Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros













Base de dados
Intervalo de ano de publicação
1.
Acta Pharmacol Sin ; 45(2): 366-377, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37770579

RESUMO

Diabetic nephropathy (DN) is characterized by chronic low-grade renal inflammatory responses, which greatly contribute to disease progression. Abnormal glucose metabolism disrupts renal lipid metabolism, leading to lipid accumulation, nephrotoxicity, and subsequent aseptic renal interstitial inflammation. In this study, we investigated the mechanisms underlying the renal inflammation in diabetes, driven by glucose-lipid metabolic rearrangement with a focus on the role of acetyl-CoA synthetase 2 (ACSS2) in lipid accumulation and renal tubular injury. Diabetic models were established in mice by the injection of streptozotocin and in human renal tubular epithelial HK-2 cells cultured under a high glucose (HG, 30 mmol/L) condition. We showed that the expression levels of ACSS2 were significantly increased in renal tubular epithelial cells (RTECs) from the diabetic mice and human diabetic kidney biopsy samples, and ACSS2 was co-localized with the pro-inflammatory cytokine IL-1ß in RTECs. Diabetic ACSS2-deficient mice exhibited reduced renal tubular injury and inflammatory responses. Similarly, ACSS2 knockdown or inhibition of ACSS2 by ACSS2i (10 µmol/L) in HK-2 cells significantly ameliorated HG-induced inflammation, mitochondrial stress, and fatty acid synthesis. Molecular docking revealed that ACSS2 interacted with Sirtuin 1 (SIRT1). In HG-treated HK-2 cells, we demonstrated that ACSS2 suppressed SIRT1 expression and activated fatty acid synthesis by modulating SIRT1-carbohydrate responsive element binding protein (ChREBP) activity, leading to mitochondrial oxidative stress and inflammation. We conclude that ACSS2 promotes mitochondrial oxidative stress and renal tubular inflammation in DN by regulating the SIRT1-ChREBP pathway. This highlights the potential therapeutic value of pharmacological inhibition of ACSS2 for alleviating renal inflammation and dysregulation of fatty acid metabolic homeostasis in DN. Metabolic inflammation in the renal region, driven by lipid metabolism disorder, is a key factor in renal injury in diabetic nephropathy (DN). Acetyl-CoA synthetase 2 (ACSS2) is abundantly expressed in renal tubular epithelial cells (RTECs) and highly upregulated in diabetic kidneys. Deleting ACSS2 reduces renal fatty acid accumulation and markers of renal tubular injury in diabetic mice. We demonstrate that ACSS2 deletion inhibits ChREBP-mediated fatty acid lipogenesis, mitochondrial oxidative stress, and inflammatory response in RTECs, which play a major role in the progression of diabetic renal tubular injury in the kidney. These findings support the potential use of ACSS2 inhibitors in treating patients with DN.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Humanos , Camundongos , Animais , Sirtuína 1/metabolismo , Nefropatias Diabéticas/patologia , Acetilcoenzima A/metabolismo , Acetilcoenzima A/uso terapêutico , Diabetes Mellitus Experimental/tratamento farmacológico , Simulação de Acoplamento Molecular , Rim/patologia , Fatores de Transcrição/metabolismo , Metabolismo dos Lipídeos , Glucose/metabolismo , Ácidos Graxos/metabolismo , Inflamação/metabolismo , Ligases/metabolismo , Lipídeos
2.
JCI Insight ; 8(20)2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37870960

RESUMO

Albuminuria and podocyte injury are the key cellular events in the progression of diabetic nephropathy (DN). Acetyl-CoA synthetase 2 (ACSS2) is a nucleocytosolic enzyme responsible for the regulation of metabolic homeostasis in mammalian cells. This study aimed to investigate the possible roles of ACSS2 in kidney injury in DN. We constructed an ACSS2-deleted mouse model to investigate the role of ACSS2 in podocyte dysfunction and kidney injury in diabetic mouse models. In vitro, podocytes were chosen and transfected with ACSS2 siRNA and ACSS2 inhibitor and treated with high glucose. We found that ACSS2 expression was significantly elevated in the podocytes of patients with DN and diabetic mice. ACSS2 upregulation promoted phenotype transformation and inflammatory cytokine expression while inhibiting podocytes' autophagy. Conversely, ACSS2 inhibition improved autophagy and alleviated podocyte injury. Furthermore, ACSS2 epigenetically activated raptor expression by histone H3K9 acetylation, promoting activation of the mammalian target of rapamycin complex 1 (mTORC1) pathway. Pharmacological inhibition or genetic depletion of ACSS2 in the streptozotocin-induced diabetic mouse model greatly ameliorated kidney injury and podocyte dysfunction. To conclude, ACSS2 activation promoted podocyte injury in DN by raptor/mTORC1-mediated autophagy inhibition.


