Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Theranostics ; 14(9): 3583-3602, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38948067

RESUMO

Rationale: Mesenchymal stromal cells (MSCs) are considered a promising resource for cell therapy, exhibiting efficacy in ameliorating diverse bone diseases. However, most MSCs undergo apoptosis shortly after transplantation and produce apoptotic extracellular vesicles (ApoEVs). This study aims to clarify the potential role of ApoEVs from apoptotic MSCs in ameliorating osteoporosis and molecular mechanism. Methods: In this study, Dio-labeled bone marrow mesenchymal stem cells (BMSCs) were injected into mice to track BMSCs apoptosis and ApoEVs production. ApoEVs were isolated from BMSCs after inducing apoptosis, the morphology, size distribution, marker proteins expression of ApoEVs were characterized. Protein mass spectrometry analysis revealed functional differences in proteins between ApoEVs and BMSCs. BMSCs were adopted to test the cellular response to ApoEVs. Ovariectomy mice were used to further compare the ability of ApoEVs in promoting bone formation. SiRNA and lentivirus were used for gain and loss-of-function assay. Results: The results showed that BMSCs underwent apoptosis within 2 days after being injected into mice and produce a substantial quantity of ApoEVs. Proteomic analysis revealed that ApoEVs carried a diverse functional array of proteins, and easily traversed the circulation to reach the bone. After being phagocytized by endogenous BMSCs, ApoEVs efficiently promoted the proliferation, migration, and osteogenic differentiation of BMSCs. In an osteoporosis mouse model, treatment of ApoEVs alleviated bone loss and promoted bone formation. Mechanistically, ApoEVs carried Ras protein and activated the Ras/Raf1/Mek/Erk pathway to promote osteogenesis and bone formation in vitro and in vivo. Conclusion: Given that BMSC-derived ApoEVs are high-yield and easily obtained, our data underscore the substantive role of ApoEVs from dying BMSCs to treat bone loss, presenting broad implications for cell-free therapeutic modalities.


Assuntos
Apoptose , Vesículas Extracelulares , Células-Tronco Mesenquimais , Osteogênese , Osteoporose , Animais , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/transplante , Células-Tronco Mesenquimais/metabolismo , Osteoporose/terapia , Osteoporose/metabolismo , Camundongos , Feminino , Osteogênese/fisiologia , Diferenciação Celular , Transplante de Células-Tronco Mesenquimais/métodos , Proliferação de Células , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Ovariectomia , Proteômica , Transdução de Sinais
2.
J Mater Chem B ; 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38904147

RESUMO

Improving the regenerative ability of senescent stem cells is a critical issue in combating aging. The destiny and function of senescent stem cells are controlled by the niche, including the physical architecture of the surface of the extracellular matrix (ECM). In this study, we explored the functions of TiO2 nanotube topography on mesenchymal stem cells (MSCs) under senescence, as well as its mechanical effects on senescence. First, we created different nanotube topographies on the titanium samples. Next, we cultured senescent mesenchymal stem cells (S-MSCs) on samples with various nanotube topographies to determine suitable parameters. We found nanotube with a diameter of 10 nm significantly alleviated the cellular senescence of S-MSCs and improved the osteogenic differentiation of S-MSCs in vitro. Using an ectopic periodontium regeneration model, we confirmed that specific nanotube topography could promote tissue regeneration of S-MSCs in vivo. Moreover, we demonstrated that nanotube topography activated YAP in S-MSCs and reformed nuclear-cytoskeletal morphology to inhibit senescence. Taken together, our study establishes a bridge linking between nano-topography, mechanics, and senescence, suggesting a potential strategy to improve tissue regeneration in aged individuals by providing optimized surface topography on biomaterials.

3.
Blood Adv ; 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38820414

RESUMO

As multiple myeloma (MM) poses a formidable therapeutic challenge despite recent progress, exploring novel targets is crucial. Mucosa-associated lymphoid tissue lymphoma translocation protein-1 (MALT1) emerges as a promising paracaspase with druggable potential, especially unexplored in MM. Our study provided compelling evidence demonstrating a statistically significant elevation of MALT1 expression in human primary MM cells. Moreover, elevated MALT1 expression was associated with a poorer prognosis in MM. Genetic deletion of MALT1 reduced cell growth, colony formation, and tumor growth in vivo. Pharmacological inhibition with 1 µM Mi-2 effectively inhibited cell growth, inducing mitochondria-dependent apoptotic cell death. Mechanistically, MALT1 inhibition disrupted diverse signal transduction pathways, notably impeding nuclear factor κB (NF-κB). Significantly, the inhibition of MALT1 demonstrated a substantial suppression of NF-κB activation by elevating IκB, disrupting the nuclear localization of p65 and c-Rel. This effect was observed in both the basal state and when stimulated by BCMA, highlighting the pivotal role of MALT1 inhibition in influencing MM cell survival. It was noteworthy that Mi-2 induces properties associated with immunogenic cell death (ICD), as evidenced by increased calreticulin (CRT), ATP release, and high-mobility group protein B1 (HMGB1) upregulation, consequently triggering ICD-associated immune activation and enhancing CD8+ T - cell cytotoxicity in vitro. In conclusion, our research highlights MALT1 as a promising druggable target for therapeutic interventions in MM, providing insights into its molecular mechanisms in MM progression.

