Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.485
Filtrar
1.
Biosens Bioelectron ; 267: 116822, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39362139

RESUMO

Catalytic DNA circuits, serving as signal amplification strategies, can enable simple and accurate detection of pathogenic bacteria in complex matrices but suffer from low reaction rates and depths. Herein, we design an enzyme-accelerated catalytic hairpin assembly (EACHA) in which duplex DNA products are converted into hairpin reactants to continue participating in the next circuit reaction with the assistance of RNase H. Profiting from the high recyclability of the reactants, EACHA exhibits an approximately 37.6-fold enhancement in the rate constant and a two-order-of-magnitude improvement in sensitivity compared to conventional catalytic hairpin assembly (CHA). By integrating an allosteric probe with EACHA, a one-pot method is developed for rapid and direct detection of S. enterica Enteritidis (S. Enteritidis). This method is capable of detecting 15 CFU mL-1 of S. Enteritidis within 20 min, which is superior to that of real-time PCR. By testing 60 milk samples, we demonstrate this method's high accuracy in discriminating contaminated samples, with an area under the curve (AUC) of 0.997. Moreover, this method can be employed to accurately diagnose early-stage infected mice, with an AUC of 1.00 for feces samples and 0.986 for serum samples. Therefore, this study offers a simple and feasible method for identifying pathogens in complex matrices.

2.
Adv Sci (Weinh) ; : e2404224, 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39364706

RESUMO

H3K27ac has been widely recognized as a representative epigenetic marker of active enhancer, while its regulatory mechanisms in pathogenesis of metabolic dysfunction-associated steatotic liver disease (MASLD) remain elusive. Here, a genome-wide comparative study on H3K27ac activities and transcriptome profiling in high fat diet (HFD)-induced MASLD model is performed. A significantly enhanced H3K27ac density with abundant alterations of regulatory transcriptome is observed in MASLD rats. Based on integrative analysis of ChIP-Seq and RNA-Seq, TDO2 is identified as a critical contributor for abnormal lipid accumulation, transcriptionally activated by YY1-promoted H3K27ac. Furthermore, TDO2 depletion effectively protects against hepatic steatosis. In terms of mechanisms, TDO2 activates NF-κB pathway to promote macrophages M1 polarization, representing a crucial event in MASLD progression. A bovine serum albumin nanoparticle is fabricated to provide sustained release of Allopurinol (NPs-Allo) for TDO2 inhibition, possessing excellent biocompatibility and desired targeting capacity. Venous injection of NPs-Allo robustly alleviates HFD-induced metabolic disorders. This study reveals the pivotal role of TDO2 and its underlying mechanisms in pathogenesis of MASLD epigenetically and genetically. Targeting H3K27ac-TDO2-NF-κB axis may provide new insights into the pathogenesis of abnormal lipid accumulation and pave the way for developing novel strategies for MASLD prevention and treatment.

3.
ACS Nano ; 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39374425

RESUMO

Malignant transformation of cancer is often accompanied by aberrant glycopatterns. Epithelial-mesenchymal transition (EMT) is a crucial biological process in cancer migration and invasion, accelerating cancer deterioration. High-precision analysis of protein-glycan spatial profiling in the EMT process is essential for elucidating glycosylation functions and cancer progression. However, the diversity of glycans in composition and conformation complicates their spatial analysis. Here, we develop a DNA glycosignal sieve (GlycoSS) visualization platform for screening glycoform expression with a protein spatial dimension. GlycoSS utilizes protein-anchored DNA nanoscanners of distinct lengths to control glycosignal readout, enabling protein-glycan distance modulations, and simultaneously orthogonally amplify glycoform output through signal amplification by an exchange reaction. Using GlycoSS, we screened EpCAM-specific hypoglycosylated glycoform signals in different breast cancer cell subtypes, especially characterizing the spatial distribution of glycans on the MCF-7 cell surface. Considering that the EpCAM-specific N-glycan dysregulation in EMT is pivotal, GlycoSS revealed dynamic glycan fluctuations during IGF-1-induced EMT, revealing that the N-glycans were positively associated with tumor malignancy and metastasis. GlycoSS is anticipated to accelerate the identification of aberrant N-glycosylation in tumor progression, advancing systemic glycobiology insights. Notably, GlycoSS is capable of analyzing diverse glycoprotein profiles, offering additional dimensions into the role of glycoprotein nanoenvironments in regulating membrane protein function.

