Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 222
Filtrar
1.
Drug Des Devel Ther ; 18: 2745-2760, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38974120

RESUMO

Purpose: Bee pollen possesses favorable anticancer activities. As a medicinal plant source, Schisandra chinensis bee pollen (SCBP) possesses potential pharmacological properties, such as reducing cisplatin-induced liver injury, but its anti-liver cancer effect is still rarely reported. This paper aims to investigate the effect and mechanism of SCBP extract (SCBPE) on hepatocellular carcinoma HepG2 cells. Methods: The effect of SCBPE on cell proliferation and migration of HepG2 cells was evaluated based on MTT assay, morphology observation, or scratching assay. Furthermore, tandem mass tag-based quantitative proteomics was used to study the effect mechanisms. The mRNA expression levels of identified proteins were verified by RT-qPCR. Results: Tandem mass tag-based quantitative proteomics showed that 61 differentially expressed proteins were obtained in the SCBPE group compared with the negative-control group: 18 significantly downregulated and 43 significantly upregulated proteins. Bioinformatic analysis showed the significantly enriched KEGG pathways were predominantly ferroptosis-, Wnt-, and hepatocellular carcinoma-signaling ones. Protein-protein interaction network analysis and RT-qPCR validation revealed SCBPE also downregulated the focal adhesion-signaling pathway, which is abrogated by PF-562271, a well-known inhibitor of FAK. Conclusion: This study confirmed SCBPE suppressed the cell proliferation and migration of hepatocellular carcinoma HepG2 cells, mainly through modulation of ferroptosis-, Wnt-, hepatocellular carcinoma-, and focal adhesion-signaling pathways, providing scientific data supporting adjuvant treatment of hepatocellular carcinoma using SCBP.


Assuntos
Carcinoma Hepatocelular , Movimento Celular , Proliferação de Células , Ferroptose , Neoplasias Hepáticas , Pólen , Schisandra , Humanos , Proliferação de Células/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Células Hep G2 , Animais , Schisandra/química , Pólen/química , Ferroptose/efeitos dos fármacos , Abelhas/química , Adesões Focais/efeitos dos fármacos , Adesões Focais/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Antineoplásicos/farmacologia , Antineoplásicos/química , Transdução de Sinais/efeitos dos fármacos , Produtos Biológicos , Polifenóis
2.
PeerJ ; 12: e17325, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38832044

RESUMO

The azalea (Rhododendron simsii Planch.) is an important ornamental woody plant with various medicinal properties due to its phytochemical compositions and components. However little information on the metabolite variation during flower development in Rhododendron has been provided. In our study, a comparative analysis of the flavonoid profile was performed in Rhododendron pulchrum sweet at three stages of flower development, bud (stage 1), partially open flower (stage 2), and full bloom (stage 3). A total of 199 flavonoids, including flavone, flavonol, flavone C-glycosides, flavanone, anthocyanin, and isoflavone were identified. In hierarchical clustering analysis (HCA) and principal component analysis (PCA), the accumulation of flavonoids displayed a clear development stage variation. During flower development, 78 differential accumulated metabolites (DAMs) were identified, and most were enriched to higher levels at the full bloom stage. A total of 11 DAMs including flavone (chrysin, chrysoeriol O-glucuronic acid, and chrysoeriol O-hexosyl-O-pentoside), isoflavone (biochanin A), and flavonol (3,7-di-O-methyl quercetin and isorhamnetin) were significantly altered at three stages. In particular, 3,7-di-O-methyl quercetin was the top increased metabolite during flower development. Furthermore, integrative analyses of metabolomic and transcriptomic were conducted, revealing that the contents of isoflavone, biochanin A, glycitin, and prunetin were correlated with the expression of 2-hydroxyisoflavanone dehydratase (HIDH), which provide insight into the regulatory mechanism that controls isoflavone biosynthesis in R. pulchrum. This study will provide a new reference for increasing desired metabolites effectively by more accurate or appropriate genetic engineering strategies.