Assuntos
Acetato-CoA Ligase , Diabetes Mellitus Experimental , Nefropatias Diabéticas , Animais , Humanos , Camundongos , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/metabolismo , Nefropatias Diabéticas/metabolismo , Modelos Animais de Doenças , Rim/metabolismo , Ligases , Mamíferos , Alvo Mecanístico do Complexo 1 de Rapamicina , Acetato-CoA Ligase/metabolismo
3.
Acta Neuropsychiatr ; : 1-13, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37592805

RESUMO

OBJECTIVE: We previously reported that dual injections of lipopolysaccharide (LPS) in mice constitute a valuable tool for investigating the contribution of inflammation to psychotic disorders. The present study investigated how immune activation affects the kynurenine pathway and rat behaviour of relevance for psychotic disorders. METHODS: Male Sprague Dawley rats were treated with either dual injections of LPS (0.5 mg/kg + 0.5 mg/kg, i.p.) or dual injections of saline. Twenty-four hours after the second injection, behavioural tests were carried out, including locomotor activity test, fear conditioning test, spontaneous alternation Y-maze test, and novel object recognition test. In a separate batch of animals, in vivo striatal microdialysis was performed, and tryptophan, kynurenine, quinolinic acid, and kynurenic acid (KYNA) in the dialysate were measured using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). RESULTS: Dual-LPS treatment decreased spontaneous locomotion, exaggerated d-amphetamine-induced locomotor activity, and impaired recognition memory in male Sprague-Dawley rats. In vivo microdialysis showed that dual-LPS treatment elicited metabolic disturbances in the kynurenine pathway with increased extracellular levels of kynurenine and KYNA in the striatum. CONCLUSION: The present study further supports the feasibility of using the dual-LPS model to investigate inflammation-related psychotic disorders and cognitive impairments.

4.
Theranostics ; 13(12): 3988-4003, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37554279

RESUMO

Rationale: Chronic tubulointerstitial inflammation is a common pathological process in diabetic kidney disease (DKD). However, its underlying mechanism is largely unknown. This study aims at investigating the role of gut microbiota-derived outer membrane vesicles (OMVs) in tubulointerstitial inflammation in DKD. Methods: Gut microbiota in diabetes mellitus rats was manipulated by microbiota depletion and fecal microbiota transplantation to explore its role in tubulointerstitial inflammation. To check the direct effects of OMVs, fecal bacterial extracellular vesicles (fBEVs) were administrated to mice orally and HK-2 cells in vitro. For mechanistic investigations, HK-2 cells were treated with small interfering RNA against caspase-4 and fBEVs pre-neutralized by polymyxin B. Results: By performing gut microbiota manipulation, it was confirmed that gut microbiota mediated tubulointerstitial inflammation in DKD. In diabetic rats, gut microbiota-derived OMVs were increased and were clearly detected in distant renal tubulointerstitium. Diabetic fBEVs directly administered by gavage translocated into tubular epithelial cells and induced tubulointerstitial inflammation and kidney injury. In vitro, OMVs were internalized through various endocytic pathways and triggered cellular inflammatory response. Mechanistically, it was revealed that OMVs-derived lipopolysaccharide induced tubular inflammation, which was mediated by the activation of the caspase-11 pathway. Conclusions: Increased OMVs due to dysbiosis translocated through leaky gut barrier into distant tubulointerstitium and induced cellular inflammation and renal tubulointerstitial injury in DKD. These findings enrich the mechanism understanding of how gut microbiota and its releasing OMVs influence the development and progression of kidney disease.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Microbioma Gastrointestinal , Ratos , Camundongos , Animais , Nefropatias Diabéticas/patologia , Inflamação , Caspases
5.
Ann Noninvasive Electrocardiol ; 28(1): e12988, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35809079

RESUMO

Even though patients with pulmonary embolism usually present with respiratory distress and tachycardia, the patient presented with syncope only. Typical ECG changes associated with PE include right axis deviation, right bundle-branch block, S1Q3T3 pattern, arrhythmia, nonspecific ST-segment changes, QR pattern in lead V1, Brugada ECG pattern, and T-wave inversions in the precordial leads. However, his electrocardiogram showed QT-interval prolongation and simultaneous T-wave inversions in the inferior and anterior leads. This ECG pattern is crucial for diagnosing PE. The patient underwent computed tomography-pulmonary angiography, which revealed pulmonary embolism. At the same time, these ECG changes should be differentiated from those of long QT syndrome, myocardial ischemia, Takotsubo cardiomyopathy, post-pacing T-wave memory, hypertrophic cardiomyopathy, and subarachnoid hemorrhage.


Assuntos
Síndrome do QT Longo , Embolia Pulmonar , Humanos , Eletrocardiografia , Arritmias Cardíacas/complicações , Síncope/etiologia , Síncope/complicações , Embolia Pulmonar/diagnóstico
6.
Int Urol Nephrol ; 55(2): 355-366, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35931920

