Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 171
Filtrar
1.
Cancer Cell ; 42(7): 1217-1238.e19, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38981438

RESUMO

Although genomic anomalies in glioblastoma (GBM) have been well studied for over a decade, its 5-year survival rate remains lower than 5%. We seek to expand the molecular landscape of high-grade glioma, composed of IDH-wildtype GBM and IDH-mutant grade 4 astrocytoma, by integrating proteomic, metabolomic, lipidomic, and post-translational modifications (PTMs) with genomic and transcriptomic measurements to uncover multi-scale regulatory interactions governing tumor development and evolution. Applying 14 proteogenomic and metabolomic platforms to 228 tumors (212 GBM and 16 grade 4 IDH-mutant astrocytoma), including 28 at recurrence, plus 18 normal brain samples and 14 brain metastases as comparators, reveals heterogeneous upstream alterations converging on common downstream events at the proteomic and metabolomic levels and changes in protein-protein interactions and glycosylation site occupancy at recurrence. Recurrent genetic alterations and phosphorylation events on PTPN11 map to important regulatory domains in three dimensions, suggesting a central role for PTPN11 signaling across high-grade gliomas.


Assuntos
Neoplasias Encefálicas , Glioma , Proteína Tirosina Fosfatase não Receptora Tipo 11 , Transdução de Sinais , Humanos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Glioma/genética , Glioma/patologia , Glioma/metabolismo , Mutação , Proteômica/métodos , Processamento de Proteína Pós-Traducional , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Glioblastoma/patologia , Glioblastoma/metabolismo , Fosforilação , Gradação de Tumores , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo
2.
Medicine (Baltimore) ; 103(27): e38796, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38968455

RESUMO

RATIONALE: Myxoinflammatory fibroblastic sarcoma (MIFS) is a rare low-grade malignant soft tissue sarcoma that primarily affects the distal extremities in adults, with the highest incidence in patients in their 40s and 50s. It has a high local recurrence rate and a low metastasis rate. Although MIFSs have been documented in other sites, an MIFS in the liver is highly unusual. Herein, we present a case of a patient with hepatic MIFS. PATIENT CONCERNS: The patient was a 58-year-old Chinese man with abdominal pain as the primary symptom. Abdominal computed tomography and magnetic resonance imaging revealed a mass in the right posterior lobe of the liver. The patient underwent surgical excision, and the excised specimen was identified as MIFS. Three years later, the patient returned to our hospital for abdominal pain. Computed tomography and magnetic resonance imaging revealed a mass in liver segments 2/3/4. DIAGNOSIS: Postoperative pathological examination of the tumor revealed the recurrence of MIFS. INTERVENTIONS: The patient underwent surgical resection of the MIFS. OUTCOMES: The patient received multiple pirarubicin-based chemotherapy treatments and an ALK inhibitor (anlotinib) within 6 months after surgery, but the tumor recurred. LESSONS: MIFS can not only occur in the proximal limbs, trunk, head, and neck but can also affect the abdominal organs. Surgical resection remains the primary treatment option for MIFS in the absence of any contraindications. Because the recurrence rate of MIFS is high, meticulous long-term monitoring is required.


Assuntos
Fibrossarcoma , Neoplasias Hepáticas , Humanos , Pessoa de Meia-Idade , Masculino , Neoplasias Hepáticas/cirurgia , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/diagnóstico , Fibrossarcoma/cirurgia , Fibrossarcoma/diagnóstico , Fibrossarcoma/patologia , Tomografia Computadorizada por Raios X , Recidiva Local de Neoplasia/cirurgia , Imageamento por Ressonância Magnética , Fígado/patologia , Fígado/diagnóstico por imagem
3.
Int J Pharm ; 661: 124434, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38972523