Assuntos
Flavonoides , Flores , Rhododendron , Rhododendron/metabolismo , Rhododendron/genética , Rhododendron/crescimento & desenvolvimento , Flores/metabolismo , Flores/crescimento & desenvolvimento , Flores/genética , Flavonoides/metabolismo , Flavonoides/análise
3.
Artigo em Inglês | MEDLINE | ID: mdl-38935062

RESUMO

OBJECTIVES: The objective of this study was to assess the effect of repetitive transcranial magnetic stimulation (rTMS) on the supplementary motor area (SMA) in motor function in Parkinson's disease (PD) patients. METHOD: Databases searched included 5 databases from October 7,2022 to January 4, 2023. The Cochrane Bias Risk Assessment Tool was used for quality assessment. Standardized mean differences (SMDs) were calculated using a random-effects model. Outcome measure is the motor function examination of the motor part of Unified Parkinson's Disease Rating Scale (UPDRS-III). RESULTS: Seven studies totaling 374 patients were included. Meta-analysis showed that stimulation of SMA significantly improved motor function in PD patients compared with sham stimulation (SMD = -1.24; 95% CI, -2.24 to -0.24; P = 0.02; I 2 = 93%). Stimulation of the same target (SMA), subgroup analysis showed that high-frequency rTMS (HF-rTMS) is more effective than low-frequency rTMS (LF-rTMS) in improving motor function in PD (SMD = -1.39; 95% CI, -2.21 to -0.57; P = 0.04; I 2 = 77.2%). CONCLUSIONS: Overall, rTMS over SMA had a statistically significant improvement in motor function in PD patients, and HF-rTMS is statistically significantly more effective than LF-rTMS.

4.
Cell Biochem Biophys ; 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38809351

RESUMO

Ferroptosis and endoplasmic reticulum stress (ERS) are common events in the process of myocardial ischemia/reperfusion injury (IRI). The suppression of chromobox7 (CBX7) has been reported to protect against ischemia/reperfusion injury, This research is purposed to expose the impacts and mechanism of CBX7 in myocardial IRI. CBX7 expression was detected using RT-qPCR and western blotting analysis. CCK-8 assay detected cell viability. Inflammatory response and oxidative stress were detected by ELISA, DCFH-DA probe and related assay kits. Flow cytometry analysis and caspase3 activity assay were used to detect cell apoptosis. C11-BODIPY 581/591 staining and ferro-orange staining were used to detect lipid reactive oxygen species (ROS) and Fe2+ level, respectively. Western blotting was used to detect the expression of proteins associated with apoptosis, ferroptosis and ERS. In the hypoxia/reoxygenation (H/R) model of rat cardiomyocytes H9c2, CBX7 was highly expressed. CBX7 interference significantly protected against inflammatory response, oxidative stress, apoptosis, ferroptosis and ERS induced by H/R in H9c2 cells. Moreover, after the pretreatment with ferroptosis activator erastin or ERS agonist Tunicamycin (TM), the protective effects of CBX7 knockdown on the inflammation, oxidative stress and apoptosis in H/R-induced H9c2 cells was partially abolished. To summarize, CBX7 down-regulation may exert anti-ferroptosis and anti-ERS activities to alleviate H/R-stimulated myocardial injury.

5.
Artigo em Inglês | MEDLINE | ID: mdl-38577727

RESUMO

BACKGROUND: The cerebellum is a key structure involved in balance and motor control, and has become a new stimulation target in brain regulation technology. Interference theta-burst simulation (iTBS) is a novel simulation mode of repetitive transcranial magnetic simulation. However, the impact of cerebellar iTBS on balance function and gait in stroke patients is still unknown. AIM: The aim of this study was to determine whether cerebellar iTBS can improve function, particularly balance and gait, in patients with post-stroke hemiplegia. DESIGN: This study is a randomized, double-blind, sham controlled clinical trial. SETTING: The study was carried out at the Department of Rehabilitation Medicine in a general hospital. POPULATION: Patients with stroke with first unilateral lesions were enrolled in the study. METHODS: Thirty-six patients were randomly assigned to the cerebellar iTBS group or sham stimulation group. The cerebellar iTBS or pseudo stimulation site is the ipsilateral cerebellum on the paralyzed side, which is completed just before daily physical therapy. The study was conducted five times a week for two consecutive weeks. All patients were assessed before the intervention (T0) and at the end of 2 weeks of treatment (T1), respectively. The primary outcome was the Berg Balance Scale (BBS), while secondary outcome measures included the Fugl Meyer Lower Limb Assessment Scale (FMA-LE), timed up and go (TUG), Barthel Index (BI), and gait analysis. RESULTS: After 2 weeks of intervention, the BBS, FMA-LE, TUG, and BI score in both the iTBS group and the sham group were significantly improved compared to the baseline (all P<0.05). Also, there was a significant gait parameter improvement including the cadence, stride length, velocity, step length compared to the baseline (P<0.05) in the iTBS group, but only significant improvement in cadence was identified in the sham group (P<0.05). Intergroup comparison showed that the BBS (P<0.001), FMA-LE (P<0.001), and BI (P=0.002) in the iTBS group were significantly higher than those in the sham group, and the TUG in the iTBS was significantly lower than that in the sham group (P=0.002). In addition, there were significant differences in cadence (P=0.029), strip length (P=0.046), gain velocity (P=0.002), and step length of affected lower limb (P=0.024) between the iTBS group and the sham iTBS group. CONCLUSIONS: Physical therapy is able to improve the functional recovery in hemiplegic patients after stroke, but the cerebellar iTBS can facilitate and accelerate the recovery, particularly the balance function and gait. Cerebellar iTBS could be an efficient and facilitative treatment for patients with stroke. CLINICAL REHABILITATION IMPACT: Cerebellar iTBS provides a convenient and efficient treatment modality for functional recovery of patients with stroke, especially balance function and gait.

6.
Int J Mol Sci ; 25(6)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38542280

RESUMO

Cardiomyocyte survival is a critical contributing process of host adaptive responses to cardiovascular diseases (CVD). Cells of the cardiovascular endothelium have recently been reported to promote cardiomyocyte survival through exosome-loading cargos. Sphingosylphosphorylcholine (SPC), an intermediate metabolite of sphingolipids, mediates protection against myocardial infarction (MI). Nevertheless, the mechanism of SPC delivery by vascular endothelial cell (VEC)-derived exosomes (VEC-Exos) remains uncharacterized at the time of this writing. The present study utilized a mice model of ischemia/reperfusion (I/R) to demonstrate that the administration of exosomes via tail vein injection significantly diminished the severity of I/R-induced cardiac damage and prevented apoptosis of cardiomyocytes. Moreover, SPC was here identified as the primary mediator of the observed protective effects of VEC-Exos. In addition, within this investigation, in vitro experiments using cardiomyocytes showed that SPC counteracted myocardial I/R injury by activating the Parkin and nuclear receptor subfamily group A member 2/optineurin (NR4A2/OPTN) pathways, in turn resulting in increased levels of mitophagy within I/R-affected myocardium. The present study highlights the potential therapeutic effects of SPC-rich exosomes secreted by VECs on alleviating I/R-induced apoptosis in cardiomyocytes, thereby providing strong experimental evidence to support the application of SPC as a potential therapeutic target in the prevention and treatment of myocardial infarction.


Assuntos
Exossomos , Infarto do Miocárdio , Traumatismo por Reperfusão Miocárdica , Fosforilcolina/análogos & derivados , Esfingosina/análogos & derivados , Camundongos , Animais , Traumatismo por Reperfusão Miocárdica/metabolismo , Mitofagia , Miócitos Cardíacos/metabolismo , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/metabolismo , Células Endoteliais/metabolismo , Exossomos/metabolismo , Apoptose
7.
Hortic Res ; 11(2): uhad272, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38333730

RESUMO

Resistant crop cultivars can recruit beneficial rhizobacteria to resist disease. However, whether this recruitment is regulated by quantitative trait loci (QTL) is unclear. The role of QTL in recruiting specific bacteria against bacterial wilt (BW) is an important question of practical significance to disease management. Here, to identify QTL controlling BW resistance, Super-BSA was performed in F2 plants derived from resistant eggplant cultivar R06112 × susceptible cultivar S55193. The QTL was narrowed down through BC1F1-BC3F1 individuals by wilting symptoms and KASP markers. Rhizosphere bacterial composition of R06112, S55193, and resistant individuals EB158 (with the QTL) and susceptible individuals EB327 (without QTL) from BC2F1 generation were assessed by Illumina sequencing-based analysis, and the activation of plant immunity by the bacterial isolates was analyzed. Evidence showed that BW-resistant is controlled by one QTL located at the 270 kb region on chromosome 10, namely EBWR10, and nsLTPs as candidate genes confirmed by RNA-Seq. EBWR10 has a significant effect on rhizobacteria composition and significantly recruits Bacillus. pp. A SynCom of three isolated Bacillus. pp trains significantly reduced the disease incidence, changed activities of CAT, PPO, and PAL and concentration of NO, H2O2, and O2-, activated SA and JA signaling-dependent ISR, and displayed immune activation against Ralstonia solanacearum in eggplant. Our findings demonstrate for the first time that the QTL can recruit beneficial rhizobacteria, which jointly promote the suppression of BW. This method charts a path to develop the QTL in resistant cultivar-driven probiotics to ameliorate plant diseases.

8.
Chem Sci ; 15(3): 940-952, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38239684

RESUMO

Non-AIE-type molecular photosensitizers (PSs) suffer from the aggregation-caused-quenching (ACQ) effect in an aqueous medium due to the strong hydrophobic and π-π interactions of their conjugated planes, which significantly hinders the enhancement of tumor photodynamic therapy (PDT). So far, some ionic PSs have been reported with good water-solubility, though the ACQ effect can still be induced in a biological environment rich in ions, leading to unsatisfactory in vivo delivery and fluorescence imaging performance. Hence, designing molecular PSs with outstanding anti-ACQ properties in water is highly desirable, but it remains a tough challenge for non-AIE-type fluorophores. Herein, we demonstrated a strategy for the design of porphyrin-type molecular PSs with remarkable solubility and anti-ACQ properties in an aqueous medium, which was assisted by quantum chemical simulations. It was found that cationic branched side chains can induce serious plane distortion in diphenyl porphyrin (DPP), which was not observed for tetraphenyl porphyrin (TPP) with the same side chains. Moreover, the hydrophilicity of the chain spacer is also crucial to the plane distortion for attaining the desired anti-ACQ properties. Compared to ACQ porphyrin, anti-ACQ porphyrin displayed type-I ROS generation in hypoxia and much higher tumor accumulation efficacy by blood circulation, leading to highly efficient in vivo PDT for hypoxic tumors. This study demonstrates the power of sidechain chemistry in tuning the configuration and aggregation behaviors of porphyrins in water, offering a new path to boost the performance of PSs to fulfill the increasing clinical demands on cancer theranostics.

9.
ACS Appl Mater Interfaces ; 16(4): 4836-4846, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38234104

RESUMO

Transition-metal dichalcogenide WSe2 has attracted increasing interest due to its large thermopower (S), low-cost, and environment-friendly constituents. However, its thermoelectric figure of merit, ZT, of WSe2 is limited due to its large lattice thermal conductivity (κL) and low electrical conductivity. In view of WSe2 and MoS2 having the same crystal structure, here we designed and prepared Nb-doped quarternary mixed crystal (MC) Nb0.05W0.95-xMox(Se1-xSx)2 (0 ≤ x ≤ 0.095). The results indicate that the κL of the MC can reach as low as 0.12 W m K-1 at 850 K, being 93% smaller than that of WSe2. Our analysis reveals that its low κL originates chiefly from intense scattering of both high-frequency phonons from point defects (mainly alloying elements) and mid/low-frequency phonons from MoS2 inclusions residual within MC. In addition, the alloying of WSe2 with MoS2 causes a 5-fold increase in cation vacancies (VW‴'), leading to a large increase in hole concentration and electrical conductivity, which gives rise to a ∼7.5 times increase in power factor (reaching 4.2 µ W cm-1 K-2 at 850 K). As a result, a record high ZTmax = 0.63 is achieved at 850 K for the MC sample with x = 0.076, which is 20 times larger than that of WSe2, demonstrating that MC Nb0.05W0.95-xMox(Se1-xSx)2 is a promising thermoelectric material.

10.
ACS Appl Mater Interfaces ; 15(47): 54851-54862, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-37968254

RESUMO

Water is ubiquitous in natural systems where it builds an essential environment supporting biological supramolecular polymers to function, transport, and exchange. However, this extreme polar environment becomes a hindrance for the superhydrophobic functional π-conjugated molecules, causing significant negative impacts on regulating their aggregation pathways, structures, and properties of the subsequently assembled nanomaterials. It especially makes the self-assembly of ultrathin two-dimensional (2D) functional nanomaterials by π-conjugated molecules a grand challenge in water, although ultrathin 2D functional nanomaterials have exhibited unique and superior properties. Herein, we demonstrate the organic solvent-free self-assembly of one-molecule-thick 2D nanosheets based on exploring how side chain modifications rule the aggregation behaviors of π-conjugated macrocycles in water. Through an in-depth understanding of the roles of linking groups for side chains on affecting the aggregation behaviors of porphyrins in water, the regulation of molecular arrangement in the aggregated state (H- or J-type aggregation) was attained. Moreover, by arranging ionic porphyrins into 2D single layers through J-aggregation, the ultrathin nanosheets (thickness ≈ 2 nm) with excellent solubility and stability were self-assembled in pure water, which demonstrated both outstanding 1O2 generation and photothermal capability. The ultrathin nanosheets were further investigated as metal- and carrier-free nanodrugs for synergetic phototherapies of cancers both in vitro and in vivo, which are highly desirable by combining the advantages and avoiding the disadvantages of the single use of PDT or PTT.


Assuntos
Neoplasias , Fotoquimioterapia , Porfirinas , Humanos , Água , Fototerapia/métodos , Neoplasias/tratamento farmacológico
11.
Sci Bull (Beijing) ; 68(22): 2769-2778, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37806799

RESUMO

Thermoelectric (TE) technology can achieve the mutual conversion between electric energy and waste heat, and it has exhibited great prospects in multifunctional energy applications to alleviate the energy crisis. In the recent decade, SnSe has been explored widely because of its potentially high energy harvesting efficiency, green nature, and low cost. However, the relatively poor power factor (PF) derived from the intrinsic low carrier concentration (∼1017 cm-3) limits the output power density of the stoichiometric SnSe devices. Therefore, the advancement of novel optimization strategies for controlling carrier concentration is of utmost importance. Besides, compared with 3D bulks, 2D thin films are more compatible with modern semiconductor technology and have unique advantages in the construction and application of TE micro- and nano-devices. In this study, post-selenization technology were applied to increase the carrier concentration of the a-axis oriented SnSe epitaxial films utilizing the charge transfer and self-hole doped effects. The quasi-layered and self-hole doped films exhibited a high power factor of ∼5.9 µW cm-1 K-2 at 600 K along the in-plane direction when the carrier concentration is enhanced to ∼1018 cm-3 by increasing the selenization time to ∼20 min. The TE generator composed of four P-type film legs demonstrated the ultrahigh maximum power density of ∼83, ∼838 µW cm-2 at the temperature difference of ∼50 and ∼90 K, respectively. Post-selenization can effectively optimize the carrier concentration of SnSe-based materials, which is also feasible to other anion deficient TE films.

12.
Sci Total Environ ; 904: 166918, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37689195

RESUMO

With rapid industrial development and population growth, the pollution of soil and groundwater has become a critical concern all over the world. Yet, remediation of contaminated soil and water remains a major challenge. In recent years, apatite has gained a surging interest in environmental remediation because of its high treatment efficiency, low cost, and environmental benignity. This review summarizes recent advances in: (1) natural apatite of phosphate ores and biological source; (2) synthesis of engineered apatite particles (including stabilized or surface-modified apatite nanoparticles); (3) treatment effectiveness of apatite towards various environmental pollutants in soil and groundwater, including heavy metals (e.g., Pb, Zn, Cu, Cd, and Ni), inorganic anions (e.g., As oxyanions and F-), radionuclides (e.g., thorium (Th), strontium (Sr), and uranium (U)), and organic pollutants (e.g., antibiotics, dyes, and pesticides); and (4) the removal and/or interaction mechanisms of apatite towards the different contaminants. Lastly, the knowledge or technology gaps are identified and future research needs are proposed.

13.
Int Immunopharmacol ; 123: 110740, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37543013

RESUMO

Acute lung injury (ALI) and its extreme manifestation, acute respiratory distress syndrome (ARDS), are life-threatening diseases in intensive care units. LncRNA THRIL plays a crucial role in regulating the inflammatory response; however, the potential function of THRIL in ALI/ARDS and the associated mechanism remain unclear. In our study, we found that THRIL was upregulated in the serum of ALI/ARDS patients, and its increased expression was positively correlated with the inflammatory cytokines IL-17. In LPS-induced A549 cells, knockdown of THRIL inhibited the release of the proinflammatory cytokines TNF-α, IL-1ß, IL-17, and IL-6, decreased the number of monodansylcadaverine-positive cells and LC3-II with immunofluorescence staining, decreased the expression of autophagy marker ATG7 and Beclin1, and increased expression of p62. Mechanistically, the transcription factor AP-1 bound directly to the THRIL promoter region and activated its transcription by c-Jun upon LPS exposure. Moreover, m6A modification of THRIL was increased in LPS-treated A549 cells, and METTL14 knockdown significantly abolished m6A modification and reduced stabilization of THRIL mRNA. In conclusion, our findings reveal that THRIL, transcriptionally activated by AP-1 and modified by METTL14-mediated m6A modification, induces autophagy in LPS-treated A549 cells, suggesting the potential application of THRIL for ALI/ARDS therapy.


Assuntos
RNA Longo não Codificante , Síndrome do Desconforto Respiratório , Humanos , Células Epiteliais Alveolares , Citocinas/metabolismo , Interleucina-17/metabolismo , Lipopolissacarídeos/metabolismo , Metiltransferases/metabolismo , Síndrome do Desconforto Respiratório/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Fator de Transcrição AP-1/genética , Fator de Transcrição AP-1/metabolismo , Processamento Pós-Transcricional do RNA/genética
14.
Comp Cytogenet ; 17: 163-180, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37650109

RESUMO

Rhododendronmariesii Hemsley et Wilson, 1907, a typical member of the family Ericaeae, possesses valuable medicinal and horticultural properties. In this research, the complete chloroplast (cp) genome of R.mariesii was sequenced and assembled, which proved to be a typical quadripartite structure with the length of 203,480 bp. In particular, the lengths of the large single copy region (LSC), small single copy region (SSC), and inverted repeat regions (IR) were 113,715 bp, 7,953 bp, and 40,918 bp, respectively. Among the 151 unique genes, 98 were protein-coding genes, 8 were tRNA genes, and 45 were rRNA genes. The structural characteristics of the R.mariesiicp genome was similar to other angiosperms. Leucine was the most representative amino acid, while cysteine was the lowest representative. Totally, 30 codons showed obvious codon usage bias, and most were A/U-ending codons. Six highly variable regions were observed, such as trnK-pafI and atpE-rpoB, which could serve as potential markers for future barcoding and phylogenetic research of R.mariesii species. Coding regions were more conserved than non-coding regions. Expansion and contraction in the IR region might be the main length variation in R.mariesii and related Ericaeae species. Maximum-likelihood (ML) phylogenetic analysis revealed that R.mariesii was relatively closed to the R.simsii Planchon, 1853 and R.pulchrum Sweet,1831. This research will supply rich genetic resource for R.mariesii and related species of the Ericaeae.

16.
ACS Appl Mater Interfaces ; 15(18): 22167-22175, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37125742

RESUMO

Transition-metal dichalcogenide WSe2 is a potentially good thermoelectric (TE) material due to its high thermopower (S). However, the low electrical conductivity (σ), power factor (PF), and relatively large lattice thermal conductivity (κL) of pristine WSe2 degenerate its TE performance. Here, we show that through proper substitution of Nb for W in WSe2, its PF can be increased by ∼10 times, reaching 5.44 µW cm-1 K-2 (at 850 K); simultaneously, κL lowers from 1.70 to 0.80 W m-1 K-1. Experiments reveal that the increase of PF originates from both increased hole concentration due to the replacement of W4+ by Nb3+ and elevated thermopower (S) caused by the enhanced density of states effective mass, while the reduced κL comes mainly from phonon scattering at point defects NbW. As a result, a record high figure of merit ZTmax ∼0.42 is achieved at 850 K for the doped sample W0.95Nb0.05Se2, which is ∼13 times larger than that of pristine WSe2, demonstrating that Nb doping at the W site is an effective approach to improve the TE performance of WSe2.

17.
Arch Dermatol Res ; 315(8): 2383-2391, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37204459

RESUMO

Bullous pemphigoid (BP) is a complex inflammatory process with elevated levels of autoantibodies, eosinophils, neutrophils, and various cytokines. Hematological inflammatory biomarkers can reflect inflammatory state in various diseases. Up to now, the correlations of hematological inflammatory biomarkers and disease activity of BP remain unknown. The purpose of this study was to clarify the associations between hematological inflammatory biomarkers and disease activity of BP. The levels of neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), platelet-to-neutrophil ratio (PNR) and mean platelet volume (MPV) of 36 untreated BP patients and 45 age and gender matched healthy controls were detected by routine blood tests. The correlations between hematological inflammatory markers and clinical characteristics of BP were statistically analyzed. The Bullous Pemphigoid Disease Area Index (BPDAI) was used to measure disease activity of BP. The mean levels of NLR, PLR, PNR and MPV in 36 untreated BP patients were 3.9, 157.9, 45.7 and 9.4 fl, respectively. Increased NLR (p < 0.001), PLR (p < 0.01), and MPV (p < 0.001) but decreased PNR (p < 0.001) were observed in BP patients when compared with healthy controls. In BP patients, the levels of NLR were positively correlated to BPDAI Erosion/Blister Scores (p < 0.01); and the levels of NLR and PLR were both positively correlated to BPDAI without Damage Score (both p < 0.05) and BPDAI Total Score (both p < 0.05). No correlation was found in other statistical analyses between hematological inflammatory markers and clinical characteristics in BP patients involved in the present study. Therefore, NLR and PLR are positively correlated with disease activity of BP.


Assuntos
Neutrófilos , Penfigoide Bolhoso , Humanos , Plaquetas , Linfócitos , Biomarcadores , Estudos Retrospectivos , Contagem de Linfócitos
18.
Molecules ; 28(10)2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37241856

RESUMO

Non-covalent interactions have been extensively used to fabricate nanoscale architectures in supramolecular chemistry. However, the biomimetic self-assembly of diverse nanostructures in aqueous solution with reversibility induced by different important biomolecules remains a challenge. Here, we report the synthesis and aqueous self-assembly of two chiral cationic porphyrins substituted with different types of side chains (branched or linear). Helical H-aggregates are induced by pyrophosphate (PPi) as indicated by circular dichroism (CD) measurement, while J-aggregates are formed with adenosine triphosphate (ATP) for the two porphyrins. By modifying the peripheral side chains from linear to a branched structure, more pronounced H- or J-type aggregation was promoted through the interactions between cationic porphyrins and the biological phosphate ions. Moreover, the phosphate-induced self-assembly of the cationic porphyrins is reversible in the presence of the enzyme alkaline phosphatase (ALP) and repeated addition of phosphates.


Assuntos
Trifosfato de Adenosina , Difosfatos , Nanoestruturas , Porfirinas , Porfirinas/síntese química , Cátions/síntese química , Difosfatos/química , Trifosfato de Adenosina/química , Fosfatase Alcalina/química , Estrutura Molecular , Simulação de Acoplamento Molecular , Nanoestruturas/química , Eletricidade Estática , Água/química
19.
Lung ; 201(1): 65-77, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36735045

