Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
BMC Infect Dis ; 24(1): 853, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39174918

RESUMO

BACKGROUND: Non-tuberculous mycobacteria (NTM) are present widely in the natural environment and can invade the human body through the respiratory tract, gastrointestinal tract, and skin. Immunocompromised patients are particularly prone to infection, which primarily affects multiple organs, including the lungs, lymph nodes, and skin. However, cases of NTM bloodstream infections are rare. Here, we report a rare case of Mycobacterium marseillense bloodstream infection with concurrent skin fungal infection in a patient after kidney transplantation. Related literature was reviewed to enhance the understanding of this rare condition. CASE PRESENTATION: A 58-year-old male with a history of long-term steroid and immunosuppressant use after kidney transplantation presented with limb swelling that worsened over the past two months. Physical examination revealed redness and swelling of the skin in all four limbs, with a non-healing wound on the lower left limb. Skin tissue analysis by metagenomic next-generation sequencing (mNGS) and fungal culture indicated infection with Trichophyton rubrum. Blood culture results suggested infection with Mycobacterium marseillense. After receiving anti-NTM treatment, the patient's symptoms significantly improved, and he is currently undergoing treatment. CONCLUSION: Mycobacterium marseillense is a NTM. Gram staining suffered from misdetection, and the acid-fast staining result was positive. This bacterium was identified by mass spectrometry and mNGS analyses. Antimicrobial susceptibility tests for NTM were performed using the broth microdilution method. The results of the susceptibility test showed that Mycobacterium marseillense was sensitive to clarithromycin, an intermediary between moxifloxacin and linezolid. Bacterial clearance requires a combination of drugs and an adequate course of treatment. NTM bloodstream infections are relatively rare, and early identification and proactive intervention are key to their successful management.


Assuntos
Infecções por Mycobacterium não Tuberculosas , Humanos , Masculino , Pessoa de Meia-Idade , Infecções por Mycobacterium não Tuberculosas/microbiologia , Infecções por Mycobacterium não Tuberculosas/tratamento farmacológico , Dermatomicoses/microbiologia , Dermatomicoses/tratamento farmacológico , Transplante de Rim/efeitos adversos , Hospedeiro Imunocomprometido , Antibacterianos/uso terapêutico , Micobactérias não Tuberculosas/isolamento & purificação , Micobactérias não Tuberculosas/efeitos dos fármacos , Bacteriemia/microbiologia , Bacteriemia/tratamento farmacológico , Mycobacterium/isolamento & purificação , Mycobacterium/efeitos dos fármacos , Pele/microbiologia , Pele/patologia
2.
Adv Sci (Weinh) ; : e2305353, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965806

RESUMO

A fundamental understanding of the underlying mechanisms involved in biological invasions is crucial to developing effective risk assessment and control measures against invasive species. The fall armyworm (FAW), Spodoptera frugiperda, is a highly invasive pest that has rapidly spread from its native Americas into much of the Eastern Hemisphere, with a highly homogeneous nuclear genetic background. However, the exact mechanism behind its rapid introduction and propagation remains unclear. Here, a systematic investigation is conducted into the population dynamics of FAW in China from 2019 to 2021 and found that FAW individuals carrying "rice" mitochondria (FAW-mR) are more prevalent (>98%) than that with "corn" mitochondria (FAW-mC) at the initial stage of the invasion and in newly-occupied non-overwintering areas. Further fitness experiments show that the two hybrid-strains of FAW exhibit different adaptions in the new environment in China, and this may have been facilitated by amino acid changes in mitochondrial-encoded proteins. FAW-mR used increases energy metabolism, faster wing-beat frequencies, and lower wing loadings to drive greater flight performance and subsequent rapid colonization of new habitats. In contrast, FAW-mC individuals adapt with more relaxed mitochondria and shuttle energetics into maternal investment, observed as faster development rate and higher fecundity. The presence of two different mitochondria types within FAW has the potential to significantly expand the range of damage and enhance competitive advantage. Overall, the study describes a novel invasion mechanism displayed by the FAW population that facilitates its expansion and establishment in new environments.