RESUMO

There has been a growing interest in hydroxytyrosol (HT) due to its powerful antioxidant and free-radical scavenging properties when added to formulations such as pharmaceuticals and cosmetics. To study the stability and transdermal properties of hydrogels and creams (HT-based formulations), a high-performance liquid chromatography method was developed for determining HT. In the Franz diffusion cell system, both hydrogel and cream show a rapid and similar penetration profile through the Bama miniature pig skin. However, the Strat-M® membrane exhibits slightly lower permeability and is selective to different formulations; that is, the cream has a permeability value of 10.69%, while the hydrogel has a value of 5.27%. The dynamics parameters from the permeation assays indicate that the model using the Strat-M® membrane can be used as a screening tool to evaluate the skin uptake and permeation efficacy of different formulations. Adding 3-O-ethyl-L-ascorbic acid to HT-based formulations can effectively prevent discoloration under prolonged high-temperature storage, while combining multiple antioxidants delays degradation most effectively. This study provides novel ideas for functional formulation optimization to enhance the realism and reproducibility of cosmetic products containing HT and provides scientific evidence for the production, packaging, shelf life, storage, and transportation of products.


Assuntos
Antioxidantes , Estabilidade de Medicamentos , Permeabilidade , Álcool Feniletílico , Absorção Cutânea , Álcool Feniletílico/análogos & derivados , Álcool Feniletílico/química , Álcool Feniletílico/farmacocinética , Álcool Feniletílico/administração & dosagem , Animais , Suínos , Absorção Cutânea/efeitos dos fármacos , Antioxidantes/química , Antioxidantes/administração & dosagem , Antioxidantes/farmacocinética , Pele/metabolismo , Hidrogéis/química , Administração Cutânea , Porco Miniatura , Creme para a Pele/química , Química Farmacêutica/métodos , Cromatografia Líquida de Alta Pressão , Ácido Ascórbico/química
4.
Phys Chem Chem Phys ; 26(30): 20645-20652, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39037460

RESUMO

Cation substitution is an effective strategy to regulate the defects/electronic properties of kesterite Cu2ZnSn(S,Se)4 (CZTSSe) absorbers and improve the device photovoltaic performance. Here, we report Ge alloying kesterite Cu2Zn(Sn,Ge)(S,Se)4 (CZTGSSe) via a solution approach. The results demonstrate that the same chemical reaction of Ge4+ to Sn4+ ensures homogeneous Ge incorporation in the whole range of concentrations (from 0 to unit). Ge alloying promotes grain growth and linearly enlarges the absorber band gap by solely raising the conduction band minimum, which maintains a "spike" conduction band offset at the heterojunction interface until 15% alloying concentration and thus facilitates effective charge carrier collection. A promising efficiency of 11.57% has been achieved at 15% Ge alloying concentration with a significant enhancement in open-circuit voltage and fill factor. By further 10% Ag alloying to improve the absorber film morphology, a champion device with an efficiency of 12.25% has been achieved without an antireflective coating. This result emphasizes the feasibility of achieving homogeneous and controllable Ge alloying of kesterite semiconductors through the solution method, paving the way for further improvement and optimization of device performance.

5.
ACS Nano ; 18(27): 17694-17706, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38932609

RESUMO

The pollution caused by heavy metals (HMs) represents a global concern due to their serious environmental threat. Photosynthetic cyanobacteria have a natural niche and the ability to remediate HMs such as cadmium. However, their practical application is hindered by a low tolerance to HMs and issues related to recycling. In response to these challenges, this study focuses on the development and evaluation of engineered cyanobacteria-based living materials for HMs bioremediation. Genes encoding phytochelatins (PCSs) and metallothioneins (MTs) were introduced into the model cyanobacterium Synechocystis sp. PCC 6803, creating PM/6803. The strain exhibited improved tolerance to multiple HMs and effectively removed a combination of Cd2+, Zn2+, and Cu2+. Using Cd2+ as a representative, PM/6803 achieved a bioremediation rate of approximately 21 µg of Cd2+/OD750 under the given test conditions. To facilitate its controllable application, PM/6803 was encapsulated using sodium alginate-based hydrogels (PM/6803@SA) to create "living materials" with different shapes. This system was feasible, biocompatible, and effective for removing Cd2+ under simulated conditions of zebrafish and mice models. Briefly, in vitro application of PM/6803@SA efficiently rescued zebrafish from polluted water containing Cd2+, while in vivo use of PM/6803@SA significantly decreased the Cd2+ content in mice bodies and restored their active behavior. The study offers feasible strategies for HMs bioremediation using the interesting biomaterials of engineered cyanobacteria both in vitro and in vivo.