4.
Blood ; 143(11): 996-1005, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-37992230

RESUMO

ABSTRACT: Genomic instability contributes to cancer progression and is at least partly due to dysregulated homologous recombination (HR). Here, we show that an elevated level of ABL1 kinase overactivates the HR pathway and causes genomic instability in multiple myeloma (MM) cells. Inhibiting ABL1 with either short hairpin RNA or a pharmacological inhibitor (nilotinib) inhibits HR activity, reduces genomic instability, and slows MM cell growth. Moreover, inhibiting ABL1 reduces the HR activity and genomic instability caused by melphalan, a chemotherapeutic agent used in MM treatment, and increases melphalan's efficacy and cytotoxicity in vivo in a subcutaneous tumor model. In these tumors, nilotinib inhibits endogenous as well as melphalan-induced HR activity. These data demonstrate that inhibiting ABL1 using the clinically approved drug nilotinib reduces MM cell growth, reduces genomic instability in live cell fraction, increases the cytotoxicity of melphalan (and similar chemotherapeutic agents), and can potentially prevent or delay progression in patients with MM.


Assuntos
Antineoplásicos , Mieloma Múltiplo , Humanos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Mieloma Múltiplo/metabolismo , Melfalan/farmacologia , Instabilidade Genômica , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
5.
Eur J Med Res ; 28(1): 491, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37936237

RESUMO

OBJECTIVES: The objective of this systematic review and meta-analysis was to evaluate the effect of chewing gum on orthodontic pain and to determine the rate of bracket breakage associated with fixed orthodontic appliances. METHODS: This review and its reporting were performed according to the Cochrane Handbook for Systematic Reviews of Interventions and the PRISMA guidelines. Six electronic databases were searched up to March 16, 2023, to identify relevant studies that met the inclusion and exclusion criteria. Furthermore, grey literature resources were searched. The Cochrane Collaboration Risk of Bias tool 2 was used to assess the quality of the included studies. Meta-analysis was conducted using RevMan, and sensitivity analysis and publication bias analysis were performed using STATA software. GRADE tool was used to evaluate the certainty of evidence. RESULTS: Fifteen studies with 2116 participants were ultimately included in this review, and 14 studies were included in the meta-analysis. Compared with the blank group, chewing gum had a significant pain relieving effect at all times after fixation of the initial archwire (P ≤ 0.05). No significant difference was found between the chewing gum group and the analgesics group at any timepoints (P > 0.05). Only four studies evaluated the rate of bracket breakage and revealed that chewing gum did not increase the rate of bracket breakage. The sensitivity analysis showed that there was no significant difference in the pooled outcomes after the included studies were removed one at times, and Egger analysis revealed no significant publication bias in included studies (P > 0.05). CONCLUSIONS: Chewing gum is a non-invasive, low-cost and convenient method that has a significant effect on relieving orthodontic pain and has no effect on the rate of bracket breakage. Therefore, chewing gum can be recommended as a suitable substitute for analgesics to reduce orthodontic pain.


Assuntos
Goma de Mascar , Braquetes Ortodônticos , Humanos , Dor/etiologia , Analgésicos , Braquetes Ortodônticos/efeitos adversos , Medição da Dor
6.
Cell Metab ; 35(11): 2028-2043.e7, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37939660

RESUMO

Identification of cues originating from skeletal muscle that govern bone formation is essential for understanding the crosstalk between muscle and bone and for developing therapies for degenerative bone diseases. Here, we identified that skeletal muscle secreted multiple extracellular vesicles (Mu-EVs). These Mu-EVs traveled through the bloodstream to reach bone, where they were phagocytized by bone marrow mesenchymal stem/stromal cells (BMSCs). Mu-EVs promoted osteogenic differentiation of BMSCs and protected against disuse osteoporosis in mice. The quantity and bioactivity of Mu-EVs were tightly correlated with the function of skeletal muscle. Proteomic analysis revealed numerous proteins in Mu-EVs, some potentially regulating bone metabolism, especially glycolysis. Subsequent investigations indicated that Mu-EVs promoted the glycolysis of BMSCs by delivering lactate dehydrogenase A into these cells. In summary, these findings reveal that Mu-EVs play a vital role in BMSC metabolism regulation and bone formation stimulation, offering a promising approach for treating disuse osteoporosis.


