Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Pathogens ; 13(4)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38668262

RESUMO

Here, we described the prevalence of Borrelia burgdorferi s.l. and Babesia species found in mono- and double infections among Ixodes ricinus ticks occurring in urban areas of the city of Poznan, Poland. We tested 1029 host-seeking ticks and 1268 engorged ticks removed from pet animals. Borrelia afzelii and B. garinii prevailed both in ticks from vegetation (3.7% and 3.7%, respectively) and from pets (3.7% and 0.6%, respectively). Babesia canis and Ba. microti were the most prevalent in host-seeking (2.6% and 1.4%, respectively) and feeding ticks (2.8% and 2.2%, respectively). Babesia microti sequences proved to be identical to the human pathogenic Ba. microti genotype "Jena/Germany". Sequences of the rarest piroplasm Ba. venatorum (0.7%) were identical with those isolated from European patients. About 1.0% of tested ticks yielded dual infections; in host-seeking ticks, Ba. canis prevailed in co-infections with B. afzelii and B. garinii, whereas Ba. microti and B. afzelii dominated in double-infected feeding ticks. Dual infections, even with a low prevalence, pose a challenge for differential diagnosis in patients with acute febrile disease after a tick bite. The finding of Ba. canis in both tick groups suggests that I. ricinus could be involved in the circulation of this piroplasm.

2.
Ticks Tick Borne Dis ; 14(4): 102188, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37172512

RESUMO

Borrelia miyamotoi is an emerging human pathogen that causes a relapsing fever-like disease named B. miyamotoi disease. The bacterium belongs to the relapsing fever borreliae, and similar to spirochetes of the Borrelia burgdorferi sensu lato group, it is transmitted only by hard ticks of the Ixodes ricinus complex. To date, B. miyamotoi has not been demonstrated to cause illness in dogs or cats, and is poorly documented in veterinary medicine. The aim of this study was to determine the B. miyamotoi presence in (i) host-seeking ticks and (ii) engorged Ixodes sp. ticks collected from dogs and cats during their inspection in veterinary clinics of the city of Poznan, west-central Poland. Host-seeking ticks were sampled in dog walking areas localized in urban forested recreational sites of the city. In this study, 1,059 host-seeking and 837 engorged I. ricinus ticks collected from 680 tick-infested animals (567 dogs and 113 cats) were screened. Additionally, 31 I. hexagonus ticks (one larva, 13 nymphs, and 17 females) were collected from three cats; one larva and one nymph were collected from two dogs; and one dog was infested with a single Dermacentor reticulatus female. Borrelia DNA was identified by the amplification and sequencing of the V4 hypervariable region of the 16S rRNA gene and flaB gene fragments. DNA of B. miyamotoi was detected in 22 (2.1%) of the host-seeking ticks (in all developmental tick stages and in all study areas). In addition, the engorged I. ricinus ticks exhibited a similar B. miyamotoi presence (1.8%). Fifteen I. ricinus ticks collected from animals tested positive for the presence of B. miyamotoi DNA, and the DNA of B. miyamotoi was observed in three (9.1%; one female and two nymphs) I. hexagonus ticks. The single D. reticulatus female collected from a dog tested PCR-negative for the bacterium. The results of this study demonstrated the establishment and broad presence of the bacterium in tick populations from different urban ecosystems of the city of Poznan. The lack of difference in the mean infection presence of animal-derived and host-seeking I. ricinus ticks suggests that the systematic surveillance of pets may be useful for the evaluation of human exposure to B. miyamotoi infected ticks in urban areas. Additional studies are required to further elucidate the role of domestic and wild carnivores in the epidemiology of B. miyamotoi, which remains unknown.


Assuntos
Grupo Borrelia Burgdorferi , Borrelia , Doenças do Gato , Doenças do Cão , Ixodes , Febre Recorrente , Humanos , Cães , Animais , Gatos , Feminino , Ixodes/microbiologia , Ecossistema , Polônia/epidemiologia , Doenças do Gato/epidemiologia , RNA Ribossômico 16S , Doenças do Cão/epidemiologia , Borrelia/genética , Grupo Borrelia Burgdorferi/genética , Ninfa/microbiologia
3.
Parasit Vectors ; 15(1): 26, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-35033159

RESUMO

BACKGROUND: Microsporidia is a large group of eukaryotic obligate intracellular spore-forming parasites, of which 17 species can cause microsporidiosis in humans. Most human-infecting microsporidians belong to the genera Enterocytozoon and Encephalitozoon. To date, only five microsporidian species, including Encephalitozoon-like, have been found in hard ticks (Ixodidae) using microscopic methods, but no sequence data are available for them. Furthermore, no widespread screening for microsporidian-infected ticks based on DNA analysis has been carried out to date. Thus, in this study, we applied a recently developed DNA metabarcoding method for efficient microsporidian DNA identification to assess the role of ticks as potential vectors of microsporidian species causing diseases in humans. METHODS: In total, 1070 (493 juvenile and 577 adult) unfed host-seeking Ixodes ricinus ticks collected at urban parks in the city of Poznan, Poland, and 94 engorged tick females fed on dogs and cats were screened for microsporidian DNA. Microsporidians were detected by PCR amplification and sequencing of the hypervariable V5 region of 18S rRNA gene (18S profiling) using the microsporidian-specific primer set. Tick species were identified morphologically and confirmed by amplification and sequencing of the shortened fragment of cytochrome c oxidase subunit I gene (mini-COI). RESULTS: All collected ticks were unambiguously assigned to I. ricinus. Potentially zoonotic Encephalitozoon intestinalis was identified in three fed ticks (3.2%) collected from three different dogs. In eight unfed host-seeking ticks (0.8%), including three males (1.1%), two females (0.7%) and three nymphs (0.7%), the new microsporidian sequence representing a species belonging to the genus Endoreticulatus was identified. CONCLUSIONS: The lack of zoonotic microsporidians in host-seeking ticks suggests that I. ricinus is not involved in transmission of human-infecting microsporidians. Moreover, a very low occurrence of the other microsporidian species in both fed and host-seeking ticks implies that mechanisms exist to defend ticks against infection with these parasites.