4.
Adv Mater ; : e2409797, 2024 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-39370761

RESUMO

Electrochemical reduction of CO2 (CO2RR) to value-added liquid fuels is a highly attractive solution for carbon-neutral recycling, especially for C2+ products. However, the selectivity control to preferable products is a great challenge due to the complex multi-electron proton transfer process. In this work, a series of Cu atomic dispersed catalysts are synthesized by regulating the coordination structures to optimize the CO2RR selectivity. Cu2-SNC catalyst with a uniquely asymmetrical coordinated CuN2-CuNS site shows high ethanol selective with the FE of 62.6% at -0.8 V versus RHE and 60.2% at 0.9 V versus RHE in H-Cell and Flow-Cell test, respectively. Besides, the nest-like structure of Cu2-SNC is beneficial to the mass transfer process and the selection of catalytic products. In situ experiments and theory calculations reveal the reaction mechanisms of such high selectivity of ethanol. The S atoms weaken the bonding ability of the adjacent Cu to the carbon atom, which accelerates the selection from *CHCOH to generate *CHCHOH, resulting in the high selectivity of ethanol. This work indicates a promising strategy in the rational design of asymmetrically coordinated single, dual, or tri-atom catalysts and provides a candidate material for CO2RR to produce ethanol.

5.
Sci Rep ; 14(1): 23624, 2024 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-39384812

RESUMO

Congenital anomalies of the external ear can have a significant impact on a child's development and quality of life. While genetic factors play a crucial role in the etiology of these anomalies, environmental factors such as drug exposure during pregnancy may also contribute to their occurrence. This study aims to investigate the association between drug exposure and congenital anomalies of the external ear using data from an adverse drug reaction report database. Using OpenVigil 2.1, we queried the FAERS database to retrieve adverse event reports from the first quarter of 2004 to the first quarter of 2024. To identify relevant cases, we used Medical Dictionary for Regulatory Activities terms focusing on congenital anomalies of the external ear. Drug generic names were sourced from the DrugBank database. To assess safety signals and rank drugs by their signal strength, we conducted a disproportionality analysis, generating reporting odds ratios (ROR) and proportional reporting ratios (PRR). A total of 20,754,281 AE reports were identified in the FAERS database from Q1 2004 to Q1 2024, of which 1763 were related to congenital anomalies of the external ear. Valproic acid (122 cases) was associated with the most cases, followed by mycophenolate mofetil (105 cases) and lamotrigine (65 cases). According to the disproportionality analysis, the top five drugs with the highest ROR and PRR were primidone (ROR: 397.05, 95% CI 147.21, 1070.9; PRR: 388.71, 95% CI 145.89, 1035.7), valproic acid (ROR: 239.46, 95% CI 123.75, 463.37; PRR: 236.42, 95% CI 123.82, 451.43), tapazole (ROR: 198.35, 95% CI 63.49, 619.67; PRR: 196.25, 95% CI 62.97, 611.67), nevirapine (ROR: 138.24, 95% CI 82.9, 230.51; PRR: 137.23, 95% CI 82.44, 228.44), and sebivo (ROR: 117.1, 95% CI 48.51, 282.67; PRR: 116.37, 95% CI 48.17, 281.12). This study identified several drugs significantly associated with congenital anomalies of the external ear in the FAERS database using disproportionality analysis. The findings can help healthcare professionals better recognize and manage drug-induced congenital anomalies of the external ear, particularly when prescribing high-risk medications. Further research is needed to elucidate the mechanisms underlying these associations and develop strategies for preventing and mitigating drug-induced congenital anomalies of the external ear.


