Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 500
Filtrar
2.
Adv Healthc Mater ; : e2401223, 2024 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-39440615

RESUMO

Cancer immunotherapy, which aims to eliminate cancer immunosuppression and reactivate anticancer immunity, holds great promise in oncology treatments. However, it is challenging to accurately study the efficacy of immunotherapy based on human-derived cells through animal experiments due to xenogeneic immune rejection. Herein, a personalized and precise strategy to evaluate the effectiveness of immunotherapy using the blood samples of cancer patients is presented. Through the utilization of multiple cancer-targeting delivery system decorated with the epidermal growth factor receptor (EGFR)-specific aptamer CL4 and the AXL-specific aptamer GL21.T to achieve superior efficiency in delivering the genome editing plasmid for MUC1 knockout, effective modulation on the behavior of circulating malignant cells (CMCs) is realized. After genome editing, both mucin 1 (MUC1) and programmed death-ligand 1 (PD-L1) are significantly downregulated in CMCs. The elimination of immunosuppression results in markedly enhanced secretion of pro-inflammatory anticancer cytokines encompassing interleukins 2, 12, and 15 and interferon-γ by immune cells. The study not only provides a strategy to overcome immunosuppression but also yields critical insights for personalized immunotherapy approaches.

3.
Clin Respir J ; 18(10): e70025, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39406371

RESUMO

BACKGROUND: Osimertinib is approved as a standard treatment for non-small cell lung cancer (NSCLC) patients with epidermal growth factor receptor (EGFR) mutation by FDA. However, the mechanisms of resistance for nearly half of patients after osimertinib progression are still unknown, and the optimal therapies for these patients are still controversial. In this retrospective study, we compared efficacy and safety between immunotherapy + chemotherapy, chemotherapy alone, and osimertinib + bevacizumab in NSCLC patients after osimertinib progression with unknown resistance mechanisms. METHODS: Advanced NSCLC patients with unknown resistance mechanisms after osimertinib progression were retrospectively reviewed and divided into immunotherapy + chemotherapy, chemotherapy alone, and osimertinib + bevacizumab treatment groups according to the treatment they received after osimertinib progression. Clinicopathological features, objective response rate (ORR), progression-free survival (PFS), and overall survival (OS) were compared between groups. RESULTS: A total of 121 patients were enrolled in this study, 22 in the immunotherapy + chemotherapy group, 72 in the chemotherapy group, and 27 in the osimertinib + bevacizumab group. The ORR was much higher in the immunotherapy + chemotherapy group compared with chemotherapy or osimertinib + bevacizumab group (55.56% vs. 14.81% vs. 0% in patients after progression on 1st line osimertinib treatment; 30.77% vs. 6.67% vs. 13.33% in patients after progression on 2nd/3rd line osimertinib treatment). Median PFS was also significantly longer in the immunotherapy + chemotherapy group compared with other groups (8.2 months vs. 4.0 months vs. 6.0 months in all patients, p = 0.0066). The median OS did not reach remarkable difference among groups, although osimertinib + bevacizumab group had a numerically longer median OS (37.0 months vs. 37.0 months vs. 47.6 months in all patients, p = 0.6357). Compared with immunotherapy + chemotherapy and chemotherapy, treatment-related adverse events (AEs) of osimertinib + bevacizumab were milder, especially in AEs related to gastrointestinal and bone marrow suppression. CONCLUSION: Our study provides clinical evidence that NSCLC patients after osimertinib progression with unknown resistance mechanisms may benefit from immunotherapy + chemotherapy, with higher ORR and longer PFS compared with osimertinib + bevacizumab or chemotherapy groups. Osimertinib + bevacizumab treatment was also an optional option for patients because OS was numerically longer and safer in this group.


Assuntos
Acrilamidas , Compostos de Anilina , Bevacizumab , Carcinoma Pulmonar de Células não Pequenas , Resistencia a Medicamentos Antineoplásicos , Receptores ErbB , Neoplasias Pulmonares , Mutação , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Compostos de Anilina/uso terapêutico , Acrilamidas/uso terapêutico , Masculino , Feminino , Receptores ErbB/genética , Receptores ErbB/antagonistas & inibidores , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Estudos Retrospectivos , Pessoa de Meia-Idade , Idoso , Bevacizumab/uso terapêutico , Bevacizumab/administração & dosagem , Resistencia a Medicamentos Antineoplásicos/genética , Progressão da Doença , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Imunoterapia/métodos , Adulto , Indóis , Pirimidinas
4.
Biology (Basel) ; 13(10)2024 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-39452150

