities that exist in this syndrome explain the presence of various animal models that fail to satisfy all the criteria of HFpEF. Using a continuous infusion of angiotensin II and phenylephrine (ANG II/PE), we demonstrate a strong HFpEF phenotype satisfying major clinically relevant manifestations and criteria of this pathology, including exercise intolerance, pulmonary edema, concentric myocardial hypertrophy, diastolic dysfunction, histological signs of microvascular impairment, and fibrosis. Conventional echocardiographic analysis of diastolic dysfunction identified early stages of HFpEF development and speckle tracking echocardiography analysis including the left atrium (LA) identified strain abnormalities indicative of contraction-relaxation cycle impairment. Diastolic dysfunction was validated by retrograde cardiac catheterization and analysis of LV end-diastolic pressure (LVEDP). Among mice that developed HFpEF, two major subgroups were identified with predominantly perivascular fibrosis and interstitial myocardial fibrosis. In addition to major phenotypic criteria of HFpEF that were evident at early stages of this model (3 and 10 days), accompanying RNAseq data demonstrate activation of pathways associated with myocardial metabolic changes, inflammation, activation of extracellular matrix (ECM) deposition, microvascular rarefaction, and pressure- and volume-related myocardial stress.NEW & NOTEWORTHY Heart failure with preserved ejection fraction (HFpEF) is an emerging epidemic affecting up to half of patients with heart failure. Here we used a chronic angiotensin II/phenylephrine (ANG II/PE) infusion model and instituted an updated algorithm for HFpEF assessment. Given the simplicity in generating this model, it may become a useful tool for investigating pathogenic mechanisms, identification of diagnostic markers, and for drug discovery aimed at both prevention and treatment of HFpEF.


Assuntos
Cardiomiopatias , Insuficiência Cardíaca , Animais , Camundongos , Insuficiência Cardíaca/tratamento farmacológico , Volume Sistólico/fisiologia , Angiotensina II , Função Ventricular Esquerda/fisiologia , Modelos Animais de Doenças , Fibrose , Fenilefrina
11.
Biomolecules ; 13(1)2023 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-36671508

RESUMO

Osteoarthritis (OA), the most prevalent joint disease and the leading cause of disability, remains an incurable disease largely because the etiology and pathogenesis underlying this degenerative process are poorly understood. Low-grade inflammation within joints is a well-established factor that disturbs joint homeostasis and leads to an imbalance between anabolic and catabolic processes in articular cartilage; however, the complexity of the network between inflammatory factors that often involves positive and negative feedback loops makes current anti-cytokine therapy ineffective. MicroRNAs (miRNAs) have emerged as key regulators to control inflammation, and aberrant miRNAs expression has recently been linked to OA pathophysiology. In the present study, we characterized transcriptomic profiles of miRNAs in primary murine articular chondrocytes in response to a proinflammatory cytokine, IL-1ß, and identified miR-146a-5p as the most responsive miRNA to IL-1ß. miR-146a-5p was also found to be upregulated in human OA cartilage. We further demonstrated that knockdown of miR-146a-5p antagonized IL-1ß-mediated inflammatory responses and IL-1ß-induced catabolism in vitro, and silencing of miR-146a in chondrocytes ameliorated articular cartilage destruction and reduced OA-evoked pain in an injury-induced murine OA model. Moreover, parallel RNA sequencing revealed that differentially expressed genes in response to IL-1ß were enriched in pathways related to inflammatory processes, cartilage matrix homeostasis, and cell metabolism. Bioinformatic analyses of putative miR-146a-5p gene targets and following prediction of protein-protein interactions suggest a functional role of miR-146a-5p in mediating inflammatory processes and regulation of cartilage homeostasis. Our genetic and transcriptomic data define a crucial role of miR-146a-5p in OA pathogenesis and implicate modulation of miR-146a-5p in articular chondrocytes as a potential therapeutic strategy to alleviate OA.


Assuntos
Cartilagem Articular , MicroRNAs , Osteoartrite , Humanos , Camundongos , Animais , Osteoartrite/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Condrócitos , Inflamação/metabolismo , Cartilagem Articular/patologia , Apoptose
12.
J Allergy Clin Immunol ; 151(4): 1040-1049.e5, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36587848