Assuntos
Anormalidades Induzidas por Medicamentos , Sistemas de Notificação de Reações Adversas a Medicamentos , Bases de Dados Factuais , Orelha Externa , United States Food and Drug Administration , Humanos , Estados Unidos/epidemiologia , Feminino , Orelha Externa/anormalidades , Orelha Externa/efeitos dos fármacos , Anormalidades Induzidas por Medicamentos/epidemiologia , Anormalidades Induzidas por Medicamentos/etiologia , Masculino , Gravidez , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/epidemiologia , Criança , Ácido Valproico/efeitos adversos , Adulto
6.
Sci Rep ; 14(1): 23084, 2024 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-39366981

RESUMO

Liposarcoma (LPS) is the second most common kind of soft tissue sarcoma, and a heterogeneous malignant tumor derived from adipose tissue. Up to now, the prognostic value of BAG1 or BAG2 in LPS has not been defined yet. Expression profiling data of LPS patients were collected from TCGA and GEO database. Survival curves were plotted to verify the outcome differences of patients based on BAG1 or BAG2 expression. Univariate and multivariate Cox regression models were used to analyze the prognostic ability of BAG1 or BAG2. Chaperone's regulators BAG1 and BAG2 were identified as prognostic biomarkers for LPS patients, which exhibited distinct expression patterns and survival outcome prediction performances. Patients with high BAG2 expression and/or low BAG1 expression had worse prognosis. Enrichment analysis showed that BAG1 was involved in negative regulation of TGF-ß signaling. Low expression of BAG1 was associated with high abundance of regulatory T cells (Tregs). The 2-gene signature model further confirmed the improved risk assessment performance of BAG1 and BAG2: high risk patients displayed poor prognosis. BAG1 and BAG2 are supposed to be potential prognostic biomarkers for LPS and have impacts on liposarcomagenesis and immune infiltration in distinctive manners, which may function as potential therapy targets (BAG1 agonists/BAG2 inhibitors) for LPS.


Assuntos
Biomarcadores Tumorais , Proteínas de Ligação a DNA , Lipossarcoma , Humanos , Prognóstico , Lipossarcoma/genética , Lipossarcoma/mortalidade , Lipossarcoma/metabolismo , Lipossarcoma/patologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Masculino , Feminino , Regulação Neoplásica da Expressão Gênica , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Perfilação da Expressão Gênica , Pessoa de Meia-Idade , Chaperonas Moleculares
8.
J Hazard Mater ; 480: 136121, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-39405677

RESUMO

Advanced reduction processes (ARPs) have become hotspot because of their fast and efficient features in pollutant treatment. In this study, a novel ARP was raised through the assistance of biological wastewater degradation solutions (PDs), to completely reduce Cr(VI). Enterobacter cloacae YN-4, which could completely degrade 1500 mg/L phenol within 72 h, was isolated and identified. While, the content of organic acids and their derivatives in PDs was extremely high (74.76 %). After the combination of PDs with Fe(III) and UV, 10 mg/L Cr(VI) was completely reduced within 66 min, whose reduction rate of Cr(VI) was stable at various concentrations (10-100 mg/L), which was applicable on electroplating wastewater. In addition, Cr(VI) could be reduced stably (71.63 %) after 10 cycles. Compared with the reported ARPs, herein, the components was complex, which was firstly proposed that simultaneous action of polycarboxylic acids, monocarboxylic acids, amino acids and alcohols could promote and ensure the stable reduction of Cr(VI). Among them, the multispecies radicals·CO2- and·O2- generated in PDs were combined with Fe(II), to co-reduce Cr(VI). This strategy produces a wide variety of radicals, which can provide an alternative pathway for remediation of various heavy metals and organic pollutants.