3.
Sci Rep ; 14(1): 17665, 2024 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-39085294

RESUMO

Diabetes accelerates vascular senescence, which is the basis for atherosclerosis and stiffness. The activation of NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome and oxidative stress are closely associated with the deteriorative senescence in endothelial cells (ECs) and vascular smooth muscle cells (VSMCs). For decades, Sodium Tanshinone IIA Sulfonate (STS) has been utilized as a cardiovascular medicine with acknowledged anti-inflammatory and anti-oxidative properties. Nevertheless, the impact of STS on vascular senescence remains unexplored in diabetes. Diabetic mice, primary ECs and VSMCs were transfected with the NLRP3 overexpression/knockout plasmid, the tumor necrosis factor alpha-induced protein 3 (TNFAIP3/A20) overexpression/knockout plasmid, and treated with STS to detect senescence-associated markers. In diabetic mice, STS treatment maintained catalase (CAT) level and vascular relaxation, reduced hydrogen peroxide probe (ROSgreen) fluorescence, p21 immunofluorescence, Senescence ß-Galactosidase Staining (SA-ß-gal) staining area, and collagen deposition in aortas. Mechanistically, STS inhibited NLRP3 phosphorylation (serine 194), NLRP3 dimer formation, NLRP3 expression, and NLRP3-PYCARD (ASC) colocalization. It also suppressed the phosphorylation of IkappaB alpha (IκBα) and NFκB, preserved A20 and CAT levels, reduced ROSgreen density, and decreased the expression of p21 and SA-ß-gal staining in ECs and VSMCs under HG culture. Our findings indicate that STS mitigates vascular senescence by modulating the A20-NFκB-NLRP3 inflammasome-CAT pathway in hyperglycemia conditions, offering novel insights into NLRP3 inflammasome activation and ECs and VSMCs senescence under HG culture. This study highlights the potential mechanism of STS in alleviating senescence in diabetic blood vessels, and provides essential evidence for its future clinical application.


Assuntos
Senescência Celular , Diabetes Mellitus Experimental , Inflamassomos , NF-kappa B , Proteína 3 que Contém Domínio de Pirina da Família NLR , Fenantrenos , Transdução de Sinais , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inflamassomos/metabolismo , Camundongos , NF-kappa B/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Fenantrenos/farmacologia , Senescência Celular/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Catalase/metabolismo , Masculino , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Endoteliais/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos
4.
Oncogene ; 43(34): 2564-2577, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39020072

RESUMO

Perineural invasion (PNI) is an adverse prognostic feature of pancreatic ductal adenocarcinoma (PDAC). However, the understanding of the interactions between tumors and neural signaling within the tumor microenvironment is limited. In the present study, we found that MUC21 servers as an independent risk factor for poor prognosis in PDAC. Furthermore, we demonstrated that MUC21 promoted the metastasis and PNI of PDAC cells by activating JNK and inducing epithelial-mesenchymal transition (EMT). Mechanistically, glial cell-derived neurotrophic factor, secreted by Schwann cells, phosphorylates the intracellular domain S543 of MUC21 via CDK1 in PDAC cells, facilitating the interaction between MUC21 and RAC2. This interaction leads to membrane anchoring and activation of RAC2, which in turn activates the JNK/ZEB1/EMT axis, ultimately enhancing the metastasis and PNI of PDAC cells. Our results present a novel mechanism of PNI, suggesting that MUC21 is a potential prognostic marker and therapeutic target for PDAC.


Assuntos
Carcinoma Ductal Pancreático , Transição Epitelial-Mesenquimal , Invasividade Neoplásica , Neoplasias Pancreáticas , Proteína RAC2 de Ligação ao GTP , Humanos , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/genética , Fosforilação , Animais , Linhagem Celular Tumoral , Camundongos , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/genética , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Proteínas rac de Ligação ao GTP/metabolismo , Proteínas rac de Ligação ao GTP/genética , Prognóstico , Metástase Neoplásica , Masculino , Feminino , Camundongos Nus
5.
BMC Cardiovasc Disord ; 24(1): 354, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38992615