Assuntos
Vesículas Extracelulares , MicroRNAs , Osteoporose , Camundongos , Animais , Osteogênese , Proteômica , Vesículas Extracelulares/metabolismo , Músculo Esquelético/metabolismo , Diferenciação Celular , Osteoporose/metabolismo , MicroRNAs/metabolismo
7.
PLoS One ; 18(11): e0294729, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37988356

RESUMO

We investigated the functional mechanism of long non-coding small nucleolar host gene 17 (SNHG17) in diffuse large B-cell lymphoma (DLBCL). lncRNAs related to the prognosis of patients with DLBCL were screened to analyze long non-coding small nucleolar host gene 17 (SNHG17) expression in DLBCL and normal tissues, and a nomogram established for predicting DLBCL prognosis. SNHG17 expression in B-cell lymphoma cells was detected using qPCR. The effects of SNHG17 with/without doxorubicin on the proliferation and apoptosis of DoHH2 and Daudi were detected. The effects of combined SNHG17 and doxorubicin were analyzed. The regulatory function of SNHG17 in DLBCL was investigated using a mouse tumor xenotransplantation model. RNA sequencing was used to analyze the signaling pathways involved in SNHG17 knockdown in B-cell lymphoma cell lines. The target relationships among SNHG17, microRNA, and downstream mRNA biomolecules were detected. A higher SNHG17 level predicted a lower survival rate. SNHG17 was highly expressed in DLBCL patient tissues and cell lines. We established a prognostic model containing SNHG17 expression, which could effectively predict the overall survival rate of DLBCL patients. SNHG17 knockdown inhibited the proliferation and induced the apoptosis of B-cell lymphoma cells, and the combination of SNHG17 and doxorubicin had a synergistic effect. SNHG17, miR-34a-5p, and ZESTE gene enhancer homolog 2 (EZH2) had common hypothetical binding sites, and the luciferase reporter assay verified that miR-34a-5p was the direct target of SNHG17, and EZH2 was the direct target of miR-34a-5p. The carcinogenic function of SNHG17 in the proliferation and apoptosis of DLBCL cells was partially reversed by a miR-34a-5p inhibitor. SNHG17 increases EZH2 levels by inhibiting miR-34a-5p. Our findings indicate SNHG17 as critical for promoting DLBCL progression by regulating the EZH2 signaling pathway and sponging miR-34a-5p. These findings provide a new prognostic marker and therapeutic target for the prognosis and treatment of DLBCL.


Assuntos
Linfoma Difuso de Grandes Células B , MicroRNAs , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Prognóstico , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Proliferação de Células/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica
8.
Int J Nanomedicine ; 18: 6955-6977, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38026535

RESUMO

Background: Diabetic chronic wounds present a formidable challenge in clinical management, lacking effective treatment options. Mesenchymal stem cell (MSC) transplantation has emerged as a promising therapy for tissue repair and regeneration. However, transplanted MSCs often undergo rapid apoptosis, giving rise to heterogeneous extracellular vesicles (EVs), including apoptotic bodies (apoBDs) and apoptotic small extracellular vesicles (apoSEVs). The potential stimulatory role of these EVs in diabetic wound healing remains unknown. Methods: In this study, we investigated the effects of apoSEVs derived from adipose-derived mesenchymal/stromal cells (ADSCs) on the recovery of diabetic wounds by modulating the function of versatile target cells. First, we characterized the apoSEVs and apoBDs derived from apoptotic ADSCs. Subsequently, we evaluated the effects of apoSEVs and apoBDs on macrophages, endothelial cells, and fibroblasts, three essential cell types in wound healing, under high-glucose conditions. Furthermore, we developed a gelatin methacryloyl (GelMA) hydrogel for the sustained release of apoSEVs and investigated its therapeutic effects on wound healing in type 2 diabetic mice in vivo. Results: apoSEVs facilitated the polarization of M1 phenotype macrophages to M2 phenotype, promoted proliferation, migration, and tube formation of endothelial cells, and enhanced fibroblast proliferation and migration. However, apoBDs failed to improve the function of endothelial cells and fibroblasts. In vivo, the apoSEVs-loaded GelMA effectively promoted wound healing by facilitating collagen fiber deposition, angiogenesis, and immune regulation. Conclusion: Our study elucidates the beneficial effects of apoSEVs on wound recovery in diabetes and introduces a novel strategy for diabetic wound treatment based on apoSEVs.