9.
Biochim Biophys Acta Proteins Proteom ; 1873(1): 141052, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39383925

RESUMO

OBJECTIVE: To investigate the role of N-glycosylation modification of proteins in adipocyte differentiation during the adipogenic process. METHODS: SVF cells and adipocytes were analyzed for proteomics and intact N-glycopeptide modificationomics.Differential expression of proteins, glycoforms, and sites between the two groups was screened and subjected to Gene Ontology (GO) functional enrichment analysis, KEGG pathway enrichment analysis, and protein-protein interaction (PPI) network analysis. The top 20 most significantly differentially expressed adipogenic differentiation-related proteins were identified, and the most pronouncedly altered proteins were analyzed for glycoforms, glycan chains, and sites. RESULTS: Proteomics analysis identified 39,392 peptides and 5208 proteins, while intact N-glycopeptide modification profiling identified 3293 intact glycopeptides, 426 proteins, and 161 glycan chains. Proteomics identified 2510 differentially expressed proteins, with CD36 (Cluster of Differentiation 36, CD36) significantly upregulated. In adipocytes, CD36 had 4 N-glycosylation sites: N79, N220, N320, N417, with N320 being a newly identified site. GO enrichment results indicated that CD36 is associated with fatty acid oxidation, lipid oxidation, and fatty acid uptake into cells. CONCLUSION: Multiple proteins undergo N-glycosylation modification during adipocyte differentiation, with CD36, a fatty acid translocase, being significantly expressed in adipocytes. This suggests that N-glycosylation modification of CD36 may play a crucial role in adipocyte differentiation, providing a foundation for further investigation into the function of CD36 N-glycosylation in adipocyte differentiation.

10.
Front Med (Lausanne) ; 11: 1441196, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39351004

RESUMO

Purpose: To analyze the therapeutic effect and mechanism of Urolithin A (UA) on delayed corneal epithelial wound healing. Methods: The C57BL/6 mice were continuously exposed to hyperosmotic stress (HS) for 7 days followed by the removal of central corneal epithelium to establish a delayed corneal epithelial wound healing model in vivo. In vitro, the human corneal epithelial cell line (HCE-T) was also incubated under HS. UA was administered in vivo and in vitro to study its effects on corneal epithelial cells. Senescence-associated ß-galactosidase (SA-ß-gal) staining was performed to detect the level of cell senescence. Transcriptome sequencing (RNA-seq) was conducted to elucidate the molecular mechanism underlying the effect of UA on corneal epithelial repair. Additionally, the expression of senescence-related and ferroptosis-related genes and the levels of lipid peroxides (LPO) and malondialdehyde (MDA) were measured. Results: Hyperosmotic stress (HS) significantly increased the proportion of SA-ß-gal staining positive cells in corneal epithelial cells and upregulated the expression of p16 and p21 (p < 0.0001). Topical application of UA decreased the accumulation of senescent cells in corneal epithelial wounds and promoted epithelial wound healing. The results of RNA-seq of HS-induced corneal epithelial cells showed that the ferroptosis pathway was significantly dysregulated. Further investigation revealed that UA decreased the level of oxidative stress in HCE-T cells, including the levels of LPO and MDA (p < 0.05). Inhibition of ferroptosis significantly prevented cellular senescence in HS-induced HCE-T cells. Conclusion: In this study, UA promoted HS-induced delayed epithelial wound healing by reducing the senescence of corneal epithelial cells through the inhibition of ferroptosis.

11.
Free Radic Biol Med ; 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39368519

RESUMO

Cumulative evidence has verified that persistent oxidative stress is involved in the development of various chronic diseases, including pulmonary, neurodegenerative, kidney, cardiovascular, and liver disease, as well as cancer. Nuclear factor erythroid 2-related factor 2 (Nrf2) is pivotal role in regulating cellular oxidative stress and inflammatory reactions, making it a focal point for disease prevention and treatment strategies. Natural products are essential resources for discovering leading molecules for new drug research and development. In this review, we comprehensively outlined the progression of the knowledge on the Nrf2 pathway, Nrf2 activators in clinical trials, the naturally-derived Nrf2 modulators (particularly from 2014-present), as well as their effects on the pathogenesis of chronic diseases.