RESUMO

BACKGROUND: The pathogenesis of hereditary angioedema (HAE) type I and type II is linked to defective C1 esterase inhibitor (C1-INH) encoded by the SERPING1 gene. There are substantial variabilities in the clinical presentations of patients with HAE that are not directly correlated to the serum levels of C1-INH. The impact of SERPING1 variants on C1-INH expression, structure, and function is incompletely understood. OBJECTIVE: To investigate the influence of SERPING1 variants on the C1-INH expression, structure, and function of 20 patients with HAE from 14 families with no prior genetic diagnosis. METHODS: Patients underwent whole-exome sequencing (WES). If no variants were identified, whole-genome sequencing (WGS) was performed. Except for the frameshift and large deletions, each C1-INH variant was recombinantly produced and, if synthesized and secreted, was subjected to structural, oligosaccharide, and functional analyses. RESULTS: We identified 11 heterozygous variants in the SERPING1 gene, of which 5 were classified as pathogenic (E85Dfs∗63, N166Qfs∗91, K201Qfs∗56, P399A, and R466H) and 6 as variants of uncertain significance (C130W, I224S, N272del, K273del, L349F, and F471C). Three large heterozygous deletions were discovered through WGS. Our data indicate that C130W, N272del, P399A, and F471C are poorly synthesized, I224S prevents proper C1-INH folding, and K273del impairs C1-INH function by adding an additional oligosaccharide. Further evaluation suggests that compound variant P399A/L349F contributes to a more severe clinical phenotype. CONCLUSIONS: Our combined approach of WES and WGS uncovered SERPING1 gene alternations in each patient. The recombinant protein production followed by systematic antigenic, structural, and functional assessment facilitates the identification of underlying pathogenic mechanisms in HAE.


Assuntos
Angioedemas Hereditários , Proteína Inibidora do Complemento C1 , Humanos , Proteína Inibidora do Complemento C1/genética , Angioedemas Hereditários/genética , Angioedemas Hereditários/diagnóstico , Mutação da Fase de Leitura , Fenótipo , Heterozigoto
13.
Nat Neurosci ; 25(11): 1420-1433, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36303071

RESUMO

Huntington's disease (HD) is an inherited neurodegenerative disorder with adult-onset clinical symptoms, but the mechanism by which aging drives the onset of neurodegeneration in patients with HD remains unclear. In this study we examined striatal medium spiny neurons (MSNs) directly reprogrammed from fibroblasts of patients with HD to model the age-dependent onset of pathology. We found that pronounced neuronal death occurred selectively in reprogrammed MSNs from symptomatic patients with HD (HD-MSNs) compared to MSNs derived from younger, pre-symptomatic patients (pre-HD-MSNs) and control MSNs from age-matched healthy individuals. We observed age-associated alterations in chromatin accessibility between HD-MSNs and pre-HD-MSNs and identified miR-29b-3p, whose age-associated upregulation promotes HD-MSN degeneration by impairing autophagic function through human-specific targeting of the STAT3 3' untranslated region. Reducing miR-29b-3p or chemically promoting autophagy increased the resilience of HD-MSNs against neurodegeneration. Our results demonstrate miRNA upregulation with aging in HD as a detrimental process driving MSN degeneration and potential approaches for enhancing autophagy and resilience of HD-MSNs.


Assuntos
Doença de Huntington , MicroRNAs , Humanos , Animais , Doença de Huntington/patologia , Corpo Estriado/fisiologia , Neurônios/fisiologia , Autofagia , MicroRNAs/genética , Progressão da Doença , Modelos Animais de Doenças
14.
Front Mol Neurosci ; 15: 967472, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36081575

RESUMO

Injured sensory neurons activate a transcriptional program necessary for robust axon regeneration and eventual target reinnervation. Understanding the transcriptional regulators that govern this axon regenerative response may guide therapeutic strategies to promote axon regeneration in the injured nervous system. Here, we used cultured dorsal root ganglia neurons to identify pro-regenerative transcription factors. Using RNA sequencing, we first characterized this neuronal culture and determined that embryonic day 13.5 DRG (eDRG) neurons cultured for 7 days are similar to e15.5 DRG neurons in vivo and that all neuronal subtypes are represented. This eDRG neuronal culture does not contain other non-neuronal cell types. Next, we performed RNA sequencing at different time points after in vitro axotomy. Analysis of differentially expressed genes revealed upregulation of known regeneration associated transcription factors, including Jun, Atf3 and Rest, paralleling the axon injury response in vivo. Analysis of transcription factor binding sites in differentially expressed genes revealed other known transcription factors promoting axon regeneration, such as Myc, Hif1α, Pparγ, Ascl1a, Srf, and Ctcf, as well as other transcription factors not yet characterized in axon regeneration. We next tested if overexpression of novel candidate transcription factors alone or in combination promotes axon regeneration in vitro. Our results demonstrate that expression of Ctcf with Yy1 or E2f2 enhances in vitro axon regeneration. Our analysis highlights that transcription factor interaction and chromatin architecture play important roles as a regulator of axon regeneration.