RESUMO

BACKGROUND: Diabetic nephropathy (DN) is the leading cause of end-stage renal disease in the developed world. Podocyte injury is a critical cellular event involved in the progression of DN. Our previous studies demonstrated that platelet-derived microparticles (PMPs) mediated endothelial injury in diabetic rats. This study aimed to investigate whether PMPs are deposited in podocytes and to assess their potential effects on podocyte injury in DN. METHODS: The deposition of PMPs in podocytes was assessed by immunofluorescent staining and electron microscopy. The changes in renal pathology and ultra-microstructure were assessed by periodic acid-Schiff staining and electron microscopy, respectively. The expression of inflammatory cytokines and extracellular matrix proteins was measured by immuno-histochemical staining and western blot. RESULTS: PMPs were widely deposited in podocytes of glomeruli in diabetic patients and animal models and closely associated with DN progression. Interestingly, aspirin treatment significantly inhibited the accumulation of PMPs in the glomeruli of diabetic rats, alleviated mesangial matrix expansion and fusion of foot processes, and decreased the protein expression of inflammatory cytokines and extracellular matrix secretion. An in vitro study further confirmed the deposition of PMPs in podocytes. Moreover, PMP stimulation induced the phenotypic transition of podocytes through decreased podocin protein expression and increased protein expression of α-SMA and fibronectin, which was correlated with increased production of inflammatory cytokines. CONCLUSION: Our findings demonstrated for the first time that the deposition of PMPs in podocytes contributed to the development of DN.


Assuntos
Micropartículas Derivadas de Células , Diabetes Mellitus Experimental , Nefropatias Diabéticas , Podócitos , Ratos , Animais , Nefropatias Diabéticas/complicações , Podócitos/metabolismo , Diabetes Mellitus Experimental/metabolismo , Micropartículas Derivadas de Células/metabolismo , Micropartículas Derivadas de Células/patologia , Citocinas/metabolismo
7.
Phytother Res ; 36(3): 1103-1114, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35023220

RESUMO

Epidemiological studies indicate that higher intakes of flavonoids are associated with reduced stroke risk, however, which subtypes play significant roles to protect against stroke remain unclear. A systematic literature search in PubMed and Web of Science databases was performed up to Oct. 2021. Flavonoids or their subtypes (flavanol, flavanone, flavone, flavan-3-ol, isoflavone, or anthocyanin) were paired with stoke as the search term. Multivariate-adjusted relative risks (RRs) with 95% confidence intervals (CIs) for the highest versus the lowest category were pooled by using a random-effects model. Dose-response analysis was implemented by using a restricted cubic spline regression model. Ten independent prospective cohort studies with 387,076 participants and 9,564 events were included. Higher intakes of flavanones were inversely associated with stroke risk (RR = 0.85; 95%CI: 0.78, 0.93). Dose-response analysis showed that 50 mg/day increment of flavanones was associated with 11% reduction in stroke risk (RR = 0.89; 95%CI: 0.84, 0.94). Flavan-3-ols was marginally inversely associated with stroke risk (RR = 0.92; 95%CI: 0.82, 1.02). Dose-response analysis showed that 200 mg/day increment of flavan-3-ols was associated with 14% reduction in stroke risk (RR = 0.86; 95%CI: 0.75, 0.98). The non-significant association was observed with respect to other flavonoid subclasses. This study demonstrated higher intakes of flavanones and flavan-3-ols were associated with a lower risk of stroke. Dietary intakes of lemon and citrus rich in flavanones and flavan-3-ols might have beneficial functions for the protection against stroke. The findings of these associations of the present study need to be confirmed in other regions and ethnic origins.


Assuntos
Dieta , Acidente Vascular Cerebral , Flavonoides , Humanos , Estudos Prospectivos , Fatores de Risco , Acidente Vascular Cerebral/epidemiologia , Acidente Vascular Cerebral/prevenção & controle
8.
Int J Biol Sci ; 18(1): 96-111, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34975320

RESUMO

Background: G-protein-coupled receptor 43 (GPR43) is a posttranscriptional regulator involved in cholesterol metabolism. This study aimed to investigate the possible roles of GPR43 activation in podocyte lipotoxicity in diabetic nephropathy (DN) and explore the potential mechanisms. Methods: The experiments were conducted by using diabetic GPR43-knockout mice and a podocyte cell culture model. Lipid deposition and free cholesterol levels in kidney tissues were measured by BODIPY staining and quantitative cholesterol assays, respectively. The protein expression of GPR43, LC3II, p62, beclin1, low-density lipoprotein receptor (LDLR) and early growth response protein 1 (EGR1) in kidney tissues and podocytes was measured by real-time PCR, immunofluorescent staining and Western blotting. Results: There were increased LDL cholesterol levels in plasma and cholesterol accumulation in the kidneys of diabetic mice. However, GPR43 gene knockout inhibited these changes. An in vitro study further demonstrated that acetate treatment induced cholesterol accumulation in high glucose-stimulated podocytes, which was correlated with increased cholesterol uptake mediated by LDLR and reduced cholesterol autophagic degradation, as characterized by the inhibition of LC3 maturation, p62 degradation and autophagosome formation. Gene knockdown or pharmacological inhibition of GPR43 prevented these effects on podocytes. Furthermore, GPR43 activation increased extracellular regulated protein kinases 1/2 (ERK1/2) activity and EGR1 expression in podocytes, which resulted in an increase in cholesterol influx and autophagy inhibition. In contrast, after GPR43 deletion, these changes in podocytes were improved, as shown by the in vivo and in vitro results. Conclusion: GPR43 activation-mediated lipotoxicity contributes to podocyte injury in DN by modulating the ERK/EGR1 pathway.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Nefropatias Diabéticas/metabolismo , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Metabolismo dos Lipídeos , Sistema de Sinalização das MAP Quinases , Podócitos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Modelos Animais de Doenças , Camundongos , Receptores de LDL/metabolismo
9.
Yi Chuan ; 44(12): 1117-1127, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36927557