Assuntos
Diabetes Mellitus Experimental , Células-Tronco Mesenquimais , Camundongos , Animais , Diabetes Mellitus Experimental/terapia , Diabetes Mellitus Experimental/metabolismo , Células Endoteliais , Cicatrização , Pele , Células-Tronco Mesenquimais/metabolismo
9.
Artigo em Inglês | MEDLINE | ID: mdl-37815186

RESUMO

As a member of the AF4/FMR2 (AFF) family, AFF4 is a scaffold protein in the superelongation complex (SEC). In this mini-view, we discuss the role of AFF4 as a transcription elongation factor that mediates HIV activation and replication and stem cell osteogenic differentiation. AFF4 also promotes the progression of head and neck squamous cell carcinoma, leukemia, breast cancer, bladder cancer and other malignant tumors. The biological function of AFF4 is largely achieved through SEC assembly, regulates SRY-box transcription factor 2 (SOX2), MYC, estrogen receptor alpha (ESR1), inhibitor of differentiation 1 (ID1), c-Jun and noncanonical nuclear factor-κB (NF-κB) transcription and combines with fusion in sarcoma (FUS), unique regulatory cyclins (CycT1), or mixed lineage leukemia (MLL). We explore the prospects of using AFF4 as a therapeutic in Acquired immunodeficiency syndrome (AIDS) and malignant tumors and its potential as a stemness regulator.

10.
Gastroenterology ; 165(2): 357-373, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37178737

RESUMO

BACKGROUND & AIMS: The purpose of this study was to identify drivers of genomic evolution in esophageal adenocarcinoma (EAC) and other solid tumors. METHODS: An integrated genomics strategy was used to identify deoxyribonucleases correlating with genomic instability (as assessed from total copy number events in each patient) in 6 cancers. Apurinic/apyrimidinic nuclease 1 (APE1), identified as the top gene in functional screens, was either suppressed in cancer cell lines or overexpressed in normal esophageal cells and the impact on genome stability and growth was monitored in vitro and in vivo. The impact on DNA and chromosomal instability was monitored using multiple approaches, including investigation of micronuclei, acquisition of single nucleotide polymorphisms, whole genome sequencing, and/or multicolor fluorescence in situ hybridization. RESULTS: Expression of 4 deoxyribonucleases correlated with genomic instability in 6 human cancers. Functional screens of these genes identified APE1 as the top candidate for further evaluation. APE1 suppression in EAC, breast, lung, and prostate cancer cell lines caused cell cycle arrest; impaired growth and increased cytotoxicity of cisplatin in all cell lines and types and in a mouse model of EAC; and inhibition of homologous recombination and spontaneous and chemotherapy-induced genomic instability. APE1 overexpression in normal cells caused a massive chromosomal instability, leading to their oncogenic transformation. Evaluation of these cells by means of whole genome sequencing demonstrated the acquisition of changes throughout the genome and identified homologous recombination as the top mutational process. CONCLUSIONS: Elevated APE1 dysregulates homologous recombination and cell cycle, contributing to genomic instability, tumorigenesis, and chemoresistance, and its inhibitors have the potential to target these processes in EAC and possibly other cancers.


Assuntos
Adenocarcinoma , Resistencia a Medicamentos Antineoplásicos , Masculino , Animais , Camundongos , Humanos , Resistencia a Medicamentos Antineoplásicos/genética , Hibridização in Situ Fluorescente , Linhagem Celular Tumoral , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Carcinogênese/genética , Transformação Celular Neoplásica/genética , Recombinação Homóloga , Ciclo Celular , Instabilidade Genômica , Genômica , Instabilidade Cromossômica/genética , Desoxirribonucleases/genética , Evolução Molecular
11.
Funct Plant Biol ; 50(8): 599-611, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37137468

RESUMO

UV-B is an important light condition for inducing anthocyanin synthesis in plants. Plants have corresponding photoreceptors such as UV RESISTANCE LOCUS8 (UVR8) and transduce light signals to the nucleus, which regulate the expression of structural and regulatory genes for anthocyanin synthesis through members such as ELONGATED HYPOCOTYL 5 (HY5), thereby increasing or decreasing anthocyanin accumulation. At the same time, excessive UV-B irradiation (artificial light experiments or extreme environmental conditions) is a light stress for plants, which can damage plants and cause DNA damage or even cell death and other adverse effects. In addition, the effect of UV-B on anthocyanin accumulation in plants is usually combined with other abiotic factors, including other wavelengths of light, water deficit conditions, high or low temperatures, and heavy metal ions, all of which cause plants to change their anthocyanin accumulation in time to adapt to variable survival conditions. The review aims to bring together our understanding of the interactions between UV-B and anthocyanins, which can help further the development of the anthocyanin industry.