Assuntos
Biodegradação Ambiental , Metais Pesados , Peixe-Zebra , Animais , Metais Pesados/metabolismo , Metais Pesados/química , Camundongos , Synechocystis/metabolismo , Synechocystis/genética , Metalotioneína/genética , Metalotioneína/metabolismo , Hidrogéis/química , Fitoquelatinas/metabolismo , Cádmio/metabolismo , Cádmio/química , Cianobactérias/metabolismo , Cianobactérias/genética , Alginatos/química , Alginatos/metabolismo
6.
Cell Signal ; 120: 111202, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38729323

RESUMO

Hypertrophic scarring (HS) is a pathological condition characterized by excessive fibrosis and inflammation, resulting in excessive extracellular matrix formation in the skin. MIR155HG, a long non-coding RNA, is abnormally upregulated in fibrotic tissues; however, its underlying mechanism is poorly understood. Using single-cell sequencing data, we analyzed connective tissue growth factor (CTGF) expression in various cell types in HS and normal skin tissues and MIR155HG expression in clinical samples. To investigate the mechanism of fibrosis, an in vitro model using CTGF-treated hypertrophic scar fibroblasts (HSFBs) was established and qRT-PCR, western blotting and ELISA assays were performed to investigate the expression of interleukin (IL)-1ß, IL-6, and mesenchymal markers α-smooth muscle actin (α-SMA). CTGF stimulates MIR155HG level through phosphorylated STAT3 binding to the MIR155HG promoter. We analyzed the methylation of MIR155HG, assessed the levels of miR-155-5p/-3p in CTGF-treated HSFBs and identified differentially expressed genes among HS and NS samples using the Gene Expression Omnibus RNA sequencing data. The binding between miR-155-5p/-3p and AZGP1 was confirmed using a dual-luciferase assay and inflammatory cytokine production and α-SMA expression were investigated in rescue experiments. The findings revealed that CTGF elevated inflammatory cytokine production, α-SMA and MIR155HG expression in HSFBs. MIR155HG is upregulated in HS tissues due to low DNA methylation. Mechanistically, miR-155-5p/-3p was directly bound to MIR155HG 3'UTR. MIR155HG silencing inhibited cytokine production and α-SMA expression by repressing the generation of miR-155-5p/-3p in CTGF-treated HSFBs. Bioinformatics analysis and luciferase reporter assays revealed that miR-155-5p/-3p targets AZGP1. In addition, transfection with plasmids carrying AZGP1 cDNA significantly inhibited the signaling activity of miR-155-5p/-3 p-overexpressing HSFBs. Our findings highlight the importance of the MIR155HG/miR-155/AZGP1 axis in regulating cytokine production and α-SMA in HS.


Assuntos
Actinas , Cicatriz Hipertrófica , Fator de Crescimento do Tecido Conjuntivo , Citocinas , Fibroblastos , MicroRNAs , Regulação para Cima , MicroRNAs/metabolismo , MicroRNAs/genética , Humanos , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Fator de Crescimento do Tecido Conjuntivo/genética , Fibroblastos/metabolismo , Cicatriz Hipertrófica/metabolismo , Cicatriz Hipertrófica/patologia , Cicatriz Hipertrófica/genética , Actinas/metabolismo , Citocinas/metabolismo , Regulação para Cima/efeitos dos fármacos , Glicoproteínas/metabolismo , Glicoproteínas/genética , Masculino , Feminino , Transdução de Sinais
7.
Cell Rep Med ; 5(5): 101547, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38703764

RESUMO

Non-clear cell renal cell carcinomas (non-ccRCCs) encompass diverse malignant and benign tumors. Refinement of differential diagnosis biomarkers, markers for early prognosis of aggressive disease, and therapeutic targets to complement immunotherapy are current clinical needs. Multi-omics analyses of 48 non-ccRCCs compared with 103 ccRCCs reveal proteogenomic, phosphorylation, glycosylation, and metabolic aberrations in RCC subtypes. RCCs with high genome instability display overexpression of IGF2BP3 and PYCR1. Integration of single-cell and bulk transcriptome data predicts diverse cell-of-origin and clarifies RCC subtype-specific proteogenomic signatures. Expression of biomarkers MAPRE3, ADGRF5, and GPNMB differentiates renal oncocytoma from chromophobe RCC, and PIGR and SOSTDC1 distinguish papillary RCC from MTSCC. This study expands our knowledge of proteogenomic signatures, biomarkers, and potential therapeutic targets in non-ccRCC.