15.
Sci Transl Med ; 14(649): eabg4132, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35704598

RESUMO

Resistance to second-generation androgen receptor (AR) antagonists such as enzalutamide is an inevitable consequence in patients with castration-resistant prostate cancer (CRPC). There are no effective therapeutic options for this recurrent disease. The expression of truncated AR variant 7 (AR-V7) has been suggested to be one mechanism of resistance; however, its low frequency in patients with CRPC does not explain the almost universal acquisition of resistance. We noted that the ability of AR to translocate to nucleus in an enzalutamide-rich environment opens up the possibility of a posttranslational modification in AR that is refractory to enzalutamide binding. Chemical proteomics in enzalutamide-resistant CRPC cells revealed acetylation at Lys609 in the zinc finger DNA binding domain of AR (acK609-AR) that not only allowed AR translocation but also galvanized a distinct global transcription program, conferring enzalutamide insensitivity. Mechanistically, acK609-AR was recruited to the AR and ACK1/TNK2 enhancers, up-regulating their transcription. ACK1 kinase-mediated AR Y267 phosphorylation was a prerequisite for AR K609 acetylation, which spawned positive feedback loops at both the transcriptional and posttranslational level that regenerated and sustained high AR and ACK1 expression. Consistent with these findings, oral and subcutaneous treatment with ACK1 small-molecule inhibitor, (R)-9b, not only curbed AR Y267 phosphorylation and subsequent K609 acetylation but also compromised enzalutamide-resistant CRPC xenograft tumor growth in mice. Overall, these data uncover chronological modification events in AR that allows prostate cancer to evolve through progressive stages to reach the resilient recurrent CRPC stage, opening up a therapeutic vulnerability.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Receptores Androgênicos , Antagonistas de Receptores de Andrógenos/farmacologia , Antagonistas de Receptores de Andrógenos/uso terapêutico , Animais , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Humanos , Masculino , Camundongos , Nitrilas , Fosforilação , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/patologia , Proteínas Tirosina Quinases/metabolismo , Receptores Androgênicos/metabolismo
16.
Cancer Discov ; 11(12): 3126-3141, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34193440

RESUMO

Myeloproliferative neoplasms (MPN) are chronic blood diseases with significant morbidity and mortality. Although sequencing studies have elucidated the genetic mutations that drive these diseases, MPNs remain largely incurable with a significant proportion of patients progressing to rapidly fatal secondary acute myeloid leukemia (sAML). Therapeutic discovery has been hampered by the inability of genetically engineered mouse models to generate key human pathologies such as bone marrow fibrosis. To circumvent these limitations, here we present a humanized animal model of myelofibrosis (MF) patient-derived xenografts (PDX). These PDXs robustly engrafted patient cells that recapitulated the patient's genetic hierarchy and pathologies such as reticulin fibrosis and propagation of MPN-initiating stem cells. The model can select for engraftment of rare leukemic subclones to identify patients with MF at risk for sAML transformation and can be used as a platform for genetic target validation and therapeutic discovery. We present a novel but generalizable model to study human MPN biology. SIGNIFICANCE: Although the genetic events driving MPNs are well defined, therapeutic discovery has been hampered by the inability of murine models to replicate key patient pathologies. Here, we present a PDX system to model human myelofibrosis that reproduces human pathologies and is amenable to genetic and pharmacologic manipulation. This article is highlighted in the In This Issue feature, p. 2945.


Assuntos
Leucemia Mieloide Aguda , Transtornos Mieloproliferativos , Animais , Evolução Clonal/genética , Modelos Animais de Doenças , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Camundongos , Mutação , Transtornos Mieloproliferativos/complicações , Transtornos Mieloproliferativos/tratamento farmacológico , Transtornos Mieloproliferativos/genética
17.
Mol Cancer Res ; 19(7): 1156-1167, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33753551

RESUMO

Activating protein 2 alpha (AP-2α; encoded by TFAP2A) functions as a tumor suppressor and influences response to therapy in several cancer types. We aimed to characterize regulation of the transcriptome by AP-2α in colon cancer. CRISPR-Cas9 and short hairpin RNA were used to eliminate TFAP2A expression in HCT116 and a panel of colon cancer cell lines. AP-2α target genes were identified with RNA sequencing and chromatin immunoprecipitation sequencing. Effects on cell cycle were characterized in cells synchronized with aphidicolin and analyzed by FACS and Premo FUCCI. Effects on invasion and tumorigenesis were determined by invasion assay, growth of xenografts, and phosphorylated histone H3 (PHH3). Knockout of TFAP2A induced significant alterations in the transcriptome including repression of TGM2, identified as a primary gene target of AP-2α. Loss of AP-2α delayed progression through S-phase into G2-M and decreased phosphorylation of AKT, effects that were mediated through regulation of TGM2. Buparlisib (BKM120) repressed in vitro invasiveness of HCT116 and a panel of colon cancer cell lines; however, loss of AP-2α induced resistance to buparlisib. Similarly, buparlisib repressed PHH3 and growth of tumor xenografts and increased overall survival of tumor-bearing mice, whereas, loss of AP-2α induced resistance to the effect of PI3K inhibition. Loss of AP-2α in colon cancer leads to prolonged S-phase through altered activation of AKT leading to resistance to the PI3K inhibitor, Buparlisib. The findings demonstrate an important role for AP-2α in regulating progression through the cell cycle and indicates that AP-2α is a marker for response to PI3K inhibitors. IMPLICATIONS: AP-2α regulated cell cycle through the PI3K cascade and activation of AKT mediated through TGM2. AP-2α induced sensitivity to Buparlisib/BKM120, indicating that AP-2α is a biomarker predictive of response to PI3K inhibitors.