Assuntos
Antocianinas , Hipocótilo , Antocianinas/genética , Antocianinas/metabolismo , Hipocótilo/metabolismo
12.
Comb Chem High Throughput Screen ; 26(3): 539-558, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35538834

RESUMO

BACKGROUND: Although head and neck squamous cell carcinoma (HNSCC) is a common malignancy, the molecular biology landscape underlying its occurrence and development remains poorly understood. The family with sequence similarity (FAM) 3 family of proteins includes four family members, namely FAM3A, FAM3B, FAM3C and FAM3D. In particular, FAM3C has been previously reported to be closely associated with various human malignancies. METHODS: Combining analyses using The Cancer Genome Atlas, Gene Expression Profiling Interactive Analysis, Tumor Immune Estimation Resource and MethSurv databases, coupled with the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes bioinformatics tools, the possible biological function and key pathways regulated by the FAM3 family in HNSCC were probed. RESULTS: High FAM3A expression was found to increase HNSCC mitochondrial biosynthesis and energy metabolism, inhibit immune cell infiltration in the HNSCC tumor microenvironment, and be associated with poor prognosis. By contrast, lower expression levels of FAM3B in HNSCC were associated with a poorer prognosis in patients with HNSCC. This was most likely due to the finding that FAM3B can inhibit the development of HNSCC by increasing immune cell infiltration, inhibiting epithelial-mesenchymal transition (EMT) and the cytochrome P450 pathway. FAM3C was overexpressed in oral squamous cell carcinoma (OSCC) and associated with increased OSCC cell stemness, immune escape and EMT. In the present study, FAM3C expression was associated with poor prognosis for patients with HNSCC by suppressing tumor immune cell infiltration. FAM3C expression was also positively correlated with the expression of epithelial and mesenchymal markers such as E-cadherin, N-cadherin, Vimentin and ZO-1, which may promote the partial EMT status in HNSCC and greatly increase its malignancy. FAM3D is a maintenance factor of the epithelial phenotype in HNSCC that can inhibit the progression of EMT, promote tumor immune cell infiltration and inhibit HNSCC progression. In addition, methylation levels of the FAM3 gene family were correlated with the overall survival rate of HNSCC. CONCLUSION: The FAM3 family may be applied as a biomarker and potential therapeutic target for HNSCC.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas/diagnóstico , Carcinoma de Células Escamosas/genética , Prognóstico , Neoplasias de Cabeça e Pescoço/diagnóstico , Neoplasias de Cabeça e Pescoço/genética , Microambiente Tumoral , Proteínas de Neoplasias , Citocinas
13.
Cancer Gene Ther ; 30(1): 182-191, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36151332

RESUMO

Glycosylation change is one of the landmark events of tumor occurrence and development, and tumor cells may be inhibited by regulating the aberrant expression of glycosyltransferases. Currently, fucosyltransferase VI (FUT6), which is involved in the synthesis of α-1, 3 fucosyl bond, has been detected to be closely associated with multiple tumors, but its function and mechanism in head and neck squamous cell carcinoma (HNSCC) still need further research. In this study, FUT6 knockdown and overexpression strategies were used to investigate the effects of FUT6 on cell proliferation, migration, and invasion, as well as the growth and metastasis of HNSCC in a xenografts mouse model. The protein expression levels of epidermal growth factor receptor (EGFR), extracellular signal-regulated kinase (ERK), Signal Transducer and Activator of Transcription (STAT), protein kinase B (AKT), c-Myc, and epithelial-mesenchymal transition (EMT) markers were determined by western blot analysis. Our research found that the mRNA expression of FUT6 was lower in HNSCC tissues than in normal mucosal epithelial tissues. In Cal-27 and FaDu cells, FUT6 overexpression inhibited cell proliferation, migration and invasion, causing upregulation of ZO-1 and E-cadherin, downregulation of N-cadherin and Vimentin, and finally decreased the phosphorylation levels of EGFR, ERK, STAT, and c-Myc. In HSC-3 cells, knockdown of FUT6 promoted cell proliferation, migration and invasion, downregulating ZO-1 and E-cadherin, upregulating N-cadherin and Vimentin, and increased the phosphorylation levels of EGFR, ERK, STAT, and c-Myc. In the HNSCC xenografts mouse, FUT6 overexpression inhibited tumor growth and metastasis. In summary, FUT6 controls the proliferation, migration, invasion, and EGF-induced EMT of HNSCC by regulating EGFR/ERK/STAT signaling pathway, indicating its potential future therapeutic application for HNSCC.