Assuntos
Biomarcadores Tumorais , Carcinoma de Células Renais , Neoplasias Renais , Proteogenômica , Humanos , Proteogenômica/métodos , Neoplasias Renais/genética , Neoplasias Renais/patologia , Neoplasias Renais/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/metabolismo , Transcriptoma/genética , Masculino , Feminino , Pessoa de Meia-Idade , Regulação Neoplásica da Expressão Gênica
8.
Asian J Surg ; 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38719638
9.
Brain Res Bull ; 212: 110966, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38670469

RESUMO

Intraoperative remifentanil administration has been linked to increased postoperative pain sensitivity. Recent studies have identified the involvement of euchromatic histone-lysine N-methyltransferase 2 (Ehmt2/G9a) in neuropathic pain associated with the transcriptional silencing of many potassium ion channel genes. This study investigates whether G9a regulates the potassium sodium-activated channel subfamily T member 1 (Slo2.2) in remifentanil-induced post-incisional hyperalgesia (RIH) in rodents. We performed remifentanil infusion (1 µg·kg-1·min-1 for 60 min) followed by plantar incision to induce RIH in rodents. Our results showed that RIH was accompanied by increased G9a and H3K9me2 production and decreased Slo2.2 expression 48 h postoperatively. Deletion of G9a rescued Slo2.2 expression in DRG and reduced RIH intensity. Slo2.2 overexpression also reversed this hyperalgesia phenotype. G9a overexpression decreased Slo2.2-mediated leak current and increased excitability in the small-diameter DRG neurons and laminal II small-diameter neurons in the spinal dorsal horn, which was implicated in peripheral and central sensitization. These results suggest that G9a contributes to the development of RIH by epigenetically silencing Slo2.2 in DRG neurons, leading to decreased central sensitization in the spinal cord. The findings may have implications for the development of novel therapeutic targets for the treatment of postoperative pain.


Assuntos
Histona-Lisina N-Metiltransferase , Hiperalgesia , Remifentanil , Células Receptoras Sensoriais , Animais , Histona-Lisina N-Metiltransferase/metabolismo , Histona-Lisina N-Metiltransferase/genética , Masculino , Remifentanil/farmacologia , Hiperalgesia/metabolismo , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/metabolismo , Canais de Potássio Ativados por Sódio , Camundongos , Analgésicos Opioides/farmacologia , Gânglios Espinais/metabolismo , Gânglios Espinais/efeitos dos fármacos , Neuralgia/metabolismo , Dor Pós-Operatória/tratamento farmacológico , Dor Pós-Operatória/metabolismo , Ratos , Limiar da Dor/efeitos dos fármacos , Ratos Sprague-Dawley , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso
10.
PLoS One ; 19(4): e0301580, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38625876

RESUMO

Unpaired image-to-image translation (I2IT) involves establishing an effective mapping between the source and target domains to enable cross-domain image transformation. Previous contrastive learning methods inadequately accounted for the variations in features between two domains and the interrelatedness of elements within the features. Consequently, this can result in challenges encompassing model instability and the blurring of image edge features. To this end, we propose a multi-attention bidirectional contrastive learning method for unpaired I2IT, referred to as MabCUT. We design separate embedding blocks for each domain based on depthwise separable convolutions and train them simultaneously from both the source and target domains. Then we utilize a pixel-level multi-attention extractor to query images from embedding blocks in order to select feature blocks with crucial information, thus preserving essential features from the source domain. To enhance the feature representation capability of the model, we incorporate depthwise separable convolutions for the generator. We conducted comprehensive evaluations using three datasets, demonstrating that our approach enhances the quality of unpaired I2IT while avoiding the issue of mode collapse-related image blurring.