Assuntos
Vetores Aracnídeos/microbiologia , Ixodes/microbiologia , Microsporídios/fisiologia , Animais , Sequência de Bases , Doenças do Gato/parasitologia , Gatos , Código de Barras de DNA Taxonômico , DNA Fúngico/química , DNA Fúngico/isolamento & purificação , DNA Ribossômico/química , Doenças do Cão/parasitologia , Cães , Complexo IV da Cadeia de Transporte de Elétrons/química , Feminino , Masculino , Microsporídios/classificação , Parques Recreativos , Filogenia , Polônia , Prevalência , RNA Ribossômico 18S/genética , Análise de Sequência de DNA , Infestações por Carrapato/parasitologia , Infestações por Carrapato/veterinária
4.
Ticks Tick Borne Dis ; 12(5): 101786, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34280697

RESUMO

Babesia canis, a widely distributed European tick-borne protozoan haemoparasite, causes canine babesiosis, the most important tick-borne disease afflicting dogs worldwide. The meadow tick, Dermacentor reticulatus, is considered to be the primary vector of this parasite in central Europe. Females of the more broadly distributed and medically important castor bean tick, Ixodes ricinus, also commonly feed upon dogs, but their role in the enzootic transmission cycle of B. canis is unclear. Here, we screened 1,598 host-seeking I. ricinus ticks collected from two different ecosystems, forest stands vs. urban recreational forests, for the presence of B. canis DNA. Ticks were sampled during their two seasonal peaks of activity, spring (May/June) and late summer (September). Babesia species were identified by amplification and sequencing of a hypervariable 18S rRNA gene fragment. Babesia canis was the only piroplasm detected in 13% of 200 larvae and 8.2% of 324 nymphs in the forest ecosystems. In urban recreational areas, B. canis DNA was found in 1.5% of 460 nymphs, 3.5% of 289 females and 3.2% of 280 males. Additionally, three samples, including one female, one male, and one nymph, were co-infected with B. venatorum and one nymph with B. divergens or B. capreoli. Our findings implicate that B. canis can be transmitted transovarially and maintained transstadially within populations of I. ricinus, but the vector competence of I. ricinus for transmitting B. canis remains to be investigated.


Assuntos
Babesia/isolamento & purificação , DNA de Protozoário/análise , Ixodes/parasitologia , Animais , Cidades , Ecossistema , Florestas , Polônia
5.
Ticks Tick Borne Dis ; 11(1): 101300, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31631051

RESUMO

Bats comprise one quarter of the world's mammal species. In Europe, three nidicolous Ixodes tick species, I. vespertilionis, I. simplex and I. ariadnae are specifically associated with cave-dwelling bats, but their role as potential vectors of zoonotic agents is unknown. In this study, we used PCR-based methods to provide the first evidence of Borrelia burgdorferi sensu lato (s.l.) infections in the three bat-associated tick species collected from ten bat species sampled in Poland and Romania. B. burgdorferi s.l. was detected in 24% (64/266) of tick samples, and 40.3% (60/149) of the bats carried infected chiropterophilic ticks. In Poland, the B. burgdorferi s.l. infection prevelance of I. ariadnae ticks parasitizing Myotis species was four times higher compared to the I. vespertilionis ticks derived from Rhinolophus hipposideros bats (44.4% vs.10%, respectively). The observed differences in infection prevalence could be explained by differences in reservoir potential between bat species. Bats from the genus Myotis and Miniopterus schreibersii carried more infected ticks than R. hipposideros regardless of the tick species. Analysis of the flaB gene sequences revealed seven species from the B. burgdorferi s.l. complex (B. afzelii, B. carolinensis, B. garinii, B. lanei, B. spielmanii, B. burgdorferi s.s., and B. valaisiana), of which five are considered as human pathogens. This large diversity of Borrelia species may reflect differences in susceptibility of chiropteran hosts and/or the tick vectors. Generally, mammal-associated B. burgdorferi s.l. species were more common than bird-associated species. Our study provides evidence for new enzootic transmission cycles of B. burgdorferi s.l. spirochetes involving nidicolous Ixodes tick species and cave-dwelling bats.


Assuntos
Grupo Borrelia Burgdorferi/isolamento & purificação , Quirópteros , Ixodes/microbiologia , Animais , Grupo Borrelia Burgdorferi/classificação , Cavernas , Feminino , Ixodes/crescimento & desenvolvimento , Larva/crescimento & desenvolvimento , Larva/microbiologia , Masculino , Ninfa/crescimento & desenvolvimento , Ninfa/microbiologia , Polônia/epidemiologia , Reação em Cadeia da Polimerase/veterinária , Prevalência , Romênia/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...