RESUMO

As an appendage of the skin, hair protects against ultraviolet radiation and mechanical damage and regulates body temperature. It also reflects an individual's health status and serves as an important method of expressing personality. Hair loss and graying are significant psychosocial burdens for many people. Hair is produced from hair follicles, which are exclusively controlled by the dermal papilla (DP) at their base. The dermal papilla cells (DPCs) comprise a cluster of specialized mesenchymal cells that induce the formation of hair follicles during early embryonic development through interaction with epithelial precursor cells. They continue to regulate the growth cycle, color, size, and type of hair after the hair follicle matures by secreting various factors. DPCs possess stem cell characteristics and can be cultured and expanded in vitro. DPCs express numerous stemness-related factors, enabling them to be reprogrammed into induced pluripotent stem cells (iPSCs) using only two, or even one, Yamanaka factor. DPCs are an important source of skin-derived precursors (SKPs). When combined with epithelial stem cells, they can reconstitute skin and hair follicles, participating in the regeneration of the dermis, including the DP and dermal sheath. When implanted between the epidermis and dermis, DPCs can induce the formation of new hair follicles on hairless skin. Subcutaneous injection of DPCs and their exosomes can promote hair growth. This review summarizes the in vivo functions of the DP; highlights the potential of DPCs in cell therapy, particularly for the treatment of hair loss; and discusses the challenges and recent advances in the field, from basic research to translational applications.

5.
Curr Med Chem ; 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39411955

RESUMO

AIM: This study seeks to develop a prognostic risk signature for head and neck squamous cell carcinoma (HNSCC) based on cholesterol-related genes (CholRG), aiming to enhance prognostic accuracy in clinical practice. BACKGROUND: HNSCC poses significant challenges due to its aggressive behavior and limited response to standard treatments, resulting in elevated morbidity and mortality rates.In order to improve prognostic prediction in HNSCC, our study is inspired by the realization that cholesterol metabolism plays a critical role in accelerating the progression of cancer. To this end, we are developing a unique risk signature using CholRG. OBJECTIVE: The aim of this study was to create a CholRG-based risk signature to predict HNSCC prognosis, aiding in clinical decision-making accurately. METHOD: The TCGA HNSCC dataset, along with GSE41613 and GSE65858, was obtained from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) databases, respectively. A CholRG-based risk signature was then developed and validated across various independent HNSCC cohorts. Moreover, a nomogram model incorporating CholRG-based risk signature was established. Additionally, functional enrichment analysis was conducted, and the immune landscapes of the high- and low-risk groups were compared. Finally, in vitro experiments were performed using lipid-based transfection to deliver siRNAs targeting ACAT1 to SCC1 and SCC23 cell lines, further examining the effects of ACAT1 knockdown on these cells. RESULTS: Utilizing RNA-seq, microarray, and clinical data from public databases, we constructed and validated a CholRG-based risk signature that includes key genes such as ACAT1, CYP19A1, CYP27A1, FAXDC2, INSIG2, PRKAA2, and SEC14L2, which can effectively predict the clinical outcome of HNSCC. Additionally, our findings were reinforced by a nomogram model that integrates the risk score with clinical variables for more clinically practical prognostic assessment. In addition, patients at high risk show hypoxia and increased oncogenic pathways such as mTORC1 signaling, as well as a suppressed immune microenvironment marked by a reduction in the infiltration of important immune cells. Notably, in vitro experiments showed that ACAT1 depletion significantly suppressed the proliferation, colony formation, and invasion capabilities of HNSCC cells, confirming ACAT1's role in promoting malignancy. CONCLUSION: Collectively, our study not only underscores the importance of cholesterol metabolism in HNSCC pathogenesis but also highlights the CholRG-based risk signature as a promising tool for enhancing prognostic accuracy and personalizing therapeutic strategies.

6.
Int J Med Sci ; 21(11): 2127-2138, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39239555

RESUMO

Background: Identification of the unknown pathogenic factor driving atherosclerosis not only enhances the development of disease biomarkers but also facilitates the discovery of new therapeutic targets, thus contributing to the improved management of coronary artery disease (CAD). We aimed to identify causative protein biomarkers in CAD etiology based on proteomics and 2-sample Mendelian randomization (MR) design. Methods: Serum samples from 33 first-onset CAD patients and 31 non-CAD controls were collected and detected using protein array. Differentially expressed analyses were used to identify candidate proteins for causal inference. We used 2-sample MR to detect the causal associations between the candidate proteins and CAD. Network MR was performed to explore whether metabolic risk factors for CAD mediated the risk of identified protein. Vascular expression of candidate protein in situ was also detected. Results: Among the differentially expressed proteins identified utilizing proteomics, we found that circulating Golgi protein 73 (GP73) was causally associated with incident CAD and other atherosclerotic events sharing similar etiology. Network MR approach showed low-density lipoprotein cholesterol and glycated hemoglobin serve as mediators in the causal pathway, transmitting 42.1% and 8.7% effects from GP73 to CAD, respectively. Apart from the circulating form of GP73, both mouse model and human specimens imply that vascular GP73 expression was also upregulated in atherosclerotic lesions and concomitant with markers of macrophage and phenotypic switching of vascular smooth muscle cells (VSMCs). Conclusions: Our study supported GP73 as a biomarker and causative for CAD. GP73 may involve in CAD pathogenesis mainly via dyslipidemia and hyperglycemia, which may enrich the etiological information and suggest future research direction on CAD.


Assuntos
Biomarcadores , Doença da Artéria Coronariana , Proteínas de Membrana , Análise da Randomização Mendeliana , Proteômica , Animais , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Aterosclerose/sangue , Aterosclerose/genética , Biomarcadores/sangue , Estudos de Casos e Controles , LDL-Colesterol/sangue , Doença da Artéria Coronariana/sangue , Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/patologia , Hemoglobinas Glicadas/análise , Hemoglobinas Glicadas/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/sangue
7.
Health Qual Life Outcomes ; 22(1): 76, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39256723

RESUMO

PURPOSES: Chronic obstructive pulmonary disease (COPD) is a major cause of the rapid decline of health-related quality of life (HRQoL), associated with accelerated frailty in older populations. This study aimed to analyse the long-term dynamic changes of HRQoL and the predictive factors for the rapid decline of HRQoL in older patients with COPD. METHODS: Overall 244 patients with COPD, aged ≧ 65 years from one medical centre were enrolled between March 2012 and July 2020. Further, we prospectively assessed HRQoL scores with utility values, using EuroQol Five-Dimension (EQ-5D) questionnaires. Additionally, long-term dynamic changes in HRQoL were analysed using the Kernel smoothing method and examined the factors contributing to the deterioration of HRQoL using a linear mixed effects model. RESULTS: Older patients with COPD with forced expiration volume (FEV1) < 50% of prediction entered the phase of rapid and continuous decline of HRQoL ~ 2 years after enrolment, but patients with FEV1 ≥ 50% of prediction without rapidly declined HRQoL during 7 years follow up. Therefore, FEV1 < 50% of prediction is a novel predictor for the rapid decline of HRQoL. The course of rapidly declining HRQoL occurred, initially in the usual activities and pain/discomfort domains, followed by the morbidity, self-care, and depression/anxiety domains ~ 2 and 4 years after enrolment, respectively. The mixed effects model indicated that both FEV1 < 50% of prediction and a history of severe acute exacerbation (SAE) requiring hospitalisation were contributing factors for deterioration in HRQoL . CONCLUSIONS: Both FEV1 < 50% of prediction and exacerbations requiring hospitalisation were contributing factors for the deterioration of HRQoL in long-term follow up. Additionally, FEV1 < 50% of prediction was a novel predictor for patients entering the phase of rapid decline of HRQoL.


Assuntos
Doença Pulmonar Obstrutiva Crônica , Qualidade de Vida , Humanos , Qualidade de Vida/psicologia , Doença Pulmonar Obstrutiva Crônica/psicologia , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Masculino , Idoso , Feminino , Seguimentos , Inquéritos e Questionários , Estudos Prospectivos , Idoso de 80 Anos ou mais , Volume Expiratório Forçado
8.
Acta Pharmacol Sin ; 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39294445

RESUMO

Sodium-glucose co-transporter 2 (SGLT2) inhibitor (SGLT2i) is a novel class of anti-diabetic drug, which has displayed a promising benefit for non-alcoholic fatty liver disease (NAFLD). In this study, we investigated the protective effects of SGLT2i against NAFLD and the underlying mechanisms. The db/db mice and western diet-induced NAFLD mice were treated with dapagliflozin (1 mg·kg-1·d-1, i.g.) or canagliflozin (10 mg·kg-1·d-1, i.g.) for 8 weeks. We showed that the SGLT2i significantly improved NAFLD-associated metabolic indexes, and attenuated hepatic steatosis and fibrosis. Notably, SGLT2i reduced the levels of pro-inflammatory cytokines and chemokines, downregulated M1 macrophage marker expression and upregulated M2 macrophage marker expression in liver tissues. In cultured mouse bone marrow-derived macrophages and human peripheral blood mononuclear cell-derived macrophages, the SGLT2i (10, 20 and 40 µmol/L) significantly promoted macrophage polarization from M1 to M2 phenotype. RNA sequencing, Seahorse analysis and liquid chromatography-tandem mass spectrometry analysis revealed that the SGLT2i suppressed glycolysis and triggered metabolic reprogramming in macrophages. By using genetic manipulation and pharmacological inhibition, we identified that the SGLT2i targeted PFKFB3, a key enzyme of glycolysis, to modulate the macrophage polarization of M1 to M2 phenotype. Using a co-culture of macrophages with hepatocytes, we demonstrated that the SGLT2i inhibited lipogenesis in hepatocytes via crosstalk with macrophages. In conclusion, this study highlights a potential therapeutic application for repurposing SGLT2i and identifying a potential target PFKFB3 for NAFLD treatment.

9.
J Hazard Mater ; 479: 135730, 2024 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-39243538

RESUMO

Sewage surveillance is a cost-effective tool for assessing antimicrobial resistance (AMR) in urban populations. However, research on sewage AMR in remote areas is still limited. Here, we used shotgun metagenomic sequencing to profile antibiotic resistance genes (ARGs) and ARG-carrying pathogens (APs) across 15 cities in Tibetan Plateau (TP) and the major cities in eastern China. Notable regional disparities in sewage ARG composition were found, with a significantly higher ARG abundance in TP (2.97 copies/cell). A total of 542 and 545 APs were identified in sewage from TP and the East, respectively, while more than 40 % carried mobile genetic elements (MGEs). Moreover, 65 MGEs-carrying APs were identified as World Health Organization (WHO) priority-like bacterial and fungal pathogens. Notably, a fungal zoonotic pathogen, Enterocytozoon bieneusi, was found for the first time to carry a nitroimidazole resistance gene (nimJ). Although distinct in AP compositions, the relative abundances of APs were comparable in these two regions. Furthermore, sewage in TP was found to be comparable to the cities in eastern China in terms of ARG mobility and AMR risks. These findings provide insights into ARGs and APs distribution in Chinese sewage and stress the importance of AMR surveillance and management strategies in remote regions.


Assuntos
Cidades , Metagenômica , Esgotos , Esgotos/microbiologia , Tibet , China , Resistência Microbiana a Medicamentos/genética , Bactérias/genética , Bactérias/efeitos dos fármacos , Farmacorresistência Bacteriana/genética , Antibacterianos/farmacologia , Genes Bacterianos
10.
Front Microbiol ; 15: 1458252, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39144228

RESUMO

Newcastle Disease (ND) and Infectious Bronchitis (IB) are two significant diseases that pose threats to the poultry industry, caused by Newcastle disease virus (NDV) and Infectious bronchitis virus (IBV), respectively. Currently, the control and prevention of these diseases primarily rely on vaccination. However, commercial ND and IB vaccines face challenges such as poor cross-protection of inactivated IBV strains and interference from live vaccines when used together, leading to immunization failures. Previously, we reported the successful rescue of a recombinant NDV expressing multiple epitopes of IBV, named rNDV-IBV-T/B, which showed promising immunoprotective efficacy against both NDV and IBV. This study focuses on the biosafety of the genetically modified recombinant vaccine candidate rNDV-IBV-T/B. Immunization was performed on day-old chicks, ducklings, goslings, and ICR mice. Observations were recorded on clinical symptoms, body weight changes, and post-mortem examination of organs, as well as histopathological preparations of tissue samples. The results indicated that the rNDV-IBV-T/B vaccine candidate had no adverse effects on the growth of targeted animals (chickens) and non-target species (ducks, geese) as well as in mammals (mice). Additionally, histopathological slides confirmed that the vaccine is safe for all tested species. Further studies evaluated the potential of rNDV-IBV-T/B to spread horizontally and vertically post-immunization, and its environmental safety. The findings revealed that the vaccine candidate lacks the capability for both horizontal and vertical transmission and does not survive in the environment. In conclusion, the rNDV-IBV-T/B strain is safe and holds potential as a new chimeric live vaccine for ND and IB.

11.
J Hazard Mater ; 479: 135675, 2024 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-39216241

RESUMO

The profound influences of altitude on aquatic microbiome were well documented. However, differences in the responses of different life domains (bacteria, microeukaryotes, viruses) and antibiotics resistance genes (ARGs) in glacier river ecosystems to altitude remain unknown. Here, we employed shotgun metagenomic and amplicon sequencing to characterize the altitudinal variations of microbiome and ARGs in the Rongbu River, Mount Everest. Our results indicated the relative influences of stochastic processes on microbiome and ARGs assembly in water and sediment were in the following order: microeukaryotes < ARGs < viruses < bacteria. Moreover, distinct assembly patterns of the microbiome and ARGs were found in response to differences in altitude, the latter of which shift from deterministic to stochastic processes with increasing differences in altitude. Partial least squares path modeling revealed that mobile genetic elements (MGEs) and viral ß-diversity were the major factors influencing the ARG abundances. Taken together, our work revealed that altitude-caused environmental changes led to significant changes in the composition and assembly processes of the microbiome and ARGs, while ARGs had a unique response pattern to altitude. Our findings provide novel insights into the impacts of altitude on the biogeographic distribution of microbiome and ARGs, and the associated driving forces in glacier river ecosystems.


Assuntos
Altitude , Resistência Microbiana a Medicamentos , Microbiota , Rios , Rios/microbiologia , Microbiota/efeitos dos fármacos , Resistência Microbiana a Medicamentos/genética , Ecossistema , Bactérias/genética , Bactérias/efeitos dos fármacos , Bactérias/classificação , Sedimentos Geológicos/microbiologia , Vírus/efeitos dos fármacos , Vírus/genética , Antibacterianos/farmacologia , Camada de Gelo/microbiologia , China
12.
Asian J Androl ; 26(6): 645-652, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39028629

RESUMO

ABSTRACT: This umbrella review aimed to summarize and provide a general evaluation of the effectiveness of current treatments for male infertility and assess the quality of evidence and possible biases. An umbrella review of systematic reviews and meta-analyses available in PubMed, Web of Science, and Scopus, covering studies published up to October 2023, was conducted. Sperm concentration, morphology, and motility were used as endpoints to evaluate the effectiveness of the treatments. Of 2998 studies, 18 published meta-analyses were extracted, yielding 90 summary effects on sperm concentration ( n = 36), sperm morphology ( n = 26), and sperm motility ( n = 28) on 28 interventions. None of the meta-analyses were classified as having low methodological quality, whereas 12 (66.7%) and 6 (33.3%) had high and moderate quality, respectively. Of the 90 summary effects, none were rated high-evidence quality, whereas 53.3% ( n = 48), 25.6% ( n = 23), and 21.1% ( n = 19) were rated moderate, low, and very low, respectively. Significant improvements in sperm concentration, morphology, and motility were observed with pharmacological interventions (N-acetyl-cysteine, antioxidant therapy, aromatase inhibitors, selective estrogen receptor modulators, hormones, supplements, and alpha-lipoic acid) and nonpharmacological interventions (varicocele repair and redo varicocelectomy). In addition, vitamin supplementation had no significant positive effects on sperm concentration, motility, or morphology. Treatments for male infertility are increasingly diverse; however, the current evidence is poor because of the limited number of patients. Further well-designed studies on single treatment and high-quality meta-analysis of intertreatment comparisons are recommended.


Assuntos
Infertilidade Masculina , Revisões Sistemáticas como Assunto , Masculino , Humanos , Infertilidade Masculina/terapia , Infertilidade Masculina/tratamento farmacológico , Metanálise como Assunto , Motilidade dos Espermatozoides , Contagem de Espermatozoides , Antioxidantes/uso terapêutico
13.
Front Endocrinol (Lausanne) ; 15: 1379293, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38978626

RESUMO

Background: Polycystic ovary syndrome (PCOS) is the most common reproductive-endocrine disorder with wide-ranging metabolic implications, including obesity. RNA editing, a post-transcriptional modification, can fine-tune protein function and introduce heterogeneity. However, the role of RNA editing and its impact on adipose tissue function in PCOS remain poorly understood. Methods: This study aimed to comprehensively analyze RNA-editing events in abdominal and subcutaneous adipose tissue of PCOS patients and healthy controls using high-throughput whole-genome sequencing (WGS) and RNA sequencing. Results: Our results revealed that PCOS patients exhibited more RNA-editing sites, with adenosine-to-inosine (A-to-I) editing being prevalent. The expression of ADAR genes, responsible for A-to-I editing, was also higher in PCOS. Aberrant RNA-editing sites in PCOS adipose tissue was enriched in immune responses, and interleukin-12 biosynthetic process. Tumor necrosis factor (TNF) signaling, nuclear factor kappa B (NF-κB) signaling, Notch signaling, terminal uridylyl transferase 4 (TUT4), hook microtubule tethering protein 3 (HOOK3), and forkhead box O1 (FOXO1) were identified to be of significant differences. Differentially expressed genes (DEGs) in PCOS adipose tissue were enriched in immune responses compared with controls, and the DEGs between subcutaneous and abdominal adipose tissue were also enriched in immune responses suggesting the important role of subcutaneous adipose tissue. Furthermore, we identified the correlations between RNA editing levels and RNA expression levels of specific genes, such as ataxia-telangiectasia mutated (ATM) and mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1) in inflammation pathways and ATM, TUT4, and YTH N6-methyladenosine RNA-binding protein C2 (YTHDC2) in oocyte development pathway. Conclusions: These findings suggest that RNA-editing dysregulation in PCOS adipose tissue may contribute to inflammatory dysregulations. Understanding the interplay between RNA editing and adipose tissue function may unveil potential therapeutic targets for PCOS management. However, further research and validation are required to fully elucidate the molecular mechanisms underlying these associations.


Assuntos
Tecido Adiposo , Obesidade , Síndrome do Ovário Policístico , Edição de RNA , Humanos , Síndrome do Ovário Policístico/genética , Síndrome do Ovário Policístico/metabolismo , Síndrome do Ovário Policístico/imunologia , Síndrome do Ovário Policístico/patologia , Feminino , Obesidade/genética , Obesidade/metabolismo , Adulto , Tecido Adiposo/metabolismo , Estudos de Casos e Controles , Sequenciamento Completo do Genoma
14.
ACS Omega ; 9(24): 25655-25667, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38911799

RESUMO

The incorporation of nanomaterials generated from Prussian blue (PB) derivatives has emerged as a promising strategy to significantly improve the properties of energetic materials. In this study, we comprehensively investigated the influence of nanomaterials derived from PB on the thermal decomposition characteristics of energetic materials. To achieve this goal, we prepared nanomaterials using coprecipitation and heat treatment methods with PB derivatives as catalysts. Advanced techniques such as X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Brunauer-Emmett-Teller (BET) analysis for specific surface area and pore size, and X-ray photoelectron spectroscopy were employed to thoroughly characterize these nanomaterials. Differential scanning calorimetry was used to assess the thermal behavior of nitrocellulose (NC), and the relevant kinetic parameters were determined through thermal decomposition kinetics calculations and analysis. This work revealed the influence of catalysts on the NC decomposition process and provided comprehensive insights into the effect of integrating nanomaterials derived from PB derivatives on the thermal decomposition performance of NC. The results of this work demonstrated the possibility of using nanomaterials generated from PB derivatives as effective catalysts to enhance the thermal decomposition characteristics of NC, offering interesting opportunities for their application in the field of high-energy materials.

15.
J Hazard Mater ; 475: 134931, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38889467

RESUMO

In this study, oversized microplastics (OMPs) were intentionally introduced into soil containing manure-borne doxycycline (DOX). This strategic approach was used to systematically examine the effects of combined OMP and DOX pollution on the growth of pak choi, analyze alterations in soil environmental metabolites, and explore the potential migration of antibiotic resistance genes (ARGs). The results revealed a more pronounced impact of DOX than of OMPs. Slender-fiber OMPs (SF OMPs) had a more substantial influence on the growth of pak choi than did coarse-fiber OMPs (CF OMPs). Conversely, CF OMPs had a more significant effect on the migration of ARGs within the system. When DOX was combined with OMPs, the negative effects of DOX on pak choi growth were mitigated through the synthesis of indole through the adjustment of carbon metabolism and amino acid metabolism in pak choi roots. In this process, Pseudohongiellaceae and Xanthomonadaceae were key bacteria. During the migration of ARGs, the potential host bacterium Limnobacter should be considered. Additionally, the majority of potential host bacteria in the pak choi endophytic environment were associated with tetG. This study provides insights into the intricate interplay among DOX, OMPs, ARGs, plant growth, soil metabolism, and the microbiome.


Assuntos
Antibacterianos , Doxiciclina , Esterco , Microplásticos , Poluentes do Solo , Doxiciclina/farmacologia , Doxiciclina/toxicidade , Antibacterianos/toxicidade , Antibacterianos/farmacologia , Esterco/microbiologia , Poluentes do Solo/toxicidade , Microplásticos/toxicidade , Resistência Microbiana a Medicamentos/genética , Microbiologia do Solo , Bactérias/efeitos dos fármacos , Bactérias/genética , Bactérias/metabolismo , Genes Bacterianos/efeitos dos fármacos , Farmacorresistência Bacteriana/genética , Multiômica
16.
Forensic Sci Int ; 361: 112071, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38870577

RESUMO

AIM: To identify mtDNA and OGG1 as potential biomarker candidates for mechanical asphyxia. METHOD: The human tissues are divided into experimental group (hanging and strangulation) and control groups (hemorrhagic shock, brain injury group, and poisoning group). Detected the expression of OGG1 and integrity of mtDNA in cardiac tissue of each group. We used over-OGG1 vector and siRNA-OGG1 transfecting H9C2 cell line to observe the function of OGG1 in hypoxic cells. RESULTS: 1. mtDNA integrity decreased in the mechanical asphyxia group, OGG1 expression increased in mechanical asphyxia groups. They can be biomarkers for mechanical asphyxia. 2. OGG1 increased first and decreased in hypoxia-induced H9C2 cells. OGG1 upregulated the TFAM, NRF1, and Bcl2 in hypoxia-induced H9C2. OGG1 downregulated cleaved-Caspase3 in hypoxia-induced H9C2 cells. 3. In the normoxia condition, NAC maintained mtDNA integrity and decreased the mitochondrial membrane potential and amount of ATP. CONCLUSION: mtDNA integrity and OGG1 expression can be biomarkers for mechanical asphyxia. OGG1 can maintain mtDNA integrity and maintain the stability of the mitochondrial membrane.


Assuntos
Asfixia , Biomarcadores , DNA Glicosilases , DNA Mitocondrial , DNA Glicosilases/metabolismo , Humanos , DNA Mitocondrial/metabolismo , Biomarcadores/metabolismo , Asfixia/metabolismo , Linhagem Celular , Potencial da Membrana Mitocondrial , Animais , Miocárdio/metabolismo , Masculino
17.
Int J Mol Sci ; 25(12)2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38928342

RESUMO

Our study investigates the genetic mechanisms underlying the spotted leaf phenotype in rice, focusing on the spl43 mutant. This mutant is characterized by persistent reddish-brown leaf spots from the seedling stage to maturity, leading to extensive leaf necrosis. Using map-based cloning, we localized the responsible locus to a 330 Kb region on chromosome 2. We identified LOC_Os02g56000, named OsRPT5A, as the causative gene. A point mutation in OsRPT5A, substituting valine for glutamic acid, was identified as the critical factor for the phenotype. Functional complementation and the generation of CRISPR/Cas9-mediated knockout lines in the IR64 background confirmed the central role of OsRPT5A in controlling this trait. The qPCR results from different parts of the rice plant revealed that OsRPT5A is constitutively expressed across various tissues, with its subcellular localization unaffected by the mutation. Notably, we observed an abnormal accumulation of reactive oxygen species (ROS) in spl43 mutants by examining the physiological indexes of leaves, suggesting a disruption in the ROS system. Complementation studies indicated OsRPT5A's involvement in ROS homeostasis and catalase activity regulation. Moreover, the spl43 mutant exhibited enhanced resistance to Xanthomonas oryzae pv. oryzae (Xoo), highlighting OsRPT5A's role in rice pathogen resistance mechanisms. Overall, our results suggest that OsRPT5A plays a critical role in regulating ROS homeostasis and enhancing pathogen resistance in rice.


Assuntos
Mapeamento Cromossômico , Oryza , Doenças das Plantas , Folhas de Planta , Proteínas de Plantas , Espécies Reativas de Oxigênio , Xanthomonas , Oryza/genética , Oryza/microbiologia , Oryza/metabolismo , Folhas de Planta/genética , Folhas de Planta/microbiologia , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Xanthomonas/patogenicidade , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Espécies Reativas de Oxigênio/metabolismo , Resistência à Doença/genética , Mutação , Fenótipo , Regulação da Expressão Gênica de Plantas
18.
Poult Sci ; 103(9): 103965, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38941787

RESUMO

The black soldier fly (BSF, Hermetia illucens) is a resource insect that can utilize livestock and poultry feces. However, BSFs may also increase the risk of transmission of antibiotic resistance genes (AGRs) that are widespread in livestock and poultry farm environments. Therefore, we aimed to evaluate the biosecurity risks of different BSF treatments in the laying chicken food chain using the "chicken manure-BSF-laying hens" model. Our results indicated that different BSF treatments significantly affected antibiotic residue, ARGs, MGEs, bacterial antibiotic resistance, and bacterial microbial community composition in the food chain of laying hens fed BSFs. These risks can be effectively reduced through starvation treatment and high-temperature grinding treatment. Comprehensive risk assessment analysis revealed that starvation combined with high-temperature milling (Group H) had the greatest effect.


Assuntos
Ração Animal , Antibacterianos , Galinhas , Dieta , Doxiciclina , Animais , Ração Animal/análise , Feminino , Antibacterianos/farmacologia , Antibacterianos/administração & dosagem , Doxiciclina/administração & dosagem , Doxiciclina/farmacologia , Dieta/veterinária , Simuliidae/efeitos dos fármacos , Dípteros/efeitos dos fármacos
19.
Arch Biochem Biophys ; 758: 110047, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-38844154

RESUMO

Antioxidants exert a paradoxical influence on cancer prevention. The latest explanation for this paradox is the different target sites of antioxidants. However, it remains unclear how mitochondria-targeted antioxidants trigger specific p53-dependent pathways in malignant transformation models. Our study revealed that overexpression of mitochondria-targeted catalase (mCAT) instigated such malignant transformation via mouse double minute 2 homolog (MDM2) -mediated p53 degradation. In mouse epithelial JB6 Cl41 cells, the stable expression of mCAT resulted in MDM2-mediated p53 degradation, unlike in catalase-overexpressed Cl41 cells. Further, we demonstrated that mCAT overexpression upregulated ubiquitin-specific protease 28 (USP28) expression, which in turn stabilized c-Jun protein levels. This alteration initiated the activation of the miR-200b promoter transcription activity and a subsequent increase in miR-200b expression. Furthermore, elevated miR-200b levels then promoted its binding to the 3'-untranslated region of protein phosphatase 2A catalytic subunit (PP2A-C) α-isoform mRNA, consequently resulting in PP2A-C protein downregulation. This cascade of events ultimately contributed to increased MDM2 phosphorylation and p53 protein degradation. Thus, the mCAT overexpression triggers MDM2/p53-dependent malignant transformation through USP28/miR-200b/PP2A-Cα pathway, which may provide a new information for understanding mitochondria-targeted antioxidants facilitate the progression to the tumorigenic state.


Assuntos
Catalase , Transformação Celular Neoplásica , Regulação para Baixo , MicroRNAs , Mitocôndrias , Proteína Fosfatase 2 , Estabilidade Proteica , Proteínas Proto-Oncogênicas c-mdm2 , Proteína Supressora de Tumor p53 , Ubiquitina Tiolesterase , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , MicroRNAs/metabolismo , MicroRNAs/genética , Animais , Camundongos , Mitocôndrias/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/genética , Ubiquitina Tiolesterase/metabolismo , Ubiquitina Tiolesterase/genética , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/genética , Catalase/metabolismo , Catalase/genética , Proteína Fosfatase 2/metabolismo , Proteína Fosfatase 2/genética , Humanos , Linhagem Celular , Transdução de Sinais , Regulação Neoplásica da Expressão Gênica
20.
Acta Biochim Biophys Sin (Shanghai) ; 56(9): 1311-1322, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38808395

RESUMO

Chronic renal failure (CRF) is a severe syndrome affecting the urinary system for which there are no effective therapeutics. In this study, we investigate the effects and mechanisms of aminophylline in preventing CRF development. A rat model of chronic renal failure is established by 5/6 nephrectomy. The levels of serum creatinine (SCR), urinary protein (UPR), and blood urea nitrogen (BUN) are detected by ELISA. Histological evaluations of renal tissues are performed by H&E, Masson staining, and PAS staining. Functional protein expression is detected by western blot analysis or immunofluorescence microscopy. Glomerular cell apoptosis is determined using the TUNEL method. Results show that Aminophylline significantly reduces the levels of SCR, UPR, and BUN in the CRF model rats. Histological analyses show that aminophylline effectively alleviates renal tissue injuries in CRF rats. The protein expression levels of nephrin, podocin, SIRT1, p-AMPK, and p-ULK1 are greatly increased, while p-mTOR protein expression is markedly decreased by aminophylline treatment. Additionally, the protein level of LC3B in CRF rats is significantly increased by aminophylline. Moreover, aminophylline alleviates apoptosis in the glomerular tissues of CRF rats. Furthermore, resveratrol promotes SIRT1, p-AMPK, and p-ULK1 protein expressions and reduces p-mTOR and LC3B protein expressions in CRF rats. Selisistat (a SIRT1 inhibitor) mitigates the changes in SIRT1, p-AMPK, p-ULK1, p-mTOR, and LC3B expressions induced by aminophylline. Finally, RAPA alleviates renal injury and apoptosis in CRF rats, and 3-MA eliminates the aminophylline-induced inhibition of renal injury and apoptosis in CRF rats. Aminophylline suppresses chronic renal failure progression by modulating the SIRT1/AMPK/mTOR-mediated autophagy process.


Assuntos
Proteínas Quinases Ativadas por AMP , Aminofilina , Apoptose , Autofagia , Falência Renal Crônica , Ratos Sprague-Dawley , Sirtuína 1 , Serina-Treonina Quinases TOR , Animais , Sirtuína 1/metabolismo , Sirtuína 1/genética , Serina-Treonina Quinases TOR/metabolismo , Autofagia/efeitos dos fármacos , Masculino , Falência Renal Crônica/tratamento farmacológico , Falência Renal Crônica/metabolismo , Falência Renal Crônica/patologia , Aminofilina/farmacologia , Ratos , Proteínas Quinases Ativadas por AMP/metabolismo , Apoptose/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Progressão da Doença , Modelos Animais de Doenças
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...