RESUMO

Anthocyanins are a class of important flavonoid compounds widely present in plants, and play important roles in plant growth, metabolism and stress responses. In the process of growth and development, anthocyanin renders the flowers and fruits of plants displaying rich colors, attracts insect pollination and animal feeding, thereby facilitating seed spreading and dissemination. In metabolic stress, anthocyanin can resist low temperature, drought, fungal infection, ultraviolet damage, insect pests and other stress-resistant processes. The anthocyanin biosynthesis is co-regulated by related structural genes as well as transcription factor genes. Recent studies have showed that the anthocyanin biosynthesis-related genes in plants are epigenetically regulated, thus affecting the synthesis of anthocyanin glycosides. Epigenetics is one of the hot topics in the field of biological sciences. In this review, we summarize the advances of epigenetic modifications in anthocyanin biosynthesis and the application of genome editing in epigenetics, thereby providing new ideas for flower color breeding improvement by epigenetic regulation.


Assuntos
Antocianinas , Epigênese Genética , Antocianinas/genética , Antocianinas/metabolismo , Melhoramento Vegetal , Plantas/metabolismo
10.
BMC Cancer ; 21(1): 651, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34074258

RESUMO

OBJECTIVE: Plasma Epstein-Barr virus (EBV) DNA is considered a biomarker for nasopharyngeal carcinoma (NPC). However, its long-term role in NPC development is unclear. MATERIALS AND METHODS: A total of 1363 participants seropositive for EBV VCA-IgA and EBNA1-IgA in a community-based NPC screening program in southern China were tested for plasma EBV DNA levels by real-time qPCR between 2008 and 2015. New NPC cases were confirmed by active follow-up approach and linkage to local cancer registry through the end of 2016. Cox proportional hazards regression analysis was performed to calculate the hazard ratios (HRs) for NPC risk with plasma EBV DNA. RESULTS: Thirty patients were newly diagnosed during a median 7.5 years follow-up. NPC incidence increased with the plasma EBV DNA load ranging from 281.46 to 10,074.47 per 100,000 person-years in participants with undetectable and ≥ 1000 copies/ml levels; the corresponding cumulative incidence rates were 1.73 and 50%. Furthermore, plasma EBV DNA loads conferred an independent risk for NPC development after adjustment for other risk factors, with HRs of 7.63 for > 3-999 copies/ml and 39.79 for ≥1000 copies/ml. However, the HRs decreased gradually after excluding NPC cases detected in the first 2 to 3 years and became statistically nonsignificant by excluding cases detected during the first 4 years. CONCLUSION: Elevated plasma EBV DNA can predict NPC risk over 3 years. Monitoring plasma EBV DNA can be used as a complementary approach to EBV serological antibody-based screening for NPC.


Assuntos
Biomarcadores Tumorais/sangue , DNA Viral/sangue , Infecções por Vírus Epstein-Barr/epidemiologia , Carcinoma Nasofaríngeo/epidemiologia , Neoplasias Nasofaríngeas/epidemiologia , Adulto , Idoso , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Antígenos Virais/imunologia , Proteínas do Capsídeo/imunologia , Infecções por Vírus Epstein-Barr/sangue , Infecções por Vírus Epstein-Barr/diagnóstico , Infecções por Vírus Epstein-Barr/virologia , Feminino , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/imunologia , Herpesvirus Humano 4/isolamento & purificação , Humanos , Masculino , Pessoa de Meia-Idade , Carcinoma Nasofaríngeo/sangue , Carcinoma Nasofaríngeo/diagnóstico , Carcinoma Nasofaríngeo/virologia , Neoplasias Nasofaríngeas/sangue , Neoplasias Nasofaríngeas/diagnóstico , Neoplasias Nasofaríngeas/virologia , Estudos Prospectivos , Reação em Cadeia da Polimerase em Tempo Real , Fatores de Risco , Testes Sorológicos/estatística & dados numéricos
11.
Theranostics ; 11(10): 4728-4742, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33754024