RESUMO

BACKGROUND: Hyperlipidemia damages vascular wall and serves as a foundation for diseases such as atherosclerosis, hypertension and stiffness. The NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome is implicated in vascular dysfunction associated with hyperlipidemia-induced vascular injury. Sodium tanshinone IIA sulfonate (STS), a well-established cardiovascular protective drug with recognized anti-inflammatory, antioxidant, and vasodilatory properties, is yet to be thoroughly investigated for its impact on vascular relaxant imbalance induced by hyperlipidemia. METHODS: In this study, we treated ApoE-knockout (ApoE-/-) mouse with STS and assessed the activation of the NLRP3 inflammasome, expression of MMP2/9, integrity of elastic fibers, and vascular constriction and relaxation. RESULTS: Our findings reveal that STS intervention effectively preserves elastic fibers, significantly restores aortic relaxation function in ApoE-/- mice, and reduces their excessive constriction. Furthermore, STS inhibits the phosphorylation of spleen tyrosine kinase (SYK), suppresses NLRP3 inflammasome activation, and reduces MMP2/9 expression. CONCLUSIONS: These results demonstrate that STS protects vascular relaxation against hyperlipidemia-induced damage through modulation of the SYK-NLRP3 inflammasome-MMP2/9 pathway. This research provides novel insights into the mechanisms underlying vascular relaxation impairment in a hyperlipidemic environment and uncovers a unique mechanism by which STS preserves vascular relaxation, offering valuable foundational research evidence for its clinical application in promoting vascular health.


Assuntos
Modelos Animais de Doenças , Inflamassomos , Metaloproteinase 2 da Matriz , Metaloproteinase 9 da Matriz , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Proteína 3 que Contém Domínio de Pirina da Família NLR , Fenantrenos , Transdução de Sinais , Quinase Syk , Vasodilatação , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inflamassomos/metabolismo , Quinase Syk/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Fenantrenos/farmacologia , Masculino , Metaloproteinase 9 da Matriz/metabolismo , Vasodilatação/efeitos dos fármacos , Hiperlipidemias/tratamento farmacológico , Hiperlipidemias/fisiopatologia , Vasodilatadores/farmacologia , Fosforilação , Camundongos , Aorta/efeitos dos fármacos , Aorta/fisiopatologia , Aorta/metabolismo , Aorta/enzimologia , Apolipoproteínas E
6.
J Hematol Oncol ; 17(1): 48, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38915117

RESUMO

It remains a substantial challenge to balance treatment efficacy and toxicity in geriatric patients with multiple myeloma (MM), primarily due to the dynamic nature of frailty. Here, we conducted a prospective study to evaluate the feasibility and benefits of dynamic frailty-tailored therapy (DynaFiT) in elderly patients. Patients with newly diagnosed MM (aged ≥ 65 years) received eight induction cycles of bortezomib, lenalidomide, and dexamethasone (daratumumab was recommended for frail patients), with treatment intensity adjusted according to longitudinal changes in the frailty category (IMWG-FI) at each cycle. Of 90 patients, 33 (37%), 16 (18%), and 41 (45%) were fit, intermediate fit, and frail at baseline, respectively. Of 75 patients who had geriatric assessment at least twice, 28 (37%) experienced frailty category changes at least once. At analysis, 15/26 (58%) frail patients improved (27% became fit and 31% became intermediate fit), 4/15 (27%) intermediate fit patients either improved or deteriorated (two for each), and 6/30 (20%) fit patients deteriorated. During induction, 34/90 (38%) patients discontinued treatment, including 10/33 (30%) fit, 4/16 (25%) intermediate fit, and 20/41 (49%) frail; 14/40 (35%) frail patients discontinued treatment within the first two cycles, mainly because of non-hematologic toxicity (mostly infections). For fit, intermediate-fit, and frail patients, the overall response rate was 100%, 93%, and 73%, respectively; one-year overall survival was 90%, 75%, and 54%, respectively. Therefore, the individualized DynaFiT is feasible and promising for heterogeneous elderly patients.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Dexametasona , Fragilidade , Lenalidomida , Mieloma Múltiplo , Humanos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/terapia , Idoso , Estudos Prospectivos , Masculino , Feminino , Idoso de 80 Anos ou mais , Dexametasona/uso terapêutico , Dexametasona/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Lenalidomida/uso terapêutico , Lenalidomida/administração & dosagem , Bortezomib/uso terapêutico , Bortezomib/administração & dosagem , Medicina de Precisão/métodos , Idoso Fragilizado , Avaliação Geriátrica/métodos , Anticorpos Monoclonais
7.
Genome Biol Evol ; 16(5)2024 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-38748818