12.
Nat Commun ; 15(1): 8894, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39406740

RESUMO

Type 1 diabetes (T1D) is a chronic autoimmune condition characterized by hyperglycemia resulting from the destruction of insulin-producing ß-cells that is traditionally deemed irreversible, but partial remission (PR) with temporary reversal of hyperglycemia is sometimes observed. Here we use single-cell RNA sequencing to delineate the immune cell landscape across patients in different T1D stages. Together with cohort validation and functional assays, we observe dynamic changes in TIGIT+CCR7- Tregs and CD226+CCR7-CD8+ cytotoxic T cells during the peri-remission phase. Machine learning algorithms further identify TIGIT+CCR7- Tregs and CD226+CD8+ T cells as biomarkers for ß-cell function decline in a predictive model, while cell communication analysis and in vitro assays suggest that TIGIT+CCR7- Tregs may inhibit CD226+CCR7-CD8+ T cells via TGF-ß signaling. Lastly, in both cyclophosphamide-induced and streptozotocin (STZ)-induced mouse diabetes models, CD226 inhibition postpones insulitis onset and reduces hyperglycemia severity. Our results thus identify two interrelated immune cell subsets that may serve as biomarkers for monitoring disease progression and targets for therapeutic intervention of T1D.


Assuntos
Antígenos de Diferenciação de Linfócitos T , Linfócitos T CD8-Positivos , Diabetes Mellitus Tipo 1 , Progressão da Doença , Receptores Imunológicos , Linfócitos T Reguladores , Fator de Crescimento Transformador beta , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/metabolismo , Animais , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Antígenos de Diferenciação de Linfócitos T/metabolismo , Antígenos de Diferenciação de Linfócitos T/imunologia , Camundongos , Humanos , Fator de Crescimento Transformador beta/metabolismo , Receptores Imunológicos/metabolismo , Receptores Imunológicos/genética , Masculino , Feminino , Diabetes Mellitus Experimental/imunologia , Adulto , Camundongos Endogâmicos NOD , Receptores CCR7/metabolismo , Receptores CCR7/genética , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/imunologia , Adolescente , Adulto Jovem , Comunicação Celular/imunologia
13.
J Org Chem ; 2024 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-39417992

RESUMO

The synthesis of multifunctionalized dihydropyridinones from aldehydes and ketones involves at least a three-step process, making route shortening a challenging task, especially in achieving a one-pot four-component synthesis via aldehydes and ketones precondensation. Herein, we discovered a [1 + 2 + 1 + 2] four-component domino cyclization reaction, a novel concept in 4CRs with commercially available ketones and aldehydes, which by initially combining aldehydes and ketones with Meldrum's acid and ammonium acetate (NH4OAc), respectively, they give dihydropyridones (>110 examples). This transformation features inexpensive additives and readily available starting materials, making it appropriate for rapid access to relevant pharmaceutical molecules containing dihydropyridinone-derived heterocycles. Also these compounds can be conveniently converted into trisubstituted and tetrasubstituted pyridines.

14.
Artigo em Inglês | MEDLINE | ID: mdl-39422841

RESUMO

The association between leukocyte telomere length (LTL) alteration and major adverse cardiovascular events (MACE) or mortality in patients with hypertension is still unclear. 20,034 patients with essential hypertension were enrolled from UK biobank. Multivariable COX regression models were performed to assess the association. LTL was shorter in hypertensive patients with MACE compared to those without MACE. Hypertensive patients in the lowest LTL quartile were at higher risk to develop MACE (adjusted HR 1.15 [95% CI 1.02-1.29], vs top LTL quartile, p-trend = 0.03). Similarly, shorter LTL was related with increased mortality (adjusted HR 1.18[95% CI 1.06-1.3], lowest vs top LTL quartile, p-trend < 0.001). This investigation demonstrated that shorter LTL is associated with increased risk of MACE or mortality in patients with essential hypertension, which indicates that LTL may be a potential predictor of prognosis or underlying therapeutic target for hypertension.