Assuntos
Fator de Crescimento Epidérmico , Neoplasias de Cabeça e Pescoço , Humanos , Animais , Camundongos , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/farmacologia , Vimentina , Transição Epitelial-Mesenquimal/genética , Linhagem Celular Tumoral , Transdução de Sinais , Receptores ErbB/metabolismo , Proliferação de Células , Caderinas/metabolismo , Neoplasias de Cabeça e Pescoço/genética , Movimento Celular/genética , Fucosiltransferases/genética , Fucosiltransferases/metabolismo
14.
Shanghai Kou Qiang Yi Xue ; 32(6): 561-567, 2023 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-38494961

RESUMO

PURPOSE: To observe the anti-caries effect of transgenic tomato anti-caries vaccine after immunization with SD rats by gavage and to explore its immunity mechanism initially. METHODS: SD rats were used to establish an experimental caries model. The transgenic anti-caries tomatoes expressing the target protein were cultivated and identified. The SIgA and IgG contents of specific anti-PAcA in saliva and blood samples of SD rats were detected by ELISA. Then, the SD rats were sacrificed, the maxillary and mandibular bones were taken for Keyes dental caries score, and spleens were taken for the analysis of RNA-seq. Statistical analysis was performed with SPSS 18.0 software package. RESULTS: The target protein concentration in the transgenic tomato anti-caries vaccine was 36.28 µg/mL. After vaccine immunization of SD rats, group D (8 mL/kg) produced the highest levels of specific SIgA and IgG antibodies at week 6 and was significantly different from the other groups(P<0.05), and caries counting score was also significantly different than the other groups (P<0.05). The spleen mRNA of SD rats in group D was extracted and sequenced by RNA-seq, and 40 genes with significant differences in mRNA expression were obtained(P-adjust<0.05, |Fold Change|≥1.5). 26 genes were significantly upregulated, including IGFBP6 and COL15A1. The upregulated gene GO enrichment was enriched to humoral immune response, B-cell activation, and immunoglobulin receptor binding; KEGG enrichment was enriched to 56 signaling pathways, including PI3K-AKT and NF-κB, and F<0.001. Fourteen genes were significantly downregulated, but the analysis of downregulated gene GO and KEGG enrichment was not statistically significant(F>0.1). CONCLUSIONS: Transgenic tomato anti-caries vaccine may reduce caries occurrence by upregulating the activation of PI3K-AKT signaling pathway mediated by IGFBP6 in SD rats.


Assuntos
Cárie Dentária , Solanum lycopersicum , Vacinas de DNA , Ratos , Animais , Solanum lycopersicum/genética , Streptococcus mutans/genética , Cárie Dentária/prevenção & controle , Cariostáticos , Suscetibilidade à Cárie Dentária , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Vacinas de DNA/genética , Ratos Sprague-Dawley , Imunoglobulina A Secretora , Imunoglobulina G , RNA Mensageiro
15.
Front Immunol ; 13: 1088560, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36561746

RESUMO

Cancer immunotherapy, including the inhibition of immune checkpoints, improves the tumor immune microenvironment and is an effective tool for cancer therapy. More effective and alternative inhibitory targets are critical for successful immune checkpoint blockade therapy. The interaction of the immunomodulatory ligand B7 family with corresponding receptors induces or inhibits T cell responses by sending co-stimulatory and co-inhibitory signals respectively. Blocking the glycosylation of the B7 family members PD-L1, PD-L2, B7-H3, and B7-H4 inhibited the self-stability and receptor binding of these immune checkpoint proteins, leading to immunosuppression and rapid tumor progression. Therefore, regulation of glycosylation may be the "golden key" to relieve tumor immunosuppression. The exploration of a more precise glycosylation regulation mechanism and glycan structure of B7 family proteins is conducive to the discovery and clinical application of antibodies and small molecule inhibitors.