RESUMO

Bitter taste perception plays a critical role in deterring animals from consuming harmful and toxic substances. To characterize the evolution of primate Tas2r, test the generality of Tas2r duplication in Cercopithecidae species, and examine whether dietary preferences have shaped the Tas2r repertoire of primate species, we identified Tas2r in the genomes of 35 primate species, including 16 Cercopithecidae, 6 Hominidae, 4 Cebidae, 3 Lemuridae, and 6 other species. The results showed that the total number of primate Tas2r ranged from 27 to 51, concentrating on 2 to 4 scaffolds of each species. Closely related genes were tandemly duplicated in the same scaffold. Phylogenetic construction revealed that Tas2r can be divided into 21 clades, including anthropoid-, Strepsirrhini-, and Cercopithecidae-specific Tas2r duplications. Phylogenetically independent contrast analysis revealed that the number of intact Tas2r significantly correlated with feeding preferences. Altogether, our data support diet as a driver of primate Tas2r evolution, and Cercopithecidae species have developed some specific Tas2r duplication during evolution. These results are probably because most Cercopithecidae species feed on plants containing many toxins, and it is necessary to develop specialized Tas2r to protect them from poisoning.


Assuntos
Dieta , Evolução Molecular , Filogenia , Primatas , Receptores Acoplados a Proteínas G , Animais , Receptores Acoplados a Proteínas G/genética , Primatas/genética , Duplicação Gênica , Paladar/genética , Humanos
8.
Acta Biochim Biophys Sin (Shanghai) ; 56(6): 892-904, 2024 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-38733164

RESUMO

Diabetes accelerates vascular senescence, which is the basis for atherosclerosis and stiffness. The activation of the NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome and oxidative stress are closely associated with progressive senescence in vascular smooth muscle cells (VSMCs). The vascular protective effect of FGF21 has gradually gained increasing attention, but its role in diabetes-induced vascular senescence needs further investigation. In this study, diabetic mice and primary VSMCs are transfected with an FGF21 activation plasmid and treated with a peroxisome proliferator-activated receptor γ (PPARγ) agonist (rosiglitazone), an NLRP3 inhibitor (MCC950), and a spleen tyrosine kinase (SYK)-specific inhibitor, R406, to detect senescence-associated markers. We find that FGF21 overexpression significantly restores the level of catalase (CAT), vascular relaxation, inhibits the intensity of ROSgreen fluorescence and p21 immunofluorescence, and reduces the area of SA-ß-gal staining and collagen deposition in the aortas of diabetic mice. FGF21 overexpression restores CAT, inhibits the expression of p21, and limits the area of SA-ß-gal staining in VSMCs under high glucose conditions. Mechanistically, FGF21 inhibits SYK phosphorylation, the production of the NLRP3 dimer, the expression of NLRP3, and the colocalization of NLRP3 with PYCARD (ASC), as well as NLRP3 with caspase-1, to reverse the cleavage of PPARγ, preserve CAT levels, suppress ROSgreen density, and reduce the expression of p21 in VSMCs under high glucose conditions. Our results suggest that FGF21 alleviates vascular senescence by regulating the SYK-NLRP3 inflammasome-PPARγ-catalase pathway in diabetic mice.