Assuntos
Aminopiridinas/farmacologia , Biomarcadores Tumorais/genética , Neoplasias do Colo/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Morfolinas/farmacologia , Fase S/genética , Fator de Transcrição AP-2/genética , Animais , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Perfilação da Expressão Gênica/métodos , Técnicas de Inativação de Genes , Células HCT116 , Humanos , Camundongos , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Interferência de RNA , RNA-Seq/métodos , Fator de Transcrição AP-2/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
18.
Mol Cancer Res ; 18(1): 46-56, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31619506

RESUMO

The AP-2γ transcription factor, encoded by the TFAP2C gene, regulates the expression of estrogen receptor-alpha (ERα) and other genes associated with hormone response in luminal breast cancer. Little is known about the role of AP-2γ in other breast cancer subtypes. A subset of HER2+ breast cancers with amplification of the TFAP2C gene locus becomes addicted to AP-2γ. Herein, we sought to define AP-2γ gene targets in HER2+ breast cancer and identify genes accounting for physiologic effects of growth and invasiveness regulated by AP-2γ. Comparing HER2+ cell lines that demonstrated differential response to growth and invasiveness with knockdown of TFAP2C, we identified a set of 68 differentially expressed target genes. CDH5 and CDKN1A were among the genes differentially regulated by AP-2γ and that contributed to growth and invasiveness. Pathway analysis implicated the MAPK13/p38δ and retinoic acid regulatory nodes, which were confirmed to display divergent responses in different HER2+ cancer lines. To confirm the clinical relevance of the genes identified, the AP-2γ gene signature was found to be highly predictive of outcome in patients with HER2+ breast cancer. We conclude that AP-2γ regulates a set of genes in HER2+ breast cancer that drive cancer growth and invasiveness. The AP-2γ gene signature predicts outcome of patients with HER2+ breast cancer and pathway analysis predicts that subsets of patients will respond to drugs that target the MAPK or retinoic acid pathways. IMPLICATIONS: A set of genes regulated by AP-2γ in HER2+ breast cancer that drive proliferation and invasion were identified and provided a gene signature that is predictive of outcome in HER2+ breast cancer.


Assuntos
Neoplasias da Mama/genética , Regulação Neoplásica da Expressão Gênica , Receptor ErbB-2/genética , Fator de Transcrição AP-2/genética , Neoplasias da Mama/enzimologia , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Feminino , Técnicas de Silenciamento de Genes , Humanos , Células MCF-7 , Receptor ErbB-2/biossíntese , Receptor ErbB-2/metabolismo , Transfecção , Resultado do Tratamento
20.
Br J Cancer ; 118(12): 1662-1664, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29872146

RESUMO

BACKGROUND: Insights into the molecular pathogenesis of breast cancer might come from molecular analysis of tissue from early stages of the disease. METHODS: We conducted a case-control study nested in a cohort of women who had biopsy-confirmed benign breast disease (BBD) diagnosed between 1971 and 2006 at Kaiser Permanente Northwest and who were followed to mid-2015 to ascertain subsequent invasive breast cancer (IBC); cases (n = 218) were women with BBD who developed subsequent IBC and controls, individually matched (1:1) to cases, were women with BBD who did not develop IBC in the same follow-up interval as that for the corresponding case. Targeted sequence capture and sequencing were performed for 83 genes of importance in breast cancer. RESULTS: There were no significant case-control differences in mutation burden overall, for non-silent mutations, for individual genes, or with respect either to the nature of the gene mutations or to mutational enrichment at the pathway level. For seven subjects with DNA from the BBD and ipsilateral IBC, virtually no mutations were shared. CONCLUSIONS: This study, the first to use a targeted multi-gene sequencing approach on early breast cancer precursor lesions to investigate the genomic basis of the disease, showed that somatic mutations detected in BBD tissue were not associated with breast cancer risk.


Assuntos
Doenças Mamárias/genética , Neoplasias da Mama/genética , Mutação , Doenças Mamárias/patologia , Neoplasias da Mama/patologia , Estudos de Casos e Controles , DNA de Neoplasias/genética , Feminino , Predisposição Genética para Doença , Humanos , Invasividade Neoplásica , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...