RESUMO

Rationale: Albuminuria is an early clinical feature in the progression of diabetic nephropathy (DN). Podocyte insulin resistance is a main cause of podocyte injury, playing crucial roles by contributing to albuminuria in early DN. G protein-coupled receptor 43 (GPR43) is a metabolite sensor modulating the cell signalling pathways to maintain metabolic homeostasis. However, the roles of GPR43 in podocyte insulin resistance and its potential mechanisms in the development of DN are unclear. Methods: The experiments were conducted by using kidney tissues from biopsied DN patients, streptozotocin (STZ) induced diabetic mice with or without global GPR43 gene knockout, diabetic rats treated with broad-spectrum oral antibiotics or fecal microbiota transplantation, and cell culture model of podocytes. Renal pathological injuries were evaluated by periodic acid-schiff staining and transmission electron microscopy. The expression of GPR43 with other podocyte insulin resistance related molecules was checked by immunofluorescent staining, real-time PCR, and Western blotting. Serum acetate level was examined by gas chromatographic analysis. The distribution of gut microbiota was measured by 16S ribosomal DNA sequencing with faeces. Results: Our results demonstrated that GPR43 expression was increased in kidney samples of DN patients, diabetic animal models, and high glucose-stimulated podocytes. Interestingly, deletion of GPR43 alleviated albuminuria and renal injury in diabetic mice. Pharmacological inhibition and knockdown of GPR43 expression in podocytes increased insulin-induced Akt phosphorylation through the restoration of adenosine 5'-monophosphate-activated protein kinase α (AMPKα) activity. This effect was associated with the suppression of AMPKα activity through post-transcriptional phosphorylation via the protein kinase C-phospholipase C (PKC-PLC) pathway. Antibiotic treatment-mediated gut microbiota depletion, and faecal microbiota transplantation from the healthy donor controls substantially improved podocyte insulin sensitivity and attenuated glomerular injury in diabetic rats accompanied by the downregulation of the GPR43 expression and a decrease in the level of serum acetate. Conclusion: These findings suggested that dysbiosis of gut microbiota-modulated GPR43 activation contributed to albuminuria in DN, which could be mediated by podocyte insulin resistance through the inhibition of AMPKα activity.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Diabetes Mellitus Experimental/metabolismo , Nefropatias Diabéticas/genética , Disbiose/genética , Resistência à Insulina/genética , Podócitos/metabolismo , Receptores Acoplados a Proteínas G/genética , Adulto , Idoso , Animais , Nefropatias Diabéticas/metabolismo , Disbiose/metabolismo , Transplante de Microbiota Fecal , Feminino , Microbioma Gastrointestinal , Humanos , Rim/metabolismo , Rim/patologia , Masculino , Camundongos , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Pessoa de Meia-Idade , Ratos , Receptores de Superfície Celular/genética , Adulto Jovem
12.
JMIR Mhealth Uhealth ; 8(4): e14969, 2020 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-32271151

RESUMO

BACKGROUND: Wearable activity trackers offer potential to optimize behavior and support self-management. To assist older adults in benefiting from mobile technologies, theory-driven deployment strategies are needed to overcome personal, technological, and sociocontextual barriers in technology adoption. OBJECTIVE: To test the effectiveness of a social group-based strategy to improve the acceptability and adoption of activity trackers by middle-aged and older adults. METHODS: A cluster randomized controlled trial was conducted among 13 groups of middle-aged and older adults (≥45 years) performing group dancing (ie, square dancing) as a form of exercise in Guangzhou from November 2017 to October 2018. These dancing groups were randomized 1:1 into two arms, and both received wrist-worn activity trackers and instructions at the baseline face-to-face assessment. Based on the Information-Motivation-Behavior Skill framework, the intervention arm was also given a tutorial on the purpose of exercise monitoring (Information), encouraged to participate in exercise and share their exercise records with their dancing peers (Motivation), and were further assisted with the use of the activity tracker (Behavior Skill). We examined two process outcomes: acceptability evaluated by a 14-item questionnaire, and adoption assessed by the uploaded step count data. Intention-to-treat analysis was applied, with the treatment effects estimated by multilevel models. RESULTS: All dancing groups were followed up for the postintervention reassessment, with 61/69 (88%) participants of the intervention arm (7 groups) and 56/80 (70%) participants of the control arm (6 groups). Participants' sociodemographic characteristics (mean age 62 years, retired) and health status were comparable between the two arms, except the intervention arm had fewer female participants and lower cognitive test scores. Our intervention significantly increased the participants' overall acceptability by 6.8 points (95% CI 2.2-11.4), mainly driven by promoted motivation (adjusted group difference 2.0, 95% CI 0.5-3.6), increased usefulness (adjusted group difference 2.5, 95% CI 0.9-4.1), and better perceived ease of use (adjusted group difference 1.2, 95% CI 0.1-2.4), whereas enjoyment and comfort were not increased (adjusted group difference 0.9, 95% CI -0.4-2.3). Higher adoption was also observed among participants in the intervention arm, who were twice as likely to have valid daily step account data than their controlled counterparts (adjusted incidence relative risk [IRR]=2.0, 95% CI 1.2-3.3). The average daily step counts (7803 vs 5653 steps/day for the intervention and control, respectively) were similar between the two arms (adjusted IRR=1.4, 95% CI 0.7-2.5). CONCLUSIONS: Our social group-based deployment strategy incorporating information, motivation, and behavior skill components effectively promoted acceptability and adoption of activity trackers among community-dwelling middle-aged and older adults. Future studies are needed to examine the long-term effectiveness and apply this social engagement strategy in other group settings or meeting places. TRIAL REGISTRATION: Chinese Clinical Trial Registry ChiCTR-IOC-17013185; https://tinyurl.com/vedwc7h.