Assuntos
Senescência Celular , Diabetes Mellitus Experimental , Fatores de Crescimento de Fibroblastos , Inflamassomos , Camundongos Endogâmicos C57BL , Músculo Liso Vascular , Proteína 3 que Contém Domínio de Pirina da Família NLR , PPAR gama , Transdução de Sinais , Quinase Syk , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Quinase Syk/metabolismo , Quinase Syk/genética , PPAR gama/metabolismo , PPAR gama/genética , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Inflamassomos/metabolismo , Camundongos , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patologia , Masculino , Fatores de Crescimento de Fibroblastos/metabolismo , Fatores de Crescimento de Fibroblastos/genética , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia
9.
Acta Biomater ; 182: 28-41, 2024 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-38761961

RESUMO

The regenerative microenvironment after peripheral nerve injury is imbalanced and difficult to rebalance, which is mainly affected by inflammation, oxidative stress, and inadequate blood supply. The difficulty in remodeling the nerve regeneration microenvironment is the main reason for slow nerve regeneration. Traditional drug treatments have certain limitations, such as difficulty in penetrating the blood-nerve barrier and lack of pleiotropic effects. Therefore, there is an urgent need to build multifunctional nerve grafts that can effectively regulate the regenerative microenvironment and promote nerve regeneration. Nitric oxide (NO), a highly effective gas transmitter with diatomic radicals, is an important regulator of axonal growth and migration, synaptic plasticity, proliferation of neural precursor cells, and neuronal survival. Moreover, NO provides potential anti-inflammation, anti-oxidation, and blood vessel promotion applications. However, excess NO may cause cell death and neuroinflammatory cell damage. The prerequisite for NO treatment of peripheral nerve injury is that it is gradually released over time. In this study, we constructed an injectable NO slow-release system with two main components, including macromolecular NO donor nanoparticles (mPEG-P(MSNO-EG) nanoparticles, NO-NPs) and a carrier for the nanoparticles, mPEG-PA-PP injectable temperature-sensitive hydrogel. Due to the multiple physiological regulation of NO and better physiological barrier penetration, the conduit effectively regulates the inflammatory response and oxidative stress of damaged peripheral nerves, promotes nerve vascularization, and nerve regeneration and docking, accelerating the nerve regeneration process. STATEMENT OF SIGNIFICANCE: The slow regeneration speed of peripheral nerves is mainly due to the destruction of the regeneration microenvironment. Neural conduits with drug delivery capabilities have the potential to improve the microenvironment of nerve regeneration. However, traditional drugs are hindered by the blood nerve barrier and cannot effectively target the injured area. NO, an endogenous gas signaling molecule, can freely cross the blood nerve barrier and act on target cells. However, excessive NO can lead to cell apoptosis. In this study, a NO sustained-release system was constructed to regulate the microenvironment of nerve regeneration through various pathways and promote nerve regeneration.


Assuntos
Preparações de Ação Retardada , Regeneração Nervosa , Óxido Nítrico , Animais , Óxido Nítrico/metabolismo , Preparações de Ação Retardada/farmacologia , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Regeneração Nervosa/efeitos dos fármacos , Traumatismos dos Nervos Periféricos/tratamento farmacológico , Traumatismos dos Nervos Periféricos/terapia , Traumatismos dos Nervos Periféricos/patologia , Traumatismos dos Nervos Periféricos/metabolismo , Ratos Sprague-Dawley , Ratos , Nervos Periféricos/efeitos dos fármacos , Nervos Periféricos/patologia , Nanopartículas/química , Doadores de Óxido Nítrico/farmacologia , Doadores de Óxido Nítrico/uso terapêutico , Masculino , Hidrogéis/química , Nervo Isquiático/efeitos dos fármacos
11.
Asia Pac J Oncol Nurs ; 11(4): 100387, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38495645