11.
Nanoscale ; 16(19): 9455-9461, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38623609

RESUMO

One-dimensional metal halide perovskites are among the most promising candidate materials for optoelectronic devices. However, the heterogeneity and fast degradation of perovskite nanowires (NWs) and nanorods (NRs) synthesized using conventional approaches impose a bottleneck for their optoelectronic applications. Recently, all-inorganic perovskite CsPbBr3 NRs with tailored dimensions, crafted using an amphiphilic bottlebrush-like block copolymer (BBCP) as nanoreactors, have demonstrated enhanced stabilities. Herein, we report the electronic investigation into these template-grown CsPbBr3 NRs using dielectric force microscopy (DFM), a contactless, nondestructive imaging technique. All freshly prepared CsPbBr3 NRs exhibited ambipolar behaviors for up to two months after sample synthesis. A transition from ambipolar to p-type behaviors occurred after two months, and nearly all NRs completed the transition within two weeks. Moreover, template-grown CsPbBr3 NRs displayed better nanoscale electronic homogeneity compared to their conventional counterparts. The improved electronic uniformity and nanoscale homogeneity place the template-grown CsPbBr3 NRs in a unique advantageous position for optoelectronic applications.

12.
Brain Res Bull ; 211: 110945, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38608544

RESUMO

Sleep fragmentation (SF) is a common sleep problem experienced during the perioperative period by older adults, and is associated with postoperative cognitive dysfunction (POCD). Increasing evidence indicates that delta-wave activity during non-rapid eye movement (NREM) sleep is involved in sleep-dependent memory consolidation and that hippocampal theta oscillations are related to spatial exploratory memory. Recovery sleep (RS), a self-regulated state of sleep homeostasis, enhances delta-wave power and memory performance in sleep-deprived older mice. However, it remains unclear whether RS therapy has a positive effect on cognitive changes following SF in older mouse models. Therefore, this study aimed to explore whether preoperative RS can alleviate cognitive deficits in aged mice with SF. A model of preoperative 24-h SF combined with exploratory laparotomy-induced POCD was established in 18-month-old mice. Aged mice were treated with preoperative 6-h RS following SF and postoperative 6-h RS following surgery, respectively. The changes in hippocampus-dependent cognitive function were investigated using behavioral tests, electroencephalography (EEG), local field potential (LFP), magnetic resonance imaging, and neuromorphology. Mice that underwent 24-h SF combined with surgery exhibited severe spatial memory impairment; impaired cognitive performance could be alleviated by preoperative RS treatment. In addition, preoperative RS increased NREM sleep; enhanced EEG delta-wave activity and LFP theta oscillation in the hippocampal CA1; and improved hippocampal perfusion, microstructural integrity, and neuronal damage. Taken together, these results provide evidence that preoperative RS may ameliorate the severity of POCD aggravated by SF by enhancing delta slow-wave activity and hippocampal theta oscillation, and by ameliorating the reduction in regional cerebral blood flow and white matter microstructure integrity in the hippocampus.


Assuntos
Região CA1 Hipocampal , Ritmo Delta , Complicações Cognitivas Pós-Operatórias , Privação do Sono , Ritmo Teta , Animais , Privação do Sono/fisiopatologia , Privação do Sono/complicações , Camundongos , Ritmo Teta/fisiologia , Masculino , Ritmo Delta/fisiologia , Região CA1 Hipocampal/fisiopatologia , Camundongos Endogâmicos C57BL , Eletroencefalografia/métodos , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/fisiopatologia , Sono/fisiologia , Envelhecimento/fisiologia
13.
Cancer Res ; 84(12): 1963-1977, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38502865