15.
Br J Radiol ; 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39378417

RESUMO

OBJECTIVES: To explore the application value of body mass index (BMI)-based kilovoltage peak (kVp) selection and contrast injection protocol combined with different adaptive statistical iterative reconstruction V (ASIR-V) strengths in renal computed tomography angiography (CTA) in reducing radiation and contrast medium (CM) doses. METHODS: One-hundred renal CTA patients were prospectively enrolled and were divided into individualized kVp group (group A, n = 50) and conventional 100 kVp group (group B, n = 50), both with automatic tube current modulation and CM of Iohexol at 350 mgI/mL concentration. Group A: 70 kVp, noise index (NI) of 18 and CM dose rate of 17 mgI/kg/s for 10 s for BMI <25 kg/m2 patients; 80 kVp, NI = 17, and CM dose rate of 19 mgI/kg/s for 10 s for 25 kg/m2≤BMI≤30 kg/m2 patients. Group B: 100 kVp, 50 mL of CM at the flow rate of 4.5 mL/s. The objective image quality, effective radiation dose, CM dose, injection rate, and image quality were compared between the 2 groups. RESULTS: There was no significant difference in patient characteristics between the 2 groups (P > .05). Compared to group B, group A significantly reduced effective radiation dose by 28.4%, CM dose by 27.2%, and injection rate by 22.7% (all P < .001). The 2 groups had similar SD values in erector spine (P > .05). Group A had significantly higher CT values, SNR, and CNR values of the renal arteries than group B (all P < .001). The 2 radiologists had excellent agreement (Kappa value > 0.8) in the subjective scores of renal CTA images and showed no statistically significant difference between the 2 groups (4.57 ± 0.42 vs 4.41 ± 0.49) (P > .05). CONCLUSIONS: BMI-based scan and reconstruction protocol in renal CTA significantly reduces radiation and contrast doses while maintaining diagnostic image quality. ADVANCES IN KNOWLEDGE: (i) BMI-based individualized tube voltage selection and contrast injection protocol in renal CTA reduces both radiation and contrast doses over conventional protocol. (ii) The combination of lower kVp and higher weight ASIR-V maybe used to improve image quality in terms of contrast enhancement and image noise under lower radiation and contrast dose conditions. (iii) Renal CTA of normal size (BMI ≤ 30 kg/m2) patients acquired at low radiation dosage and low iodine contrast dose through the combination of low tube voltage and ASIR-V algorithm achieves excellent diagnostic image quality with a good inter-rater agreement.

16.
Heliyon ; 10(16): e35793, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39220957

RESUMO

This study explores the mechanism by which obstructive jaundice (OJ) induces liver damage through pyroptosis. We induced OJ in rats via bile duct ligation and assessed liver damage using serum biochemical markers and histological analysis of liver tissue. Pyroptosis was investigated through immunofluorescence, ELISA, Western blot, and quantitative RT-PCR techniques. Additionally, we examined intestinal function and fecal microbiota alterations in the rats using 16S rDNA sequencing. In vitro experiments involved co-culturing Kupffer cells and hepatocytes, which were then exposed to bile and lipopolysaccharide (LPS). Our findings indicated that OJ modified the gut microbiota, increasing LPS levels, which, in conjunction with bile, initiated a cycle of inflammation, fibrosis, and cell death in the liver. Mechanistically, OJ elevated necrotic markers such as ATP, which in turn activated pyroptotic pathways. Increased levels of pyroptosis-related molecules, including NLRP3, caspase-1, gasdermin D, and IL-18, were confirmed. In our co-cultured cell model, bile exposure resulted in cell death and ATP release, leading to the activation of the NLRP3 inflammasome and its downstream effectors, caspase-1 and IL-18. The combination of bile and LPS significantly intensified pyroptotic responses. This study is the first to demonstrate that LPS and bile synergistically exacerbate liver injury by promoting necrosis and pyroptosis, unveiling a novel mechanism of OJ-associated hepatic damage and suggesting avenues for potential preventive or therapeutic interventions.

