Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 356
Filtrar
1.
iScience ; 27(8): 110379, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39156650

RESUMO

Maintaining cognitive integrity is crucial during underwater operations, which can significantly impact work performance and risk severe accidents. However, the cognitive effects of underwater operations and their underlying mechanism remain elusive, posing great challenges to the medical protection of professionals concerned. Here, we found that a single underwater operation session affects cognition in a time-dependent model. Prolonged exposure elicits significant cognitive impairment and hippocampal dysfunction, accompanied by increased neuroinflammation. Furthermore, RNA sequencing (RNA-seq) analysis revealed the involvement of neuroinflammation and highlighted the critical role of CCR3. Knockdown of CCR3 significantly rescued cognitive impairment and hippocampal dysfunction and reversed the upregulation of pro-inflammatory cytokines, by switching the activated microglia from a pro-inflammatory to a neuroprotective phenotype. Taken together, these results highlighted the time-dependent effects of a single underwater operation session on cognitive function. Knocking down CCR3 can attenuate neuroinflammation by regulating polarization of activated microglia, thereby alleviating prolonged underwater operations-induced cognitive impairment.

2.
Mater Horiz ; 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39188198

RESUMO

MXenes, a novel class of two-dimensional materials, have garnered significant attention for their promising electrocatalytic properties in various energy conversion applications such as water splitting, fuel cells, metal-air batteries, and nitrogen reduction reactions. Their excellent electrical conductivity, high specific surface area, and versatile surface chemistry enable exceptional catalytic performance. This review highlights recent advancements in the design and application strategies of MXenes as electrocatalysts, focusing on key reactions including hydrogen evolution reaction (HER), oxygen evolution reaction (OER), oxygen reduction reaction (ORR), and nitrogen reduction reaction (NRR). We discuss the tunability of MXenes' layered structures and surface properties through surface modification, MXene lattice substitution, defect and morphology engineering, and heterostructure construction. Despite the considerable progress, MXenes face challenges such as restacking during catalysis, stability issues, and difficulties in large-scale production. Addressing these challenges through innovative engineering approaches and advancing industrial synthesis techniques is crucial for the broader application of MXene-based materials. Our review underscores the potential of MXenes in transforming electrocatalytic processes and highlights future research directions to optimize their catalytic efficiency and stability.

3.
Cell Stem Cell ; 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39084220

RESUMO

During pregnancy, placental-fetal nutrient allocation is crucial for fetal and maternal health. However, the regulatory mechanisms for nutrient metabolism and allocation in placental trophoblasts have remained unclear. Here, we used human first-trimester placenta samples and human trophoblast stem cells (hTSCs) to discover that glucose metabolism is highly active in hTSCs and cytotrophoblasts, but during syncytialization, it decreases to basal levels, remaining necessary for fueling acetyl-CoA and differentiation potential. Acetate supplementation could rescue syncytiotrophoblast fusion from glycolysis deficiency by replenishing acetyl-CoA and maintaining histone acetylation, thus rescuing the activation of syncytialization genes. Even brief glycolysis deficiency could permanently inhibit differentiation potential and promote inflammation, which could also be permanently rescued by brief acetate supplementation in vivo. These results suggest that hTSCs retain only basal glycolytic acetyl-CoA metabolism during syncytialization to regulate cell fates via nutrient-responsive histone acetylation, with implications for our understanding of the balance between placental and fetal nutrition.

5.
J Affect Disord ; 362: 230-236, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38969024

RESUMO

BACKGROUND: To explore the risk factors of post-traumatic stress disorder (PTSD) among Chinese college students during the COVID-19 pandemic and the construction and validation of risk prediction models. METHODS: A total of 10,705 university students were selected for the study. The questionnaire included the Generalized Anxiety Disorder 7 (GAD-7), Patient Health Questionnaire 9 (PHQ-9), PTSD Checklist for DSM-5 (PCL-5), and self-designed questionnaire. These assessments were conducted to facilitate the survey, construct the predictive model and validate the model's validity. RESULTS: Sex, left-behind experience, poverty status, anxiety score, and depression score were identified as independent risk factors influencing psychological trauma among Chinese college students during the COVID-19 pandemic, while COVID-19 infection emerged as a protective factor against psychological trauma. A column chart was constructed to visualize the six independent risk factors derived from logistic regression analysis. The Hosmer-Lemeshow test results (χ2 = 13.021, P = 0.111) indicated that the risk prediction model fitted well. The receiver operating characteristic (ROC) curve showed an area under the curve (AUC) of 0.864 in the model group and 0.855 in the validation group. The calibration curves of the model closely resembled the ideal curve. Decision curve analysis (DCA) revealed that the model provided net benefit and demonstrated good clinical utility. LIMITATIONS: The validation of the model is currently restricted to internal assessments. However, further confirmation through larger sample sizes, multicenter investigations, and prospective studies is necessary. CONCLUSIONS: The model effectively predicted PTSD risk among Chinese college students during the COVID-19 pandemic, indicating strong clinical applicability.


Assuntos
COVID-19 , Transtornos de Estresse Pós-Traumáticos , Estudantes , Humanos , Transtornos de Estresse Pós-Traumáticos/epidemiologia , Transtornos de Estresse Pós-Traumáticos/diagnóstico , Transtornos de Estresse Pós-Traumáticos/psicologia , COVID-19/psicologia , COVID-19/epidemiologia , Feminino , Estudantes/psicologia , Estudantes/estatística & dados numéricos , Masculino , China/epidemiologia , Fatores de Risco , Adulto Jovem , Universidades , Adulto , Inquéritos e Questionários , SARS-CoV-2 , Adolescente , Depressão/epidemiologia , Depressão/psicologia , Depressão/diagnóstico , Ansiedade/epidemiologia , Ansiedade/psicologia , Ansiedade/diagnóstico
6.
Artigo em Inglês | MEDLINE | ID: mdl-39054007

RESUMO

'Heat-not-burn' products (HnBP) contain lower levels of harmful substances than traditional cigarettes, but the use of these products warrants further toxicological evaluation. We have compared the cytotoxicity and genotoxicity of a heat-not burn product with conventional cigarettes, in vivo and in vitro. Male Sprague Dawley rats were exposed to mainstream smoke from conventional cigarettes or a HnBP, for 4 or 28 days, followed by isolation of bone marrow polychromatic erythrocytes (PCE) and histological examination of the testes. Chinese hamster lung fibroblast cells were exposed in vitro to total particulate matter from cigarette smoke obtained through Cambridge filters. The cytotoxicity and genotoxicity of total particulate matter were assessed by the neutral red uptake assay, chromosome aberration assay, in vitro micronucleus test, comet assay, and Ames assay. In the short-term exposure rat models, only the conventional-cigarettes group showed a significant increase in the ratio of micronuclei to total PCE. There was no significant difference in rat testis histology in the long-term exposure models. In vitro, in the neutral red uptake assay, the HnBP product showed lower cytotoxicity than conventional cigarettes. Conventional cigarettes showed greater genotoxicity in the chromosome aberration assay, high-dose Ames tests with exogenous metabolic activation, and micronucleus tests. In summary, our results suggest that HnBP have lower cytotoxicity and genotoxicity than conventional cigarettes.


Assuntos
Aberrações Cromossômicas , Cricetulus , Testes de Mutagenicidade , Ratos Sprague-Dawley , Animais , Masculino , Ratos , Cricetinae , Aberrações Cromossômicas/efeitos dos fármacos , Produtos do Tabaco/toxicidade , Testículo/efeitos dos fármacos , Testículo/patologia , Testes para Micronúcleos , Fumaça/efeitos adversos , Material Particulado/toxicidade , Temperatura Alta , Ensaio Cometa , Fibroblastos/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos
7.
Nano Lett ; 24(30): 9377-9384, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39011986

RESUMO

Nonreciprocal quantum devices, allowing different transmission efficiencies of light-matter polaritons along opposite directions, are key technologies for modern photonics, yet their miniaturization and fine manipulation remain an open challenge. Here, we report on magnetochiral plexcitons dressed with geometric-time double asymmetry in compact nonreciprocal hybrid metamaterials, leading to triple plexcitonic nonreciprocity with flexible controllability. A general magnetically dressed plexcitonic Born-Kuhn model is developed to reveal the hybrid optical nature and dynamic energy evolution of magnetochiral plexcitons, demonstrating a plexcitonic nonreciprocal mechanism originating from the strong coupling among photon, electron, and spin degrees of freedom. Moreover, we introduce the temperature-controlled knob/switch for magnetochiral plexcitons, achieving precise magnetochiral control and nonreciprocal transmission in a given system. We expect this mechanism and approach to open up a new route for the integration and fine control of on-chip nonreciprocal quantum devices.

8.
J Sep Sci ; 47(14): e2400250, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39034833

RESUMO

Reconstituted tobacco (RT) is a product made by reprocessing tobacco waste, experiencing a growing demand for heat-not-burn products. The purpose of this study is to analyze the main flavor ingredients in RT aerosol, as well as the transfer behavior of key flavor substances from substrates to aerosol and the concentrations of these compounds in the substrate after heating. First, we demonstrated that the odor of four RT aerosol samples could be distinguished using an electronic nose. Through non-targeted analysis, 93 volatile compounds were detected by gas chromatography-mass spectrometry, and 286 non/semi-volatile compounds were identified by ultra-high-performance liquid electrophoresis chromatography-mass spectrometry in aerosol. Furthermore, we found that the formation of RT aerosol involves primarily evaporation and distillation, however, the total content delivered from unheated RT samples to aerosol remains relatively low due to compound volatility and cigarette filtration. Thermal reactions during heating indicated the pyrolysis of chlorogenic acid to generate catechol and resorcinol, while Maillard reactions involving glucose and proline produced 2,3-dihydro-3,5-dihydroxy-6-methyl-4h-pyran-4-one. The study highlighted that heating RT at approximately 300°C could mitigate the production of harmful substances while still providing a familiar sensory experience with combusted tobacco.


Assuntos
Aromatizantes , Cromatografia Gasosa-Espectrometria de Massas , Nicotiana , Aromatizantes/análise , Aromatizantes/química , Nicotiana/química , Temperatura Alta , Aerossóis/química , Aerossóis/análise , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/química , Produtos do Tabaco/análise , Calefação , Odorantes/análise
9.
Biochem Biophys Res Commun ; 732: 150431, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39047401

RESUMO

Brain metastasis (BM) is one of the main causes of death in patients with non-small cell lung carcinoma. The specific pathological processes of BM, which are inextricably linked to the brain tumor microenvironment, such as the abundance of astrocytes, lead to limited treatment options and poor prognosis. Reactive astrocytes are acquired in the BM; however, the underlying mechanisms remain unclear. This study aimed to explore the mechanisms by which astrocytes promote BM development. We determined the crucial role of reactive astrocytes in promoting the proliferation and migration of brain metastatic lung tumor cells by upregulating protocadherin 1 (PCDH1) expression in an in vitro co-culture model. The overexpression of PCDH1 was confirmed in clinical BM samples using immunohistochemical staining. Survival analysis indicated that high-PCDH1 expression was associated with poor survival in patients with lung adenocarcinoma. In vivo assays further showed that silence of PCDH1 effectively inhibited the tumor progression of brain metastases and prolonged the survival of animals. RNA sequencing has revealed that PCDH1 plays an important role in cell proliferation and adhesion. In conclusion, the present study revealed the promoting role of astrocytes in enhancing the aggressive phenotype of brain metastatic tumor cells by regulating the expression of PCDH1, which might be a biomarker for BM diagnosis and prognosis, suggesting the potential efficacy of targeting important astrocyte-tumor interactions in the treatment of patients with non-small cell lung carcinoma with BM.

10.
Angew Chem Int Ed Engl ; 63(33): e202408569, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-38837843

RESUMO

The integration of hostless battery-like metal anodes for hybrid supercapacitors is a realistic design method for energy storage devices with promising future applications. With significant Cr element deposits on Earth, exceptionally high theoretical capacity (1546 mAh g-1), and accessible redox potential (-0.74 V vs. reversible hydrogen electrode) of Cr metals, the design of Cr anodes has rightly come into our focus. This work presents a breakthrough design of a flexible Cr-ion hybrid supercapacitor (CHSC) based on a porous graphitized carbon fabric (PGCF) substrate prepared by K2FeO4 activation. In the CHSC device, PGCF acts as both a current collector and cathode material due to its high specific surface area and superior conductivity. The use of a highly concentrated LiCl-CrCl3 electrolyte with high Cr plating/stripping efficiency and excellent antifreeze properties enables the entire PGCF-based CHSC to achieve well-balanced performance in terms of energy density (up to 1.47 mWh cm-2), power characteristics (reaching 9.95 mW cm-2) and durability (95.4 % capacity retention after 30,000 cycles), while realizing it to work well under harsh conditions of -40 °C. This work introduces a new concept for low-temperature energy storage technology and confirms the potential application of Cr anodes in hybrid supercapacitors.

11.
Adv Sci (Weinh) ; 11(31): e2402708, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38829277

RESUMO

MXene is investigated as an electrode material for different energy storage systems due to layered structures and metal-like electrical conductivity. Experimental results show MXenes possess excellent cycling performance as anode materials, especially at large current densities. However, the reversible capacity is relatively low, which is a significant barrier to meeting the demands of industrial applications. This work synthesizes N-doped graphene-like carbon (NGC) intercalated Ti3C2Tx (NGC-Ti3C2Tx) van der Waals heterostructure by an in situ method. The as-prepared NGC-Ti3C2Tx van der Waals heterostructure is employed as sodium-ion and lithium-ion battery electrodes. For sodium-ion batteries, a reversible specific capacity of 305 mAh g-1 is achieved at a specific current of 20 mA g-1, 2.3 times higher than that of Ti3C2Tx. For lithium-ion batteries, a reversible capacity of 400 mAh g-1 at a specific current of 20 mA g-1 is 1.5 times higher than that of Ti3C2Tx. Both sodium-ion and lithium-ion batteries made from NGC-Ti3C2Tx shows high cycling stability. The theoretical calculations also verify the remarkable improvement in battery capacity within the NGC-Ti3C2O2 system, attributed to the additional adsorption of working ions at the edge states of NGC. This work offers an innovative way to synthesize a new van der Waals heterostructure and provides a new route to improve the electrochemical performance significantly.

12.
Biochim Biophys Acta Mol Basis Dis ; 1870(7): 167304, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38878830

RESUMO

Pancreatic cancer (PC) responds weakly to conventional immunotherapy. RNA N6-methyladenosine (m6A) modification has an essential role in the immune response, while its potential role in PC tumor microenvironment (TME) immune cell infiltration remains unknown. In this study, we thoroughly assessed the m6A modification patterns of 472 PC samples using 19 m6A regulators, and we systematically correlated these modification patterns with TME immune cell infiltration characteristics. We also created the m6Ascore and evaluated the m6A modification patterns of individual tumors, identified three different m6A modification patterns, and explored the role of the important m6A "writer" RBM15 in the regulation of macrophage function in PC. Two independent PC cohorts confirmed that patients with higher m6Ascore showed significant survival benefit. We verified that knockdown of RBM15 has the ability to inhibit PC growth and to promote macrophage infiltration and enhance phagocytosis of PC cells by macrophages. In conclusion, m6A modifications play a non-negligible role in the formation of TME diversity and complexity in PC. We reveal that inhibition of RBM15 suppresses PC development and modulates macrophage phagocytosis, and provide a more effective immunotherapeutic strategy for PC.


Assuntos
Adenosina , Macrófagos , Neoplasias Pancreáticas , Fagocitose , Proteínas de Ligação a RNA , Microambiente Tumoral , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/genética , Humanos , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/patologia , Adenosina/análogos & derivados , Adenosina/metabolismo , Microambiente Tumoral/imunologia , Linhagem Celular Tumoral , Animais
13.
Nat Commun ; 15(1): 5203, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890380

RESUMO

Empathy enables understanding and sharing of others' feelings. Human neuroimaging studies have identified critical brain regions supporting empathy for pain, including the anterior insula (AI), anterior cingulate (ACC), amygdala, and inferior frontal gyrus (IFG). However, to date, the precise spatio-temporal profiles of empathic neural responses and inter-regional communications remain elusive. Here, using intracranial electroencephalography, we investigated electrophysiological signatures of vicarious pain perception. Others' pain perception induced early increases in high-gamma activity in IFG, beta power increases in ACC, but decreased beta power in AI and amygdala. Vicarious pain perception also altered the beta-band-coordinated coupling between ACC, AI, and amygdala, as well as increased modulation of IFG high-gamma amplitudes by beta phases of amygdala/AI/ACC. We identified a necessary combination of neural features for decoding vicarious pain perception. These spatio-temporally specific regional activities and inter-regional interactions within the empathy network suggest a neurodynamic model of human pain empathy.


Assuntos
Empatia , Giro do Cíngulo , Percepção da Dor , Humanos , Percepção da Dor/fisiologia , Empatia/fisiologia , Masculino , Feminino , Adulto , Adulto Jovem , Giro do Cíngulo/fisiologia , Giro do Cíngulo/diagnóstico por imagem , Tonsila do Cerebelo/fisiologia , Tonsila do Cerebelo/diagnóstico por imagem , Eletroencefalografia , Mapeamento Encefálico , Córtex Insular/fisiologia , Córtex Insular/diagnóstico por imagem , Encéfalo/fisiologia , Encéfalo/diagnóstico por imagem , Eletrocorticografia , Dor/fisiopatologia , Dor/psicologia
14.
Neurosci Res ; 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38848903

RESUMO

Underwater exercise is becoming increasingly prevalent, during which brain function is necessary but is also at risk. However, no study has explored how prolonged exercise affect the brain in underwater environment. Previous studies have indicated that excessive exercise in common environment causes brain dysfunction but have failed to provide appropriate interventions. Numerous evidence has indicated the neuroprotective effect of hyperbaric oxygen preconditioning (HBO-PC). The objective of this study was to investigate the cognitive effect of prolonged underwater exercise (PUE) and to explore the potential neuroprotective effect of HBO-PC in underwater environment. Rats swimming for 3 h in a simulated hyperbaric chamber (2.0 ATA) was used to establish the PUE animal model and HBO-PC (2.5 ATA for 1, 3,5 times respectively) was administrated before PUE. The results demonstrated that PUE triggers anxiety-like behaviors, cognitive impairment accompanied by hippocampal dysfunction, microglia activation and neuroinflammation. Conversely, 3 HBO-PC rescued anxiety-like behaviors and cognitive impairment. Mechanistically, 3 HBO-PC reduced microglia activation and switched the activated microglia from a pro-inflammatory to neuroprotective phenotype. These findings illustrated that PUE induces anxiety-like behaviors and cognitive impairment and HBO-PC of proper frequency may provide an appropriate and less invasive intervention for protecting the brain in underwater exercise.

15.
J Control Release ; 372: 551-570, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38914206

RESUMO

Uveitis comprises a cluster of intraocular inflammatory disorders characterized by uncontrolled autoimmune responses and excessive oxidative stress leading to vision loss worldwide. In the present study, curcumin (CUR) was conjugated with polyvinylpyrrolidone (PVP) to form PVP-CUR nanoparticles with significantly elevated solubility and outstanding multiple radical scavenging abilities. In vitro studies revealed that PVP-CUR nanoparticles markedly mitigated oxidative stress and reduced apoptosis in a H2O2-induced human retinal pigment epithelial cell line (ARPE-19) and promoted phenotypic polarization from M1 to M2 in an LPS-induced human microglial cell line (HMC3). Further in vivo studies demonstrated the prominent therapeutic effects of PVP-CUR nanoparticles on experimental autoimmune uveitis (EAU), which relieved clinical and pathological progression, improved perfusion and tomographic manifestations of retinal vessels, and reduced blood-retinal barrier (BRB) leakage; these effects may be mediated by mitigating oxidative stress and attenuating macrophage/microglia-elicited inflammation. Notably, treatment with PVP-CUR nanoparticles was shown to regulate metabolite alterations in EAU rats, providing novel insights into the underlying mechanisms involved. Additionally, the PVP-CUR nanoparticles showed great biocompatibility in vivo. In summary, our study revealed that PVP-CUR nanoparticles may serve as effective and safe nanodrugs for treating uveitis and other oxidative stress- and inflammation-related diseases.


Assuntos
Doenças Autoimunes , Curcumina , Nanopartículas , Estresse Oxidativo , Povidona , Uveíte , Animais , Curcumina/administração & dosagem , Curcumina/farmacologia , Curcumina/química , Curcumina/uso terapêutico , Uveíte/tratamento farmacológico , Uveíte/imunologia , Uveíte/metabolismo , Povidona/química , Povidona/administração & dosagem , Nanopartículas/administração & dosagem , Nanopartículas/química , Humanos , Doenças Autoimunes/tratamento farmacológico , Linhagem Celular , Estresse Oxidativo/efeitos dos fármacos , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/metabolismo , Ratos , Feminino , Ratos Endogâmicos Lew , Barreira Hematorretiniana/efeitos dos fármacos , Barreira Hematorretiniana/metabolismo , Masculino
16.
Adv Mater ; : e2405874, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38924239

RESUMO

High-quality imaging units are indispensable in modern optoelectronic systems for accurate recognition and processing of optical information. To fulfill massive and complex imaging tasks in the digital age, devices with remarkable photoresponsive characteristics and versatile reconfigurable functions on a single-device platform are in demand but remain challenging to fabricate. Herein, an AlGaN/GaN-based double-heterostructure is reported, incorporated with a unique compositionally graded AlGaN structure to generate a channel of polarization-induced two-dimensional electron gas (2DEGs). Owing to the programmable feature of the 2DEGs by the combined gate and drain voltage inputs, with a particular capability of electron separation, collection and storage under different light illumination, the phototransistor shows reconfigurable multifunctional photoresponsive behaviors with superior characteristics. A self-powered mode with a responsivity over 100 A W-1 and a photoconductive mode with a responsivity of ≈108 A W-1 are achieved, with the ultimate demonstration of a 10 × 10 device array for imaging. More intriguingly, the device can be switched to photoelectric synapse mode, emulating synaptic functions to denoise the imaging process while prolonging the image storage ability. The demonstration of three-in-one operational characteristics in a single device offers a new path toward future integrated and multifunctional imaging units.

17.
J Agric Food Chem ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38855973

RESUMO

Chronic atrophic gastritis (CAG) is characterized by the loss of gastric glandular cells, which are replaced by the intestinal-type epithelium and fibrous tissue. Ginsenoside Rg1 (Rg1) is the prevalent ginsenoside in ginseng, with a variety of biological activities, and is usually added to functional foods. As a novel form of programmed cell death (PCD), pyroptosis has received substantial attention in recent years. Despite the numerous beneficial effects, the curative impact of Rg1 on CAG and whether its putative mechanism is partially via inhibiting pyroptosis still remain unknown. To address this gap, we conducted a study to explore the mechanisms underlying the potential anti-CAG effect of Rg1. We constructed a CAG rat model using a multifactor comprehensive method. A cellular model was developed by using 1-methyl-3-nitro-1-nitrosoguanidine (MNNG) combined with Nigericin as a stimulus applied to GES-1 cells. After Rg1 intervention, the levels of inflammatory indicators in the gastric tissue/cell supernatant were reduced. Rg1 relieved oxidative stress via reducing the myeloperoxidase (MPO) and malonaldehyde (MDA) levels in the gastric tissue and increasing the level of superoxide dismutase (SOD). Additionally, Rg1 improved MNNG+Nigericin-induced pyroptosis in the morphology and plasma membrane of the cells. Further research supported novel evidence for Rg1 in the regulation of the NF-κB/NLRP3/GSDMD pathway and the resulting pyroptosis underlying its therapeutic effect. Moreover, by overexpression and knockout of GSDMD in GES-1 cells, our findings suggested that GSDMD might serve as the key target in the effect of Rg1 on suppressing pyroptosis. All of these offer a potential theoretical foundation for applying Rg1 in ameliorating CAG.