Assuntos
Monitores de Aptidão Física , Motivação , Envio de Mensagens de Texto , Idoso , Exercício Físico , Feminino , Humanos , Pessoa de Meia-Idade , Interação Social , Inquéritos e Questionários
13.
Theranostics ; 10(6): 2803-2816, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32194836

RESUMO

Background: Our previous study demonstrated that the disruption of cholesterol homeostasis promotes tubulointerstitial injury in diabetic nephropathy (DN). This study aimed to further investigate the effects of gut microbiota dysbiosis on this process and explored its potential mechanism. Methods: Diabetic rats treated with broad-spectrum oral antibiotics or faecal microbiota transplantation (FMT) from the healthy donor group and human kidney 2 (HK-2) cells stimulated with sodium acetate were used to observe the effects of gut microbiota on cholesterol homeostasis. The gut microbiota distribution was measured by 16S rDNA sequencing with faeces. Serum acetate level was examined by gas chromatographic analysis. Protein expression of G protein coupled receptor 43 (GPR43) and molecules involved in cholesterol homeostasis were assessed by immunohistochemical staining, immunofluorescence staining, and Western Blotting. Results: Depletion of gut microbiota significantly attenuated albuminuria and tubulointerstitial injury. Interestingly, serum acetate levels were also markedly decreased in antibiotics-treated diabetic rats and positively correlated with the cholesterol contents in kidneys. An in vitro study demonstrated that acetate significantly increased cholesterol accumulation in HK-2 cells, which was caused by increased expression of proteins mainly modulating cholesterol synthesis and uptake. As expected, FMT effectively decreased serum acetate levels and alleviated tubulointerstitial injury in diabetic rats through overriding the disruption of cholesterol homeostasis. Furthermore, GPR43 siRNA treatment blocked acetate-mediated cholesterol homeostasis dysregulation in HK-2 cells through decreasing the expression of proteins governed cholesterol synthesis and uptake. Conclusion: Our studies for the first time demonstrated that the acetate produced from gut microbiota mediated the dysregulation of cholesterol homeostasis through the activation of GPR43, thereby contributing to the tubulointerstitial injury of DN, suggesting that gut microbiota reprogramming might be a new strategy for DN prevention and therapy.


Assuntos
Colesterol/metabolismo , Nefropatias Diabéticas , Disbiose , Microbioma Gastrointestinal , Nefrite Intersticial , Acetatos/sangue , Animais , Linhagem Celular , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/microbiologia , Disbiose/metabolismo , Disbiose/microbiologia , Homeostase , Humanos , Masculino , Nefrite Intersticial/metabolismo , Nefrite Intersticial/microbiologia , Ratos , Ratos Sprague-Dawley , Receptores Acoplados a Proteínas G/metabolismo
14.
Acta Pharmacol Sin ; 41(8): 1111-1118, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32203081

RESUMO

Some studies have shown that gut microbiota along with its metabolites is closely associated with diabetic mellitus (DM). In this study we explored the relationship between gut microbiota and kidney injuries of early diabetic nephropathy (DN) and its underlying mechanisms. Male SD rats were intraperitoneally injected with streptozotocin to induce DM. DM rats were orally administered compound broad-spectrum antibiotics for 8 weeks. After the rats were sacrificed, their blood, urine, feces, and renal tissues were harvested for analyses. We found that compared with the control rats, DM rats had abnormal intestinal microflora, increased plasma acetate levels, increased proteinuria, thickened glomerular basement membrane, and podocyte foot process effacement in the kidneys. Furthermore, the protein levels of angiotensin II, angiotensin-converting enzyme, and angiotensin II type 1 receptor in the kidneys of DM rats were significantly increased. Administration of broad-spectrum antibiotics in DM rats not only completely killed most intestinal microflora, but also significantly lowered the plasma acetate levels, inhibited intrarenal RAS activation, and attenuated kidney damage. Finally, we showed that plasma acetate levels were positively correlated with intrarenal angiotensin II protein expression (r = 0.969, P < 0.001). In conclusion, excessive acetate produced by disturbed gut microbiota might be involved in the kidney injuries of early DN through activating intrarenal RAS.


Assuntos
Acetatos/metabolismo , Diabetes Mellitus Experimental/fisiopatologia , Nefropatias Diabéticas/fisiopatologia , Disbiose/fisiopatologia , Microbioma Gastrointestinal/fisiologia , Sistema Renina-Angiotensina/fisiologia , Acetatos/sangue , Animais , Antibacterianos/farmacologia , Diabetes Mellitus Experimental/patologia , Nefropatias Diabéticas/patologia , Microbioma Gastrointestinal/efeitos dos fármacos , Rim/patologia , Masculino , Ratos Sprague-Dawley
16.
Ann Transl Med ; 7(18): 445, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31700881