RESUMO

The urea cycle is frequently rewired in cancer cells to meet the metabolic demands of cancer. Elucidation of the underlying mechanism by which oncogenic signaling mediates urea cycle reprogramming could help identify targetable metabolic vulnerabilities. In this study, we discovered that oncogenic activation of KRAS in non-small cell lung cancer (NSCLC) silenced the expression of argininosuccinate synthase 1 (ASS1), a urea cycle enzyme that catalyzes the production of arginine from aspartate and citrulline, and thereby diverted the utilization of aspartate to pyrimidine synthesis to meet the high demand for DNA replication. Specifically, KRAS signaling facilitated a hypoacetylated state in the promoter region of the ASS1 gene in a histone deacetylase 3-dependent manner, which in turn impeded the recruitment of c-MYC for ASS1 transcription. ASS1 suppression in KRAS-mutant NSCLC cells impaired the biosynthesis of arginine and rendered a dependency on the arginine transmembrane transporter SLC7A1 to import extracellular arginine. Depletion of SLC7A1 in both patient-derived organoid and xenograft models inhibited KRAS-driven NSCLC growth. Together, these findings uncover the role of oncogenic KRAS in rewiring urea cycle metabolism and identify SLC7A1-mediated arginine uptake as a therapeutic vulnerability for treating KRAS-mutant NSCLC. SIGNIFICANCE: ASS1 deficiency is induced by mutant KRAS in NSCLC to facilitate DNA synthesis and creates a dependency on SLC7A1, revealing dietary arginine restriction and SLC7A1 inhibition as potential therapeutic strategies.


Assuntos
Arginina , Argininossuccinato Sintase , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Proteínas Proto-Oncogênicas p21(ras) , Humanos , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/tratamento farmacológico , Animais , Arginina/metabolismo , Camundongos , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Argininossuccinato Sintase/metabolismo , Argininossuccinato Sintase/genética , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Transportador 1 de Aminoácidos Neutros Grandes/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Proliferação de Células
14.
J Clin Invest ; 134(9)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38530364

RESUMO

G protein-coupled receptor 37-like 1 (GPR37L1) is an orphan GPCR with largely unknown functions. Here, we report that Gpr37l1/GRP37L1 ranks among the most highly expressed GPCR transcripts in mouse and human dorsal root ganglia (DRGs) and is selectively expressed in satellite glial cells (SGCs). Peripheral neuropathy induced by streptozotoxin (STZ) and paclitaxel (PTX) led to reduced GPR37L1 expression on the plasma membrane in mouse and human DRGs. Transgenic mice with Gpr37l1 deficiency exhibited impaired resolution of neuropathic pain symptoms following PTX- and STZ-induced pain, whereas overexpression of Gpr37l1 in mouse DRGs reversed pain. GPR37L1 is coexpressed with potassium channels, including KCNJ10 (Kir4.1) in mouse SGCs and both KCNJ3 (Kir3.1) and KCNJ10 in human SGCs. GPR37L1 regulates the surface expression and function of the potassium channels. Notably, the proresolving lipid mediator maresin 1 (MaR1) serves as a ligand of GPR37L1 and enhances KCNJ10- or KCNJ3-mediated potassium influx in SGCs through GPR37L1. Chemotherapy suppressed KCNJ10 expression and function in SGCs, which MaR1 rescued through GPR37L1. Finally, genetic analysis revealed that the GPR37L1-E296K variant increased chronic pain risk by destabilizing the protein and impairing the protein's function. Thus, GPR37L1 in SGCs offers a therapeutic target for the protection of neuropathy and chronic pain.


Assuntos
Ácidos Docosa-Hexaenoicos , Gânglios Espinais , Neuroglia , Receptores Acoplados a Proteínas G , Transdução de Sinais , Animais , Humanos , Masculino , Camundongos , Gânglios Espinais/metabolismo , Homeostase , Camundongos Knockout , Camundongos Transgênicos , Neuralgia/metabolismo , Neuralgia/genética , Neuralgia/patologia , Neuroglia/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/genética , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
15.
Cell ; 187(5): 1255-1277.e27, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38359819

RESUMO

Despite the successes of immunotherapy in cancer treatment over recent decades, less than <10%-20% cancer cases have demonstrated durable responses from immune checkpoint blockade. To enhance the efficacy of immunotherapies, combination therapies suppressing multiple immune evasion mechanisms are increasingly contemplated. To better understand immune cell surveillance and diverse immune evasion responses in tumor tissues, we comprehensively characterized the immune landscape of more than 1,000 tumors across ten different cancers using CPTAC pan-cancer proteogenomic data. We identified seven distinct immune subtypes based on integrative learning of cell type compositions and pathway activities. We then thoroughly categorized unique genomic, epigenetic, transcriptomic, and proteomic changes associated with each subtype. Further leveraging the deep phosphoproteomic data, we studied kinase activities in different immune subtypes, which revealed potential subtype-specific therapeutic targets. Insights from this work will facilitate the development of future immunotherapy strategies and enhance precision targeting with existing agents.