18.
J Org Chem ; 89(13): 9597-9608, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38885461

RESUMO

An ambient-light-promoted stereospecific olefinic C(sp2)-S bond construction of thioacids and 1,1-diarylethenes has been demonstrated, affording various (Z)-vinyl thioesters in 51-85% yields under solvent- and catalyst-free conditions. Mechanistic studies indicated that the formation of thioacid-olefin complexes is responsible for generating a carbonyl thiyl radical and dioxygen in the air participates in the reaction and functions as a traceless reagent. Moreover, synthetic applications have been demonstrated by the gram scale synthesis and aggregation-induced emission property of representative compound 3i.

19.
Opt Lett ; 49(11): 2930-2933, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38824295

RESUMO

We propose a plasmonic nanolaser based on a metal-insulator-semiconductor-insulator-metal (MISIM) structure, which effectively confines light on a subwavelength scale (∼λ/14). As the pump power increases, the proposed plasmonic nanolaser exhibits broadband output characteristics of 20 nm, and the maximum output power can reach 20 µW. Furthermore, the carrier lifetime at the upper energy level in our proposed structure is measured to be about 400 fs using a double pump-probe excitation. The ultrafast characteristic is attributed to the inherent Purcell effect of plasmonic systems. Our work paves the way toward deep-subwavelength mode confinement and ultrafast femtosecond plasmonic lasers in spaser-based interconnected, eigenmode engineering of plasmonic nanolasers, nano-LEDs, and spontaneous emission control.

20.
Adv Sci (Weinh) ; 11(26): e2306348, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38696655

RESUMO

Patients who have non-small cell lung cancer (NSCLC) with epidermal growth factor receptor (EGFR) mutations are more prone to brain metastasis (BM) and poor prognosis. Previous studies showed that the tumor microenvironment of BM in these patients is immunosuppressed, as indicated by reduced T-cell abundance and activity, although the mechanism of this immunosuppression requires further study. This study shows that reactive astrocytes play a critical role in promoting the immune escape of BM from EGFR-mutated NSCLC by increasing the apoptosis of CD8+ T lymphocytes. The increased secretion of interleukin 11(IL11) by astrocytes promotes the expression of PDL1 in BM, and this is responsible for the increased apoptosis of T lymphocytes. IL11 functions as a ligand of EGFR, and this binding activates EGFR and downstream signaling to increase the expression of PDL1, culminating in the immune escape of tumor cells. IL11 also promotes immune escape by binding to its intrinsic receptor (IL11Rα/glycoprotein 130 [gp130]). Additional in vivo studies show that the targeted inhibition of gp130 and EGFR suppresses the growth of BM and prolongs the survival time of mice. These results suggest a novel therapeutic strategy for treatment of NSCLC patients with EGFR mutations.


Assuntos
Astrócitos , Antígeno B7-H1 , Neoplasias Encefálicas , Carcinoma Pulmonar de Células não Pequenas , Receptores ErbB , Interleucina-11 , Neoplasias Pulmonares , Regulação para Cima , Animais , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Camundongos , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/imunologia , Receptores ErbB/metabolismo , Receptores ErbB/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/secundário , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Humanos , Astrócitos/metabolismo , Interleucina-11/genética , Interleucina-11/metabolismo , Regulação para Cima/genética , Evasão Tumoral/genética , Modelos Animais de Doenças , Mutação/genética , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia , Linhagem Celular Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...