17.
Front Neurol ; 15: 1424545, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39268062

RESUMO

Background: Scholars have been committed to investigating stroke rehabilitation strategies over many years. Since its invention, transcranial magnetic stimulation (TMS) has been increasingly employed in contemporary stroke rehabilitation research. Evidence has shown the significant potential of TMS in stroke research and treatment. Objective: This article reviews the research conducted on the use of TMS in stroke from 1994 to 2023. This study applied bibliometric analysis to delineate the current research landscape and to anticipate future research hotspots. Method: The study utilized the Web of Science Core Collection to retrieve and acquire literature data. Various software tools, including VOSviewer (version 1.6.19), CiteSpace (version 6.3.R1), Scimago Graphica (version 1.0.36), and WPS (version 11572), were used for data analysis and visualization. The review included analyses of countries, institutions, authors, journals, articles, and keywords. Results: A total of 3,425 articles were collected. The top three countries in terms of publication output were the United States (953 articles), China (546 articles), and Germany (424 articles). The United States also had the highest citation counts (56,764 citations), followed by Germany (35,211 citations) and the United Kingdom (32,383 citations). The top three institutions based on the number of publications were Harvard University with 138 articles, the University of Auckland with 81 articles, and University College London with 80 articles. The most prolific authors were Abo, Masahiro with 54 articles, Fregni, Felipe with 53 articles, and Pascual-Leone, Alvaro with 50 articles. The top three journals in terms of article count were Neurorehabilitation and Neural Repair with 139 articles, Clinical Neurophysiology with 128 articles, and Frontiers in Neurology with 110 articles. The most frequently occurring keywords were stroke (1,275 occurrences), transcranial magnetic stimulation (1,119 occurrences), and rehabilitation (420 occurrences). Conclusion: The application of TMS in stroke research is rapidly gaining momentum, with the USA leading in publications. Prominent institutions, such as Harvard University and University College London, show potential for collaborative research. The key areas of focus include post-stroke cognitive impairment, aphasia, and dysphagia, which are expected to remain significant hotspots in future research. Future research should involve large-scale, randomized, and controlled trials in these fields. Additionally, identifying more effective combined therapies with rTMS should be a priority.

18.
Biochem Biophys Res Commun ; 735: 150651, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39260333

RESUMO

Multiple sclerosis (MS) is an inflammatory demyelination neurodegenerative disease of the central nervous system (CNS). Ferroptosis has been implicated in a range of brain disorders, and iron-loaded microglia are frequently found in affected brain regions. However, the molecular mechanisms linking ferroptosis with MS have not been well-defined. The present study seeks to bridge this gap and investigate the impact of matrine (MAT), a herbal medicine with immunomodulatory capacities, on the regulation of oxidative stress and ferroptosis in the CNS of mice with experimental autoimmune encephalomyelitis (EAE), an animal model of MS. CNS of EAE mice contained elevated levels of ferroptosis-related molecules, e.g., MDA, LPCAT3 and PTGS2, but decreased expression of antioxidant molecules, including GSH and SOD, GPX4 and SLC7A11. This pathogenic process was reversed by MAT treatment, together with significant reduction of disease severity and CNS inflammatory demyelination. Furthermore, the expression of PTGS2 and LOX was largely increased in microglia of EAE mice, accompanied with increased production of IL-6 and TNF-α, indicating a proinflammatory phenotype of microglia that undergo oxidative stress/ferroptosis, and their expression was significantly reduced after MAT treatment. Together, our results indicate that ferroptosis/inflammation plays an important role in the pathogenesis of CNS autoimmunity, and inhibiting ferroptosis-induced microglial activation/inflammation could be a novel mechanism underlying the therapeutic effects of MAT on CNS inflammatory demyelination in EAE.