Assuntos
Neoplasias , Proteogenômica , Humanos , Terapia Combinada , Genômica , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/terapia , Proteômica , Evasão Tumoral
16.
Adv Sci (Weinh) ; 11(11): e2304781, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38189627

RESUMO

Intervention of the gut microbiome is a promising adjuvant strategy in cancer immunotherapy. Chemotherapeutic agents are recognized for their substantial impacts on the gut microbiome, yet their therapeutic potential as microbiome modulators remains uncertain, due to the complexity of microbiome-host-drug interactions. Here, it is showed that low-dose chemotherapy preferentially shapes the ileal microbiome to augment the extraintestinal immune response to anti-programmed death-1 (anti-PD-1) therapy without causing intestinal toxicity. Mechanistically, low-dose chemotherapy causes DNA damage restricted to highly-proliferative ileal epithelial cells, resulting in the accumulation of cytosolic dsDNA and the activation of the absent in melanoma 2 (AIM2) inflammasome. AIM2-dependent IL-18 secretion triggers the interplay between proximal Th1 cells and Paneth cells in ileal crypts, impairing the local antimicrobial host defense and resulting in ileal microbiome change. Intestinal epithelium-specific knockout of AIM2 in mice significantly attenuates CPT-11-caused IL-18 secretion, Paneth cell dysfunction, and ileal microbiome alteration. Moreover, AIM2 deficiency in mice or antibiotic microbial depletion attenuates chemotherapy-augmented antitumor responses to anti-PD1 therapy. Collectively, these findings provide mechanistic insights into how chemotherapy-induced genomic stress is transduced to gut microbiome change and support the rationale of applying low-dose chemotherapy as a promising adjuvant strategy in cancer immunotherapy with minimal toxicity.


Assuntos
Melanoma , Microbiota , Animais , Camundongos , Inflamassomos , Interleucina-18/genética , Inibidores de Checkpoint Imunológico/farmacologia , Proteínas de Ligação a DNA/genética , Células Epiteliais
17.
Neuropathology ; 44(2): 87-95, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37469134

RESUMO

The mutations of the feline leukemia virus subgroup C receptor-related protein 1 (FLVCR1) cause ataxia with retinitis pigmentosa. Recent studies indicated a large variation in the phenotype of FLVCR1-associated diseases. In this report, we describe an adult male who manifested first with tremors in his third decade, followed by retinitis pigmentosa, sensory ataxia, and sensory neuropathy in his fourth decade. While retinitis pigmentosa and sensory ataxia are well-recognized features of FLVCR1-associated disease, tremor is rarely described. Whole-exome sequencing revealed novel compound heterozygous pathogenic FLVCR1 variants: c.498 G > A; p.(Trp166*) and c.369 T > G; p.(Phe123Leu). In addition, we have highlighted the ultrastructural abnormalities of the sural biopsy in this patient.


Assuntos
Doenças do Sistema Nervoso Periférico , Retinose Pigmentar , Adulto , Humanos , Masculino , Ataxia , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Mutação , Receptores Virais/genética , Receptores Virais/metabolismo , Retinose Pigmentar/genética , Retinose Pigmentar/metabolismo , Tremor
18.
bioRxiv ; 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38106084