RESUMO

Objective: This study aims to develop and validate a suitable scale for assessing the level of nurses' knowledge and practice of perioperative pulmonary rehabilitation. Methods: We divided the study into two phases: scale development and validation. In Phase 1, the initial items were generated through a literature review. In Phase 2, a cross-sectional survey was conducted involving 603 thoracic nurses to evaluate the scale's validity, reliability, and difficulty and differentiation of items. Item and exploratory factor analyses were performed for item reduction. Thereafter, their validity, reliability, difficulty, and differentiation of items were assessed using Cronbach's α coefficient, retest reliability, content validity, and item response theory (IRT). Results: The final questionnaire comprised 34 items, and exploratory factor analysis revealed 3 common dimensions with internal consistency coefficients of 0.950, 0.959, and 0.965. The overall internal consistency of the scale was 0.966, with a split-half reliability of 0.779 and a retest reliability Pearson's correlation coefficient of 0.936. The content validity of the scale was excellent (item-level content validity index = 0.875-1.000, scale-level content validity index = 0.978). The difficulty and differentiation of item response theory were all verified to a certain extent (average value = 2.391; threshold ß values = -1.393-0.820). Conclusions: The knowledge-attitudes-practices questionnaire for nurses can be used as a tool to evaluate knowledge, attitudes, and practices among nurses regarding perioperative pulmonary rehabilitation for patients with lung cancer.

12.
Insect Sci ; 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38414321

RESUMO

The fall armyworm (FAW), Spodoptera frugiperda, has colonized and caused consistent damage in the Eastern hemisphere. The identification of various FAW strains is essential for developing precise prevention and control measures. The triosephosphate isomerase (Tpi) gene is recognized as an effective marker closely linked to FAW subpopulations. However, most current studies primarily focus on the comparison of variations in specific gene sites of this gene. In this study, we conducted full-length sequencing of the Tpi genes from 5 representative FAW groups. Our findings revealed that the Tpi genes varied in length from 1220 to 1420 bp, with the primary variation occurring within 4 introns. Notably, the exon lengths remained consistent, at 747 bp, with 37 observed base variations; however, no amino acid variations were detected. Through sequence alignment, we identified 8 stable variation sites that can be used to distinguish FAW strains in the Eastern hemisphere. Additionally, we performed strain identification on 1569 FAW samples collected from 19 provinces in China between 2020 and 2021. The extensive analysis indicated the absence of the rice strain in the samples. Instead, we only detected the presence of the corn strain and the Zambia strain, with the Zambia strain being distributed in a very low proportion (3.44%). Furthermore, the corn strain could be further categorized into 2 subgroups. This comprehensive study provides a valuable reference for enhancing our understanding of FAW population differentiation and for improving monitoring and early warning efforts.

13.
Int J Biochem Cell Biol ; 169: 106530, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38246263

RESUMO

Acute lung injury/acute respiratory distress syndrome (ALI/ARDS) has a high mortality rate and incidence of complications. The pathophysiology of ALI/ARDS is still not fully understood. The lipopolysaccharide (LPS)-induced mouse model of ALI has been widely used to study human ALI/ARDS. Sulfasalazine (SASP) has antibacterial and anti-inflammatory effects and is used for treating inflammatory bowel and rheumatic diseases. However, the effect of SASP on LPS-induced ALI in mice has not yet been reported. Therefore, we aimed to investigate the effect of SASP on LPS-induced ALI in mice. Mice were intraperitoneally injected with SASP 2 h before or 4 h after LPS modeling. Pulmonary pathological damage was measured based on inflammatory factor expression (malondialdehyde and superoxide dismutase levels) in the lung tissue homogenate and alveolar lavage fluid. The production of inflammatory cytokines and occurrence of oxidative stress in the lungs induced by LPS were significantly mitigated after the prophylactic and long-term therapeutic administration of SASP, which ameliorated ALI caused by LPS. SASP reduced both the production of inflammatory cytokines and occurrence of oxidative stress in RAW264.7 cells, which respond to LPS. Moreover, its mechanism contributed to the suppression of NF-κB and nuclear translocation. In summary, SASP treatment ameliorates LPS-induced ALI by mediating anti-inflammatory and antioxidant effects, which may be attributed to the inhibition of NF-κB activation and promotion of antioxidant defenses. Thus, SASP may be a promising pharmacologic agent for ALI therapy.