Assuntos
Neoplasias , Humanos , Glicosilação , Neoplasias/tratamento farmacológico , Imunoterapia , Linfócitos T , Imunomodulação , Microambiente Tumoral
16.
Cancers (Basel) ; 14(22)2022 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-36428789

RESUMO

BACKGROUND: In normal cells, homologous recombination (HR) is tightly regulated and plays an important role in the maintenance of genomic integrity and stability through precise repair of DNA damage. RAD51 is a recombinase that mediates homologous base pairing and strand exchange during DNA repair by HR. Our previous data in multiple myeloma and esophageal adenocarcinoma (EAC) show that dysregulated HR mediates genomic instability. Purpose of this study was to investigate role of HR in genomic instability, chemoresistance and immune dysregulation in solid tumors including colon and breast cancers. METHODS: The GEO dataset were used to investigate correlation of RAD51 expression with patient survival and expression of various immune markers in EAC, breast and colorectal cancers. RAD51 was inhibited in cancer cell lines using shRNAs and a small molecule inhibitor. HR activity was evaluated using a plasmid-based assay, DNA breaks assessed by evaluating expression of γ-H2AX (a marker of DNA breaks) and p-RPA32 (a marker of DNA end resection) using Western blotting. Genomic instability was monitored by investigating micronuclei (a marker of genomic instability). Impact of RAD51 inhibitor and/or a DNA-damaging agent was assessed on viability and apoptosis in EAC, breast and colon cancer cell lines in vitro and in a subcutaneous tumor model of EAC. Impact of RAD51 inhibitor on expression profile was monitored by RNA sequencing. RESULTS: Elevated RAD51 expression correlated with poor survival of EAC, breast and colon cancer patients. RAD51 knockdown in cancer cell lines inhibited DNA end resection and strand exchange activity (key steps in the initiation of HR) as well as spontaneous DNA breaks, whereas its overexpression increased DNA breaks and genomic instability. Treatment of EAC, colon and breast cancer cell lines with a small molecule inhibitor of RAD51 inhibited DNA breaking agent-induced DNA breaks and genomic instability. RAD51 inhibitor potentiated cytotoxicity of DNA breaking agent in all cancer cell types tested in vitro as well as in a subcutaneous model of EAC. Evaluation by RNA sequencing demonstrated that DNA repair and cell cycle related pathways were induced by DNA breaking agent whereas their induction either prevented or reversed by RAD51 inhibitor. In addition, immune-related pathways such as PD-1 and Interferon Signaling were also induced by DNA breaking agent whereas their induction prevented by RAD51 inhibitor. Consistent with these observations, elevated RAD51 expression also correlated with that of genes involved in inflammation and other immune surveillance. CONCLUSIONS: Elevated expression of RAD51 and associated HR activity is involved in spontaneous and DNA damaging agent-induced DNA breaks and genomic instability thus contributing to chemoresistance, immune dysregulation and poor prognosis in cancer. Therefore, inhibitors of RAD51 have great potential as therapeutic agents for EAC, colon, breast and probably other solid tumors.

17.
Front Oncol ; 12: 883831, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35936713

RESUMO

The interaction of non-kinase transmembrane glycoprotein CD44 with ligands including hyaluronic acid (HA) is closely related to the occurrence and development of tumors. Changes in CD44 glycosylation can regulate its binding to HA, Siglec-15, fibronectin, TM4SF5, PRG4, FGF2, collagen and podoplanin and activate or inhibit c-Src/STAT3/Twist1/Bmi1, PI3K/AKT/mTOR, ERK/NF-κB/NANOG and other signaling pathways, thereby having a profound impact on the tumor microenvironment and tumor cell fate. However, the glycosylation of CD44 is complex and largely unknown, and the current understanding of how CD44 glycosylation affects tumors is limited. These issues must be addressed before targeted CD44 glycosylation can be applied to treat human cancers.

18.
Front Mol Biosci ; 9: 828766, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35495633

RESUMO

Epithelial mesenchymal transition (EMT) is a contributing factor in remodeling events of chronic obstructive pulmonary disease (COPD). Hydrogen sulfide (H2S) has been implicated in the pathogenesis of COPD, but the effect of H2S in regulating EMT and the underlying mechanisms is not clear. In this study, we assessed endoplasmic reticulum (ER) stress markers, EMT markers and associated signal molecules in rat lungs, bronchial epithelial cells, and human peripheral lung tissues to investigate the effect of H2S in regulating EMT and the underlying mechanisms. We found that EMT and ER stress occurred in lung epithelial cells, especially in the bronchial epithelial cells of smokers and COPD patients. In cigarette smoke (CS)-exposed rats, intraperitoneal injection of NaHS significantly alleviated CS-induced lung tissue damage, small airway fibrosis, ER stress, and EMT, while intraperitoneal injection of propargylglycine (cystathionine-gamma-lyase inhibitor) aggravated these effects induced by CS. In the nicotine-exposed 16HBE cells, an appropriate concentration of H2S donor not only inhibited nicotine-induced ER stress, but also inhibited nicotine-induced enhancement of cell migration ability and EMT. ER stress nonspecific inhibitors taurine and 4-phenyl butyric acid also inhibited nicotine-induced enhancement of cell migration ability and EMT. Both H2S and inositol-requiring enzyme 1 (IRE1) activation inhibitor 4µ8C inhibited nicotine-induced activation of IRE1, Smad2/3 and EMT. These results suggest that H2S inhibits CS- or nicotine-induced ER stress and EMT in bronchial epithelial cells and alleviates CS-induced lung tissue damage and small airway fibrosis. The IRE1 signal pathway and Smad2/3 may be responsible for the inhibitory effect of H2S.