RESUMO

BACKGROUND: Podocyte-derived microparticles (MPs) could be secreted from activated or apoptotic podocytes. An increased number of podocyte-derived MPs in the urine might reflect podocyte injury in renal diseases. This study aimed to observe the change of urinary podocyte-derived MP levels in patients with chronic kidney disease (CKD) and to further explore its correlation with the progression of CKD. METHODS: A prospective, longitudinal study was conducted in eighty patients with biopsy-proven CKD. Podocyte-derived MPs (annexin V and podocalyxin positive) were detected by flow cytometry. The number of urinary podocyte-derived MPs was analyzed to evaluate the association with biochemical measurements and pathological glomerulosclerosis assessment. Patients with idiopathic membranous nephropathy (IMN) were followed up after the six-month treatment of prednisone combined with tacrolimus to evaluate the association of urinary podocyte-derived MP levels and the remission of IMN. RESULTS: The CKD patients had higher urinary podocyte-derived MP levels compared with healthy controls (HCs). Baseline urinary levels of podocyte-derived MPs were positively correlated with 24-hour proteinuria, while were inversely correlated with the percentage of global glomerulosclerosis. The urinary podocyte-derived MPs levels had good discrimination for glomerulosclerosis [area under curve (AUC), 0.66]. The urinary podocyte-derived MPs levels in IMN patients were significantly decreased accompanied with the recovery of abnormal clinical parameters after six-month treatment. CONCLUSIONS: The urinary levels of podocyte-derived MPs were closely associated with podocyte injury and glomerulosclerosis, which could be useful for monitoring disease activity in CKD patients. Urinary podocyte-derived MPs might be a non-invasive biomarker for the evaluation of early CKD progression.

17.
BMC Nephrol ; 20(1): 303, 2019 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-31382919

RESUMO

BACKGROUND: New non-invasive biomarkers are demanded to identify renal damage in various autoimmune-associated kidney diseases. Glomerular podocyte damage mediated by systemic lupus erythematosus (SLE) plays an important role in the pathogenesis and progression of lupus nephritis (LN). This study evaluated whether the podocyte-derived microparticles (MPs) were novel biomarkers of clinical and histological features in SLE patients with LN. METHODS: A cross-sectional study, including 34 SLE patients and 16 healthy controls, was designed. Urinary annexin V+ podocalyxin+ MPs of all participants were quantified by flow cytometry. The correlation of podocyte-derived MPs with clinical and histological parameters of SLE patients was analysed. RESULTS: The number of annexin V+ podocalyxin+ MPs from urine samples were markly increased in patients with SLE. Furthermore, the level of urinary podocyte-derived MPs was positively correlated with the SLE Disease Activity Index (SLEDAI) score, anti-dsDNA antibody titre, erythrocyte sedimentation rate, and proteinuria. Conversely, it was negatively correlated with the level of complement C3 and serum albumin. The number of urinary podocyte-derived MPs was significantly increased in SLE patients with high activity indices. Receiver operating characteristic (ROC) curves were calculated to assess the power for podocyte-derived MP levels in differentiating between SLE patients with and without LN. Podocyte-derived MP levels were able to differentiate between SLE patients with mild disease activity, as well as those with moderate and above disease activity. SLE patients showed increased podocyte-derived MP excretion into the urine. CONCLUSIONS: These findings suggest that the change in urinary podocyte-derived MP levels could be useful for evaluating and monitoring SLE disease activity.


Assuntos
Micropartículas Derivadas de Células , Lúpus Eritematoso Sistêmico/urina , Podócitos , Anexina A5 , Estudos de Casos e Controles , Micropartículas Derivadas de Células/patologia , Distribuição de Qui-Quadrado , Estudos Transversais , Feminino , Citometria de Fluxo , Humanos , Lúpus Eritematoso Sistêmico/patologia , Nefrite Lúpica/patologia , Nefrite Lúpica/urina , Masculino , Pessoa de Meia-Idade , Podócitos/química , Podócitos/patologia , Podócitos/ultraestrutura , Curva ROC , Sialoglicoproteínas , Estatísticas não Paramétricas
18.
Int J Nanomedicine ; 14: 3645-3667, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31190817

RESUMO

Background: Neo-adjuvant chemotherapy is an effective strategy for improving treatment of breast cancers. However, the efficacy of this treatment strategy is limited for treatment of triple negative breast cancer (TNBC). Gene therapy may be a more effective strategy for improving the prognosis of TNBC. Methods: A novel 25 nucleotide sense strand of miRNA was designed to treat TNBC by silencing the Slug gene, and encapsulated into DSPE-PEG2000-tLyp-1 peptide-modified functional liposomes. The efficacy of miRNA liposomes was evaluated on invasive TNBC cells and TNBC cancer-bearing nude mice. Furthermore, functional vinorelbine liposomes were constructed to investigate the anticancer effects of combined treatment. Results: The functional miRNA liposomes had a round shape and were nanosized (120 nm). Functional miRNA liposomes were effectively captured by TNBC cells in vitro and were target to mitochondria. Treatment with functional liposomes silenced the expression of Slug and Slug protein, inhibited the TGF-ß1/Smad pathway, and inhibited invasiveness and growth of TNBC cells. In TNBC cancer-bearing mice, functional miRNA liposomes exerted a stronger anticancer effect than functional vinorelbine liposomes, and combination therapy with these two formulations resulted in nearly complete inhibition of tumor growth. Preliminary safety evaluations indicated that the functional miRNA liposomes did not affect body weight or cause damage to any major organs. Furthermore, the functional liposomes significantly increased the half-life of the drug in the blood of cancer-bearing nude mice, and increased drug accumulation in breast cancer tissues. Conclusion: In this study, we constructed novel functional miRNA liposomes. These liposomes silenced Slug expression and inhibited the TGF-ß1/Smad pathway in TNBC cells, and enhanced anticancer efficacy in mice using combined chemotherapy. Hence, the present study demonstrated a promising strategy for gene therapy of invasive breast cancer.


