Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39353177

RESUMO

Fabrication of well-dispersed thin graphene oxide (GO) films (GOFs) has always been a challenge. Herein, a quick preparation method for GOFs was developed using our homemade GO with a large lateral size. The film can be prepared in less than 2 h via a metal framework-induced self-assembly process. The thickness of the films can be as thin as ∼15.5 µm, which will be thinner with compression. When it is used as a flexible modification layer on the Zn metal for aqueous Zn-ion batteries, Zn can grow along the [010] direction in plane and stack orderly along the [002] direction even on the Cu substrate with GOF through epitaxial plating owing to negligible lattice mismatch between the (002) plane of Zn and the hexagonal ring [also (002) plane for graphite] of GO. Meanwhile, the rich O groups on the GO film can provide abundant zincophilic points and promote uniform distribution of Zn2+ around the anode. Finally, dendrite-free and dense Zn stripping/plating can be achieved and well remained. The GOF@Zn symmetric cell reveals long cyclic stability of 1300 h at 1 mA cm-2 and 1 mA h cm-2. It still can remain at 350 h even at a very high current density of 10 mA cm-2 accompanied by a high areal capacity of 10 mA h cm-2. With the same plating amount of 5 mA h cm-2, the thickness of the plated Zn is only ∼10 µm with GOF modification, very close to the theoretical value of 8.54 µm, much thinner than that without GOF (∼18 µm), indicating very dense deposition. Full cells assembled with the GOF@Zn anode and the MnO2 cathode exhibit a capacity retention rate of 71% over 1000 cycles at 0.7 A g-1, showing much better cycling performance than that using bare Zn.

2.
Cell Mol Biol Lett ; 29(1): 64, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698311

RESUMO

Osteoarthritis (OA), known as one of the most common types of aseptic inflammation of the musculoskeletal system, is characterized by chronic pain and whole-joint lesions. With cellular and molecular changes including senescence, inflammatory alterations, and subsequent cartilage defects, OA eventually leads to a series of adverse outcomes such as pain and disability. CRISPR-Cas-related technology has been proposed and explored as a gene therapy, offering potential gene-editing tools that are in the spotlight. Considering the genetic and multigene regulatory mechanisms of OA, we systematically review current studies on CRISPR-Cas technology for improving OA in terms of senescence, inflammation, and cartilage damage and summarize various strategies for delivering CRISPR products, hoping to provide a new perspective for the treatment of OA by taking advantage of CRISPR technology.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Inflamação , Osteoartrite , Humanos , Osteoartrite/genética , Osteoartrite/terapia , Sistemas CRISPR-Cas/genética , Inflamação/genética , Edição de Genes/métodos , Animais , Terapia Genética/métodos , Cartilagem/metabolismo , Cartilagem/patologia , Senescência Celular/genética , Cartilagem Articular/patologia , Cartilagem Articular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...