RESUMO

PURPOSE: Acute lung injury (ALI) with high rates of morbidity is often accompanied by the apoptosis in the type I alveolar epithelial cells (ATIs). Thus, the transdifferentiation of type II alveolar epithelial cells (ATIIs) into ATIs is crucial for the maintenance of alveolar epithelial functions. We aimed to elucidate the role of sesamin in the transdifferentiation of ATIIs to ATIs and the involvement of the TRPV1/AKT pathway. METHODS: In vivo, the mouse model of ALI was simulated by intraperitoneal and intratracheal injections of lipopolysaccharide (LPS), respectively. The protective effects of sesamin on ALI were investigated using the survival rate, lung/body weight ratio, histological analysis of lung with HE staining, and mRNA levels of inflammatory factors. Western blot analysis and immunofluorescence detection of ATIs marker AQP5 were used to evaluate the protective effect of sesamin on ATIs. Western blot, EdU, and qPCR analyses were applied to detect changes in apoptosis, proliferation, and transdifferentiation markers of ATII A549 cell lines. Small interfering RNA (siRNA) was used to detect the involvement and relationships between the sesamin receptors (ANXA1 and TRPV1) and the AKT pathway in transdifferentiation. RESULTS: Sesamin (200 mg/kg) significantly improved LPS-induced ALI and inhibited LPS-induced ATIs reduction. A low concentration of sesamin (20 µM) promoted the transdifferentiation of ATIIs to ATIs. Both ANXA1 and TRPV1 were involved in sesamin-promoted transdifferentiation, while the P-AKT (S473) level was down-regulated by TRPV1 siRNA. CONCLUSION: Sesamin may promote transdifferentiation of ATII to ATI to ultimately rescue ALI, with TRPV1/AKT pathway involved in this transdifferentiation. This study revealed a novel role of sesamin in promoting the transdifferentiation of ATIIs to ATIs, providing experimental supports for the potential targets of ALI therapy.


Assuntos
Lesão Pulmonar Aguda , Células Epiteliais Alveolares , Camundongos , Animais , Células Epiteliais Alveolares/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Lipopolissacarídeos , Transdiferenciação Celular , Lesão Pulmonar Aguda/patologia , RNA Interferente Pequeno , Canais de Cátion TRPV
20.
Surgery ; 173(5): 1303-1310, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36774318

RESUMO

BACKGROUND: A blunt host defense response in older patients may contribute to different coagulation responses during sepsis. We aimed to investigate the differences in coagulation parameters between elderly and non-elderly patients with sepsis. METHODS: Adult patients diagnosed with sepsis within 24 hours after admission to the intensive care unit between September 2018 and December 2020 were prospectively enrolled. Patients were categorized into the adult (18-64 years) and elderly (age ≥65 years) groups. Conventional coagulation parameters and inflammatory markers were measured on intensive care unit admission and on Days 3 and 7. Thromboelastography was performed on intensive care unit admission. The differences in the coagulation parameters between the 2 groups were evaluated. The adult and elderly patients were matched to adjust for baseline characteristics. Correlations between inflammatory markers and coagulation-related parameters were also analyzed. RESULTS: Of the 567 patients, 303 (53.4%) were elderly. Compared with adult patients, elderly patients had lower prothrombin time elevation, lower fibrinogen, D-dimer, and fibrin/Fib degradation product levels, and lower proportion of disseminated intravascular coagulation on intensive care unit admission; and, they had lower dynamic platelet, lower fibrinogen, and D-dimer levels during the first week in the intensive care unit. Thromboelastography parameters were generally within the normal range, although elderly patients had lower R and K values and a higher alpha angle. Comparisons of coagulation parameters between the 2 groups revealed similar results in the matched cohort. The inflammatory markers correlated with prothrombin time, activated partial thromboplastin time, and antithrombin III. CONCLUSION: Elderly patients had milder coagulation activation, accompanied by a decreased inflammatory response during sepsis, compared to non-elderly patients.


Assuntos
Coagulação Intravascular Disseminada , Sepse , Adulto , Humanos , Pessoa de Meia-Idade , Idoso , Estudos Prospectivos , Coagulação Sanguínea , Testes de Coagulação Sanguínea , Coagulação Intravascular Disseminada/diagnóstico , Coagulação Intravascular Disseminada/etiologia , Fibrinogênio/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...