19.
Oxid Med Cell Longev ; 2022: 9407927, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35340205

RESUMO

Chronic obstructive pulmonary disease (COPD) is a leading cause of death worldwide, which is usually caused by exposure to noxious particles or gases. Hydrogen sulfide (H2S), as an endogenous gasotransmitter, is involved in the pathogenesis of COPD, but its role in COPD is little known. To investigate the role of H2S in COPD, a rat model of COPD was established by cigarette smoking (CS) and intratracheal instillation of lipopolysaccharide (LPS). Rats were randomly divided into 4 groups: control, CS + LPS, CS + LPS + sodium hydrosulfide (NaHS, H2S donor), and CS + LPS + propargylglycine (PPG, inhibitor of cystathionine-γ-lyase, and CTH). Lung function in vivo, histology analysis of lung sections, malondialdehyde (MDA) concentration, CTH protein, total superoxide dismutase (T-SOD), and catalase (CAT) activity in lung tissues were assessed. Gene expression profiling of lung was assessed by microarray analysis. The results showed that rats in the CS + LPS group had lower body weight and lung function but higher lung pathological scores, MDA concentration, CTH protein, T-SOD, and CAT activity compared with the control. Compared with CS + LPS group, NaHS treatment decreased lung pathological scores and MDA concentration, while PPG treatment decreased body weight of rats and T-SOD activity, and no significant differences were detected in pathological scores by PPG treatment. Microarray analysis identified multiple differentially expressed genes, and some genes regulated by H2S were involved in oxidative stress, apoptosis, and inflammation pathways. It indicates that H2S may play a protective role in COPD via antioxidative stress and antiapoptosis pathway.


Assuntos
Sulfeto de Hidrogênio , Doença Pulmonar Obstrutiva Crônica , Animais , Perfilação da Expressão Gênica , Sulfeto de Hidrogênio/metabolismo , Sulfeto de Hidrogênio/farmacologia , Análise em Microsséries , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/genética , Ratos , Ratos Sprague-Dawley
20.
Cancer Med ; 11(5): 1281-1291, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35106936

RESUMO

There are over a 100 driver gene mutations in patients with diffuse large B-cell lymphoma (DLBCL), but their clinical significance remains unclear. Here, we first analyzed the DLBCL dataset from the UK-based Haematological Malignancy Research Network. Patients were divided into high- and low-risk groups based on whether lymphoma progressed within 24 months. Genes showing significantly different frequencies between groups were selected. Survival data for patients with the selected mutant genes were analyzed. The results were validated using two other large databases to evaluate the relationship between the selected mutant genes and prognosis. The mutation frequencies of 11 genes (MYD88[L265P], SGK1, MPEG1, TP53, SPEN, NOTCH1, ETV6, TNFRSF14, MGA, CIITA, and PIM1) significantly differed between the high- and low-risk groups. The relationships between these mutant genes and patient survival were analyzed. Patients who harbored SGK1 (serum and glucocorticoid-inducible kinase 1) mutations exhibited the best prognosis. Most patients with SGK1 mutation are germinal center B-cell (GCB) subtype. Among patients with GCB DLBCL, those harboring SGK1 mutations exhibited better prognosis than those without SGK1 mutations. Most SGK1 mutations were single-base substitutions, primarily scattered throughout the catalytic domain-encoding region. Multiple SGK1 mutations were identified in a single patient. Thus, SGK1 mutations are a marker of good prognosis for DLBCL and occur predominantly in the GCB subtype of DLBCL. SGK1 mutation status can further stratify patients with GCB DLBCL into different prognostic subgroups.


Assuntos
Proteínas Imediatamente Precoces , Linfoma Difuso de Grandes Células B , Proteínas Serina-Treonina Quinases , Linfócitos B/patologia , Centro Germinativo/patologia , Humanos , Proteínas Imediatamente Precoces/genética , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/patologia , Mutação , Prognóstico , Proteínas Serina-Treonina Quinases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...