Assuntos
Lesão Pulmonar Aguda , Síndrome do Desconforto Respiratório , Camundongos , Humanos , Animais , NF-kappa B/metabolismo , Lipopolissacarídeos/farmacologia , Sulfassalazina/efeitos adversos , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Pulmão/patologia , Estresse Oxidativo , Anti-Inflamatórios/farmacologia , Citocinas/metabolismo , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Antioxidantes/metabolismo , Síndrome do Desconforto Respiratório/tratamento farmacológico , Síndrome do Desconforto Respiratório/metabolismo , Síndrome do Desconforto Respiratório/patologia
14.
BMC Med ; 21(1): 510, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-38129829

RESUMO

BACKGROUND: Exposure to general anesthesia influences neuronal functions during brain development. Recently, interneurons were found to be involved in developmental neurotoxicity by anesthetic exposure. But the underlying mechanism and long-term consequences remain elusive. METHODS: Pregnant mice received 2.5% sevoflurane for 6-h on gestational day 14.5. Pentylenetetrazole (PTZ)-induced seizure, anxiety- and depression-like behavior tests were performed in 30- and 60-day-old male offspring. Cortical interneurons were labeled using Rosa26-EYFP/-; Nkx2.1-Cre mice. Immunofluorescence and electrophysiology were performed to determine the cortical interneuron properties. Q-PCR and in situ hybridization (ISH) were performed for the potential mechanism, and the finding was further validated by in utero electroporation (IUE). RESULTS: In this study, we found that maternal sevoflurane exposure increased epilepsy susceptibility by using pentylenetetrazole (PTZ) induced-kindling models and enhanced anxiety- and depression-like behaviors in adolescent offspring. After sevoflurane exposure, the highly ordered cortical interneuron migration was disrupted in the fetal cortex. In addition, the resting membrane potentials of fast-spiking interneurons in the sevoflurane-treated group were more hyperpolarized in adolescence accompanied by an increase in inhibitory synapses. Both q-PCR and ISH indicated that CXCL12/CXCR4 signaling pathway downregulation might be a potential mechanism under sevoflurane developmental neurotoxicity which was further confirmed by IUE and behavioral tests. Although the above effects were obvious in adolescence, they did not persist into adulthood. CONCLUSIONS: Our findings demonstrate that maternal anesthesia impairs interneuron migration through the CXCL12/CXCR4 signaling pathway, and influences the interneuron properties, leading to the increased epilepsy susceptibility in adolescent offspring. Our study provides a novel perspective on the developmental neurotoxicity of the mechanistic link between maternal use of general anesthesia and increased susceptibility to epilepsy.


Assuntos
Epilepsia , Pentilenotetrazol , Humanos , Gravidez , Feminino , Camundongos , Animais , Masculino , Sevoflurano/metabolismo , Sevoflurano/farmacologia , Pentilenotetrazol/toxicidade , Pentilenotetrazol/metabolismo , Exposição Materna/efeitos adversos , Interneurônios/metabolismo , Epilepsia/induzido quimicamente
15.
Sci Adv ; 9(51): eadi1078, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38117891

RESUMO

Peripheral nerve regeneration is a complex physiological process. Single-function nerve scaffolds often struggle to quickly adapt to the imbalanced regenerative microenvironment, leading to slow nerve regeneration and limited functional recovery. In this study, we demonstrate a "pleiotropic gas transmitter" strategy based on endogenous reactive oxygen species (ROS), which trigger the on-demand H2S release at the defect area for transected peripheral nerve injury (PNI) repair through concurrent neuroregeneration and neuroprotection processing. This H2S delivery system consists of an H2S donor (peroxyTCM) encapsulated in a ROS-responsive polymer (mPEG-PMet) and loaded into a temperature-sensitive poly (amino acid) hydrogel (mPEG-PA-PP). This multi-effect combination strategy greatly promotes the regeneration of PNI, attributed to the physiological effects of H2S. These effects include the inhibition of inflammation and oxidative stress, protection of nerve cells, promotion of angiogenesis, and the restoration of normal mitochondrial function. The adaptive release of pleiotropic messengers to modulate the tissue regeneration microenvironment offers promising peripheral nerve repair and tissue engineering opportunities.


Assuntos
Sulfeto de Hidrogênio , Traumatismos dos Nervos Periféricos , Humanos , Sulfeto de Hidrogênio/farmacologia , Espécies Reativas de Oxigênio , Polietilenoglicóis , Traumatismos dos Nervos Periféricos/tratamento farmacológico , Regeneração Nervosa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...