RESUMO
Surgical site infection (SSI) significantly affects patient recovery time, health outcomes and quality of life which is closely associated with the use of implants or mesh. Sutures are the most frequently used implants that play a significant role in the development of SSI. Studies have demonstrated that the administration of effective bactericidal and anti-inflammatory treatments can significantly decrease the incidence of SSI. To address this concern, a versatile suture was engineered by coating MoO3-X nanodots in this study. The incorporation of MoO3-X nanodots endowed the suture with desirable antibacterial and anti-inflammatory properties that were evaluated in in vitro and in vivo experiments. The results showed its remarkable ability to facilitate wound healing and prevent SSI through its dual action of combating bacterial infection and reducing inflammation. These findings highlight the promising potential of this multifunctional surgical suture as a versatile tool to promote better outcomes in surgical procedures.
Assuntos
Antibacterianos , Anti-Inflamatórios , Infecção da Ferida Cirúrgica , Suturas , Antibacterianos/farmacologia , Antibacterianos/química , Infecção da Ferida Cirúrgica/prevenção & controle , Infecção da Ferida Cirúrgica/tratamento farmacológico , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Camundongos , Humanos , Cicatrização/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Nanopartículas/química , Óxidos/química , Óxidos/farmacologia , Masculino , Staphylococcus aureus/efeitos dos fármacosRESUMO
BACKGROUND: Ulcerative colitis (UC) is a chronic inflammatory disease of the colonic mucosa, with a gradually increasing incidence. Therefore, it is necessary to actively seek targets for the treatment of UC. METHODS: Common differentially expressed genes (DEGs) were screened from two microarray data sets related to UC. Protein-protein interaction network was constructed to find the hub genes. The UC mouse model and cell model were induced by dextran sulfate sodium (DSS). The pathological changes of colon tissue were observed by hematoxylin-eosin staining. Immunohistochemistry and immunofluorescence were performed to detect the expressions of Ki67 and Claudin-1. The performance of mice was observed by disease activity index (DAI). The effect of TOP2A on proliferation, inflammation, oxidative stress, and interleukin-17 (IL-17) signaling pathway in UC model was measured by cell counting kit-8, enzyme-linked immunosorbent assay, and western blot. RESULTS: Through bioinformatics analysis, 295 common DEGs were screened, and the hub gene TOP2A was selected. In UC model, there was obvious inflammatory cell infiltration in the colon and less goblet cells, while si-TOP2A lessened it. More Ki67 positive cells and less Claudin-1 positive cells were observed in UC model mice. Furthermore, knockdown of TOP2A increased the body weight and colon length of UC mice, while the DAI was decreased. Through in vivo and in vitro experiments, knockdown of TOP2A also inhibited inflammation and IL-17 signaling pathway, and promoted proliferation in DSS-induced NCM460 cells. CONCLUSION: Knockdown of TOP2A alleviated the progression of UC by suppressing inflammation and inhibited IL-17 signaling pathway.
Assuntos
Colite Ulcerativa , DNA Topoisomerases Tipo II , Modelos Animais de Doenças , Progressão da Doença , Interleucina-17 , Proteínas de Ligação a Poli-ADP-Ribose , Transdução de Sinais , Animais , Humanos , Masculino , Camundongos , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/genética , Colite Ulcerativa/metabolismo , Sulfato de Dextrana , DNA Topoisomerases Tipo II/metabolismo , DNA Topoisomerases Tipo II/genética , Técnicas de Silenciamento de Genes , Interleucina-17/metabolismo , Interleucina-17/genética , Mapas de Interação de ProteínasRESUMO
The study explores the impact of employee perceptions of corporate social responsibility (CSR) in improving employee loyalty by examining the direct and indirect role of person-organization fit and employee trust. A convenient sampling technique was employed to collect the data sample. A total of 338 questionnaires were collected at three different China-Pakistan Economic Corridor (CPEC) projects in Pakistan. The SmartPLS-3 was used to test the study hypotheses. The results revealed that CSR positively and significantly influenced employee loyalty. The findings indicated a partial mediating impact of P-O fit and employee trust in the relationship between CSR and employee loyalty. Discussions, implications, limitations, and future research direction are also given.
Assuntos
Organizações , Confiança , Humanos , China , Paquistão , Responsabilidade SocialRESUMO
Myelodysplastic syndromes (MDS) are characterized by daunting genetic heterogeneity and a high risk of leukemic transformation, which presents great challenges for clinical treatment. To identify new chemicals for MDS, we screened a panel of FDA-approved drugs and verified the neutrophil hyperplasia inhibiting role of 17ß-estradiol (E2, a natural estrogen) in several zebrafish MDS models (pu.1G242D/G242D, irf8Δ57Δ/57 and c-mybhyper). However, the protective mechanism of estrogen in the development of hematological malignancies remains to be explored. Here, analyzing the role of E2 in the development of each hematopoietic lineage, we found that E2 exhibited a specific neutrophil inhibiting function. This neutrophil inhibitory function of E2 is attributed to its down-regulation of c-myb, which leads to accelerated apoptosis and decreased proliferation of neutrophils. We further showed that knockdown of hif1α could mimic the neutrophil inhibiting role of E2, and hif1α overexpression could reverse the protective function of E2. Collectively, our findings highlight the protective role of E2 on MDS by inhibiting hif1α-c-myb pathway, suggesting that E2 is a promising and effective drug for hematopoietic tumors associated with abnormal neutrophil hyperplasia.
RESUMO
Microbial-fuel-cell-coupled constructed wetlands (CW-MFCs) with various cathode layers were used for long-term azo dye wastewater treatment. Their performance was assessed using cathode diameters ranging from 20 to 27.5cm and the influence of plants at the cathode was also examined. Bioelectricity generation, ABRX3 decolorization, and chemical oxygen demand (COD) removal performances first increased and then decreased with increasing cathode diameter. The CW-MFCs with larger cathodes had an anoxic region at the cathode where ABRX3 was decolorized. This phenomenon has not been reported in previous research on MFCs using traditional air cathodes. Anode performance was influenced by the cathode. The CW-MFC with a cathode diameter of 25cm showed the best electrode performance, and the highest voltage and power density were 560mV and 0.88W/m3, respectively. The highest ABRX3 decolorization and COD removal volumes were 271.53mg/L and 312.17mg/L, respectively.
Assuntos
Compostos Azo , Fontes de Energia Bioelétrica , Águas Residuárias , Áreas Alagadas , Eletricidade , EletrodosRESUMO
In this study, microbial fuel cell coupled constructed wetland (CW-MFC) was constructed for azo dye reactive brilliant red X-3B degradation and electricity production. The effects of support matrix and cathode areas on the degradation of X-3B and the electricity production of CW-MFC were investigated in this work to improve the performance of CW-MFC. The highest decolorization efficiency was 92.70% and was obtained when the CW-MFC was constructed with support matrix S3 with particle size of 10 mm and porosity of 30%. Small particle size increased the microbial biomass of the bottom layer of CW-MFC, which would promote the decolorization of X-3B in the bottom layer. However, it may cause the lack of nutrition in electrode layer and the increase in resistance of mass transfer, which would lead to the decline of electricity production. The decolorization efficiency and the power density of CW-MFC increased concomitantly with the increase of cathode areas, and the CW-MFC got the highest decolorization efficiency of 99.41% when the cathode area was 594 cm2. The electricity production performance became stable when the cathode area continued to increase, while the decolorization efficiency declined. This may be attributed to that more electrons were transferred to the cathode to produce current instead of used in degradation of X-3B.