19.
Acad Radiol ; 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39266443

RESUMO

RATIONALE AND OBJECTIVES: At present, the application of magnetic resonance imaging (MRI) in the prediction of response to neoadjuvant therapy and concurrent chemoradiotherapy for the treatment of esophageal cancer still needs to be further explored, and its early differential value remains controversial, thus we carried out this systematic review with a meta-analysis. In the application, different MRI sequences and corresponding parameters are used for the differential diagnosis of the response to neoadjuvant therapy and concurrent chemoradiotherapy. METHODS: All relevant studies evaluated the efficacy and response to MRI in neoadjuvant therapy or concurrent chemoradiotherapy for esophageal cancer on Pubmed, Embase, Cohrane Library, and Web of Science databases published before October 10, 2023 (inclusive) were systematically searched. A revised tool was used to assess the quality of diagnostic accuracy studies (QUADAS-2) to assess the risk of bias in the included original studies. A subgroup analysis of MRI sequences diffusion weighted imaging (DWI), dynamic contrast enhanced (DCE) and their corresponding different parameters, as well as the acquisition timepoints (before and after treatment) for different parameters, was performed during the meta-analysis. The bivariate mixed-effects model was used for meta-analysis. RESULTS: 21 studies were finally included, involving 1128 patients with esophageal cancer. The sensitivity, specificity, and area under receiver operating characteristic curve (ROC curve) of DWI sequence for identifying response to concurrent chemoradiotherapy were 0.82 (95% CI: 0.74-0.87), 0.81 (95% CI: 0.72-0.87) and 0.88 (95% CI: 0.56-0.98), respectively. The sensitivity, specificity, and area under ROC curve of DCE sequence for identifying response to concurrent chemoradiotherapy were 0.78 (95% CI: 0.70-0.84), 0.65 (95% CI: 0.59-0.70) and 0.73 (95% CI: 0.50-0.88), respectively. In patients with esophageal cancer, the sensitivity, specificity, and area under the ROC curve of DWI sequences for identifying response to neoadjuvant therapy were 0.80 (95% CI: 0.69 - 0.88), 0.81 (95% CI: 0.69 - 0.89), and 0.88 (95% CI: 0.34 - 0.99), respectively; the sensitivity, specificity, and area under the ROC curve of DCE sequences for identifying response to neoadjuvant therapy were 0.84 (95% CI: 0.76 - 0.90), 0.61 (95% CI: 0.53 - 0.68), and 0.70 (95% CI: 0.27 - 0.94), respectively. CONCLUSIONS: Based on the available evidence, MRI had a very good value in the early identification of response to neoadjuvant therapy and concurrent chemoradiotherapy for esophageal cancer, especially DWI. Apparent diffusion coefficient (ADC) value changes before and after treatment could be used as predictors of pathological response. Also, ADC value changes before and after treatment could be used as a tool to guide clinical decision-making.

20.
Carbohydr Polym ; 346: 122669, 2024 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-39245518

RESUMO

Monolithic electrocatalysts are desired for the electro-Fenton oxidation system. We used a hydrogel consisting of TEMPO-oxidized cellulose nanofibers (TOCN) and cationic guar gum (CGG) to disperse and support Fe-rich sludge and finally obtained a Fe-doped biochar (denoted as C-Sludge@TOCN/CGG) after the freeze-drying and carbonization. This C-Sludge@TOCN/CGG exhibited a porous structure with evenly-distributed Fe due to the inherently three-dimensional porous structure of TOCN/CGG hydrogel and the abundant carbon content. Importantly, Fe and FeO existed in C-Sludge@TOCN/CGG due to the presence of TOCN and CGG during the pyrolysis. The electrochemical properties of C-Sludge@TOCN/CGG demonstrated its good electrocatalytic activity and stability with few side reactions. It had good performance in the electrocatalytic degradation of various azo dyes, attributed to the synergistic integration of TOCN/CGG-derived carbon matrix and carbonized Fe-rich sludge particles. Specifically, two transient radicals (i.e. ·OH and ·O2-) primarily improved the electrocatalytic degradation performance of C-Sludge@TOCN/CGG. This C-Sludge@TOCN/CGG also efficiently degraded a papermill-sourced wastewater containing direct red 23, direct yellow 11, direct black 19 and toner, in which the COD value decreased from 365.12 to 179.13 mg/L within 9 h. This work provides an example of utilizing renewable materials and solid waste to design electrocatalysts to address the wastewater issue.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...