RESUMO

G protein coupled receptor 37-like 1 (GPR37L1) is an orphan GPCR and its function remains largely unknown. Here we report that GPR37L1 transcript is highly expressed compared to all known GPCRs in mouse and human dorsal root ganglia (DRGs) and selectively expressed in satellite glial cells (SGCs). Peripheral neuropathy following diabetes and chemotherapy by streptozotocin and paclitaxel resulted in downregulations of surface GPR37L1 in mouse and human DRGs. Transgenic mice with Gpr37l1 deficiency exhibited impaired resolution of neuropathic pain symptom (mechanical allodynia), whereas overexpression of Gpr37l1 in mouse DRGs can reverse neuropathic pain. Notably, GPR37L1 is co-expressed and coupled with potassium channels in SGCs. We found striking species differences in potassium channel expression in SGCs, with predominant expression of KCNJ10 and KCNJ3 in mouse and human SGCs, respectively. GPR37L1 regulates the surface expression and function of KCNJ10 and KCNJ3. We identified the pro-resolving lipid mediator maresin 1 (MaR1) as a GPR37L1 ligand. MaR1 increases KCNJ10/KCNJ3-mediated potassium influx in SGCs via GPR37L1. MaR1 protected chemotherapy-induced suppression of KCNJ13/KCNJ10 expression and function in SGCs. Finally, genetic analysis revealed that the GPR37L1-E296K variant is associated with increased chronic pain risk by destabilizing the protein. Thus, GPR37L1 in SGCs offers a new target for neuropathy protection and pain control.

19.
Cell Rep Med ; 4(12): 101338, 2023 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-38118411

RESUMO

In this study, Perez-Sanchez et al.1 developed a chemogenetic method aimed at alleviating pain in mouse models while dampening excitability in human sensory neurons. This analgesic effect was attained through the introduction of human α7 nicotinic acetylcholine receptor and glycine receptor pore domain via virus-mediated expression in sensory neurons, forming a chloride channel. The activation of this channel was made possible by specific agonists. This study highlights the potential for treating clinical pain by gene therapy.


Assuntos
Manejo da Dor , Células Receptoras Sensoriais , Camundongos , Animais , Humanos , Dor/tratamento farmacológico , Receptor Nicotínico de Acetilcolina alfa7/agonistas , Receptor Nicotínico de Acetilcolina alfa7/fisiologia
20.
Nature ; 623(7986): 432-441, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37914932

RESUMO

Chromatin accessibility is essential in regulating gene expression and cellular identity, and alterations in accessibility have been implicated in driving cancer initiation, progression and metastasis1-4. Although the genetic contributions to oncogenic transitions have been investigated, epigenetic drivers remain less understood. Here we constructed a pan-cancer epigenetic and transcriptomic atlas using single-nucleus chromatin accessibility data (using single-nucleus assay for transposase-accessible chromatin) from 225 samples and matched single-cell or single-nucleus RNA-sequencing expression data from 206 samples. With over 1 million cells from each platform analysed through the enrichment of accessible chromatin regions, transcription factor motifs and regulons, we identified epigenetic drivers associated with cancer transitions. Some epigenetic drivers appeared in multiple cancers (for example, regulatory regions of ABCC1 and VEGFA; GATA6 and FOX-family motifs), whereas others were cancer specific (for example, regulatory regions of FGF19, ASAP2 and EN1, and the PBX3 motif). Among epigenetically altered pathways, TP53, hypoxia and TNF signalling were linked to cancer initiation, whereas oestrogen response, epithelial-mesenchymal transition and apical junction were tied to metastatic transition. Furthermore, we revealed a marked correlation between enhancer accessibility and gene expression and uncovered cooperation between epigenetic and genetic drivers. This atlas provides a foundation for further investigation of epigenetic dynamics in cancer transitions.


Assuntos
Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Neoplasias , Humanos , Hipóxia Celular , Núcleo Celular , Cromatina/genética , Cromatina/metabolismo , Elementos Facilitadores Genéticos/genética , Epigênese Genética/genética , Transição Epitelial-Mesenquimal , Estrogênios/metabolismo , Perfilação da Expressão Gênica , Proteínas Ativadoras de GTPase/metabolismo , Metástase Neoplásica , Neoplasias/classificação , Neoplasias/genética , Neoplasias/patologia , Sequências Reguladoras de Ácido Nucleico/genética , Análise de Célula Única , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...