Assuntos
Inativação Gênica , MicroRNAs/metabolismo , Nanopartículas/química , Tamanho da Partícula , Fatores de Transcrição da Família Snail/genética , Neoplasias de Mama Triplo Negativas/terapia , Animais , Antineoplásicos/farmacologia , Apoptose , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Endocitose/efeitos dos fármacos , Feminino , Humanos , Lipossomos , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/genética , Invasividade Neoplásica , Fosfatidiletanolaminas/química , Polietilenoglicóis/química , Transdução de Sinais/efeitos dos fármacos , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Neoplasias de Mama Triplo Negativas/patologia
19.
BMC Cardiovasc Disord ; 19(1): 89, 2019 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-30961533

RESUMO

BACKGROUND: Coronary bifurcation remains one of the most challenging lesion subsets in interventinal cardiology. Provisional stenting (PS) is the dominate technique for bifurcation lesions, but the key problem is the deterioration of side branch. Balloon-stent kissing technique (BSKT) as a new systematic approach which is based on modified jailed balloon technique is applied to improve the procedure success. In our center, we proposed a modified balloon-stent kissing technique(M-BSKT), which routine usage of proximal optimizing technique (POT) after rewiring was added as an optimization step to BSKT. Thus, whether M-BSKT for addressing simple true coronary bifurcation lesions can provide more benefits in intra-operation effect and long term outcomes is still unknown. METHODS: A cohort of 120 consecutive patients underwent Percutaneous Coronary Intervention (PCI) with simple true coronary bifurcation lesions satisfied the criteria were included in this retrospective, single-center registry. To assemble a cohort with similar baseline characteristics, a 1:1 propensity-matched score was used. The primary outcomes were the rate of device and procedural success, the situation of side branch (SB) after main vessel (MV) inflation and the complications during intra-operative. The secondary outcomes were the clinical prognosis at 12 months such as rehospitalization for unstable angina and MACEs. RESULTS: Before propensity matching, there were no significant differences in primary and secondary outcomes between two groups. After propensity-matched was used, 68 patients with similar propensity scores were included. At immediate procedural, M-BSKT was associated with a lower risk of SB deterioration and the application of final kissing balloon inflation (FKBI)[P = 0.036]. For ACS patients, besides the significant differences of immediate SB deterioration [P = 0.014] and FKBI application [P = 0.033], the incidence of TIMI flow< 3 in the PS was statistically significant higher than M-BSKT [P= 0.042]. The prognosis at 12 months such as rehospitalization for unstable angina and MACEs were similar for two groups [P = 0.613]. CONCLUSION: These observations prove that the M-BSKT enables side branch to be better protected in simple true bifurcation lesions, by a narrow margin. It may improve the angiographic outcomes about side branch deterioration and final kissing balloon performing compared with PS, especially in ACS patients. However, long-term clinical outcomes did not differ between patients treated for M-BSKT and PS at 12 months.


Assuntos
Angioplastia Coronária com Balão/métodos , Doença da Artéria Coronariana/terapia , Adolescente , Adulto , Idoso , Angina Instável/etiologia , Angioplastia Coronária com Balão/efeitos adversos , Angioplastia Coronária com Balão/instrumentação , Doença da Artéria Coronariana/complicações , Doença da Artéria Coronariana/diagnóstico por imagem , Progressão da Doença , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Readmissão do Paciente , Sistema de Registros , Estudos Retrospectivos , Fatores de Risco , Stents , Fatores de Tempo , Resultado do Tratamento , Adulto Jovem
20.
Cell Physiol Biochem ; 47(3): 1051-1059, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29843130

RESUMO

BACKGROUND/AIMS: The epithelial sodium channel (ENaC) in cortical collecting duct (CCD) principal cells plays a critical role in regulating systemic blood pressure. We have previously shown that cholesterol (Cho) in the apical cell membrane regulates ENaC; however, the underlying mechanism remains unclear. METHODS: Patch-clamp technique and confocal microscopy were used to evaluate ENaC activity and density. RESULTS: Here we show that extraction of membrane Cho with methyl-ß-cyclodextrin (MßCD) significantly reduced amiloride-sensitive current and ENaC single-channel activity. The effects were reproduced by inhibition of Cho synthesis in the cells with lovastatin. We have previously shown that phosphatidylinositol-4,5-bisphosphate (PIP2), an ENaC activator, is predominantly located in the microvilli, a specialized apical membrane domain. Here, our confocal microscopy data show that α-ENaC was co-localized with PIP2 in the microvilli and that Cho was also co-localized with PIP2 in the microvilli. Either extraction of Cho with MßCD or inhibition of Cho synthesis with lovastatin consistently reduced the levels of Cho, PIP2, and ENaC in the microvilli. CONCLUSIONS: Since PIP2 can directly stimulate ENaC and also affect ENaC trafficking, these data suggest that depletion of Cho reduces ENaC apical density and activity at least in part by decreasing PIP2 in the microvilli.


Assuntos
Colesterol/metabolismo , Canais Epiteliais de Sódio/metabolismo , Túbulos Renais Coletores/metabolismo , Microvilosidades/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Animais , Proteínas de Xenopus , Xenopus laevis , beta-Ciclodextrinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA