Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202407772, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38872256

RESUMO

Electrocatalytic conversion of CO2 into formate is recognized an economically-viable route to upgrade CO2, but requires high overpotential to realize the high selectivity owing to high energy barrier for driving the involved proton-coupled electron transfer (PCET) processes and serious ignorance of the second PCET. Herein, we surmount the challenge through sequential regulation of the potential-determining step (PDS) over Te-doped Bi (TeBi) nanotips. Computational studies unravel the incorporation of Te heteroatoms alters the PDS from the first PCET to the second one by substantially lowering the formation barrier for *OCHO intermediate, and the high-curvature nanotips induce enhanced electric field that can steer the formation of asymmetric *HCOOH. In this scenario, the thermodynamic barrier for *OCHO and *HCOOH can be sequentially decreased, thus enabling a high formate selectivity at low overpotential. Experimentally, distinct TeBi nanostructures are obtained via controlling Te content in the precursor and TeBi nanotips achieve >90% of Faradaic efficiency for formate production over a comparatively positive potential window (-0.57 V to -1.08 V). The strong Bi-Te covalent bonds also afford a robust stability. In an optimized membrane electrode assembly device, the formate production rate at 3.2 V reaches 10.1 mmol h-1 cm-2, demonstrating great potential for practical application.

2.
ACS Nano ; 18(23): 15035-15045, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38796777

RESUMO

Two-electron oxygen reduction reaction (2e- ORR) is of great significance to H2O2 production and reversible nonalkaline Zn-air batteries (ZABs). Multiple oxygen-containing sp2-bonded nanocarbons have been developed as electrocatalysts for 2e- ORR, but they still suffer from poor activity and stability due to the limited and mixed active sites at the edges as well as hydrophilic character. Herein, graphdiyne (GDY) with rich sp-C bonds is studied for enhanced 2e- ORR. First, computational studies show that GDY has a favorable formation energy for producing five-membered epoxy ring-dominated groups, which is selective toward the 2e- ORR pathway. Then based on the difference in chemical activity of sp-C bonds in GDY and sp2-C bonds in CNTs, we experimentally achieved conductive and hydrophobic carbon nanotubes (CNTs) covering O-modified GDY (CNTs/GDY-O) through a mild oxidation treatment combined with an in situ CNTs growth approach. Consequently, the CNTs/GDY-O exhibits an average Faraday efficiency of 91.8% toward H2O2 production and record stability over 330 h in neutral media. As a cathode electrocatalyst, it greatly extends the lifetime of 2e- nonalkaline ZABs at both room and subzero temperatures.

3.
ACS Appl Mater Interfaces ; 16(12): 14912-14921, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38489228

RESUMO

The loose and randomly oriented byproduct (i.e., Zn4(OH)6SO4·xH2O, ZHS) in situ formed on the zinc (Zn) surface is recognized to be the primary cause for dendritic Zn growth and side reactions. Switching the detrimental passivation film into a dense and kinetically favorable solid electrolyte interphase (SEI) is a straightforward strategy to tackle these issues faced by Zn metal anodes but remains largely unexplored. Herein, a new polymer film directly grown on Zn metal through room-temperature plasma-enhanced chemical vapor deposition is proposed to induce the lateral growth of ZHS nanosheets and decrease the Zn2+ desolvation barrier, thereby forming a beneficial composite SEI for suppressing Zn dendrite growth and surface corrosion. As a result of the joint effect, we realize an impressively stable cycling behavior in symmetric cell over 3400 h at 2 mA cm-2. Moreover, full cells also demonstrate prolonged lifespans. This work opens a new avenue for stabilizing Zn metal batteries by turning detrimental ZHS into a favorable interlayer.

4.
Proc Natl Acad Sci U S A ; 121(8): e2317796121, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38346201

RESUMO

Tremendous attention has been paid to the water-associated side reactions and zinc (Zn) dendrite growth on the electrode-electrolyte interface. However, the Zn pulverization that can cause continuous depletion of active Zn metal and exacerbate hydrogen evolution is severely neglected. Here, we disclose that the excessive Zn feeding that causes incomplete crystallization is responsible for Zn pulverization formation through analyzing the thermodynamic and kinetics process of Zn deposition. On the basis, we introduce 1-ethyl-3-methylimidazolium cations (EMIm+) into the electrolyte to form a Galton-board-like three-dimensional inert-cation (3DIC) region. Modeling test shows that the 3DIC EMIm+ can induce the Zn2+ flux to follow in a Gauss distribution, thus acting as elastic sites to buffer the perpendicular diffusion of Zn2+ and direct the lateral diffusion, thus effectively avoiding the local Zn2+ accumulation and irreversible crystal formation. Consequently, anti-pulverized Zn metal deposition behavior is achieved with an average Coulombic efficiency of 99.6% at 5 mA cm-2 over 2,000 cycles and superb stability in symmetric cell over 1,200 h at -30 °C. Furthermore, the Zn||KVOH pouch cell can stably cycle over 1,200 cycles at 2 A g-1 and maintain a capacity of up to 12 mAh.

5.
Nat Commun ; 14(1): 5443, 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37673895

RESUMO

In situ formation of a stable interphase layer on zinc surface is an effective solution to suppress dendrite growth. However, the fast transport of bivalent Zn-ions within the solid interlayer remains very challenging. Herein, we engineer the SEI components and enable superior kinetics of Zn metal batteries under harsh conditions through regulating the sequence of interfacial chemical reaction. With the differences in chemical reactivity of trimethyl phosphate co-solvent and trifluoromethanesulfonate anions in the Zn2+-solvation shell, Zn3(PO4)2 and ZnF2 are successively generated on Zn metal surface to form a gradient ZnF2-Zn3(PO4)2 interphase. Mechanistic studies reveal the outer ZnF2 facilitates Zn2+ desolvation and inner Zn3(PO4)2 serves as channels for fast Zn2+ transport, contributing to long-term cycling at subzero temperatures. Impressively, the gradient SEI enables a high lifespan over 7000 hours in Zn symmetric cell and a capacity retention of 86.1% after 12000 cycles in Zn-KVOH full cell at -50 °C.

6.
Proc Natl Acad Sci U S A ; 120(14): e2219043120, 2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-36996112

RESUMO

Despite the various strategies for achieving metal-nitrogen-carbon (M-N-C) single-atom catalysts (SACs) with different microenvironments for electrochemical carbon dioxide reduction reaction (CO2RR), the synthesis-structure-performance correlation remains elusive due to the lack of well-controlled synthetic approaches. Here, we employed Ni nanoparticles as starting materials for the direct synthesis of nickel (Ni) SACs in one spot through harvesting the interaction between metallic Ni and N atoms in the precursor during the chemical vapor deposition growth of hierarchical N-doped graphene fibers. By combining with first-principle calculations, we found that the Ni-N configuration is closely correlated to the N contents in the precursor, in which the acetonitrile with a high N/C ratio favors the formation of Ni-N3, while the pyridine with a low N/C ratio is more likely to promote the evolution of Ni-N2. Moreover, we revealed that the presence of N favors the formation of H-terminated edge of sp2 carbon and consequently leads to the formation of graphene fibers consisting of vertically stacked graphene flakes, instead of the traditional growth of carbon nanotubes on Ni nanoparticles. With a high capability in balancing the *COOH formation and *CO desorption, the as-prepared hierarchical N-doped graphene nanofibers with Ni-N3 sites exhibit a superior CO2RR performance compared to that with Ni-N2 and Ni-N4 ones.

7.
Small ; 18(22): e2201633, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35499192

RESUMO

Metallic bismuth (Bi) holds great promise in efficient conversion of carbon dioxide (CO2 ) into formate, yet the complicated synthetic routes and unobtrusive performance hinder the practical application. Herein, a facile galvanic-cell deposition method is proposed for the rapid and one-step synthesis of Bi nanodendrites. Compared to the traditional deposition method, it is found that the special galvanic-cell configuration can promote the exposure of low-angle grain boundaries. X-ray absorption spectroscopy, in situ characterizations and theoretical calculations indicate the electronical structures can be greatly tailored by the grain boundaries, which can facilitate the CO2 adsorption and intermediate formation. Consequently, the grain boundary-enriched Bi nanodendrites exhibit a high selectivity toward formate with an impressively high production rate of 557.2 µmol h-1 cm-2 at -0.94 V versus reversible hydrogen electrode, which outperforms most of the state-of-the-art Bi-based electrocatalysts with longer synthesis time. This work provides a straightforward method for rapidly fabricating active Bi electrocatalysts, and explicitly reveals the critical effect of grain boundary in Bi nanostructures on CO2 reduction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...