Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros













Intervalo de ano de publicação
1.
Sci Data ; 11(1): 352, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589374

RESUMO

We assembled the first gridded burned area (BA) database of national wildfire data (ONFIRE), a comprehensive and integrated resource for researchers, non-government organisations, and government agencies analysing wildfires in various regions of the Earth. We extracted and harmonised records from different regions and sources using open and reproducible methods, providing data in a common framework for the whole period available (starting from 1950 in Australia, 1959 in Canada, 1985 in Chile, 1980 in Europe, and 1984 in the United States) up to 2021 on a common 1° × 1° grid. The data originate from national agencies (often, ground mapping), thus representing the best local expert knowledge. Key opportunities and limits in using this dataset are discussed as well as possible future expansions of this open-source approach that should be explored. This dataset complements existing gridded BA data based on remote sensing and offers a valuable opportunity to better understand and assess fire regime changes, and their drivers, in these regions. The ONFIRE database can be freely accessed at https://zenodo.org/record/8289245 .

3.
PLoS One ; 19(1): e0295766, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38265975

RESUMO

Population exposure to heat waves (HWs) is increasing worldwide due to climate change, significantly affecting society, including public health. Despite its significant vulnerabilities and limited adaptation resources to rising temperatures, South America, particularly Brazil, lacks research on the health impacts of temperature extremes, especially on the role played by socioeconomic factors in the risk of heat-related illness. Here, we present a comprehensive analysis of the effects of HWs on mortality rates in the 14 most populous urban areas, comprising approximately 35% of the country's population. Excess mortality during HWs was estimated through the observed-to-expected ratio (O/E) for total deaths during the events identified. Moreover, the interplay of intersectionality and vulnerability to heat considering demographics and socioeconomic heterogeneities, using gender, age, race, and educational level as proxies, as well as the leading causes of heat-related excess death, were assessed. A significant increase in the frequency was observed from the 1970s (0-3 HWs year-1) to the 2010s (3-11 HWs year-1), with higher tendencies in the northern, northeastern, and central-western regions. Over the 2000-2018 period, 48,075 (40,448-55,279) excessive deaths were attributed to the growing number of HWs (>20 times the number of landslides-related deaths for the same period). Nevertheless, our event-based surveillance analysis did not detect the HW-mortality nexus, reinforcing that extreme heat events are a neglected disaster in Brazil. Among the leading causes of death, diseases of the circulatory and respiratory systems and neoplasms were the most frequent. Critical regional differences were observed, which can be linked to the sharp North-South inequalities in terms of socioeconomic and health indicators, such as life expectancy. Higher heat-related excess mortality was observed for low-educational level people, blacks and browns, older adults, and females. Such findings highlight that the strengthening of primary health care combined with reducing socioeconomic, racial, and gender inequalities represents a crucial step to reducing heat-related deaths.


Assuntos
Temperatura Alta , Expectativa de Vida , Feminino , Humanos , Idoso , Brasil/epidemiologia , Fatores Socioeconômicos , Escolaridade
5.
Ann N Y Acad Sci ; 1517(1): 44-62, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36052446

RESUMO

Climate change is drastically altering the frequency, duration, and severity of compound drought-heatwave (CDHW) episodes, which present a new challenge in environmental and socioeconomic sectors. These threats are of particular importance in low-income regions with growing populations, fragile infrastructure, and threatened ecosystems. This review synthesizes emerging progress in the understanding of CDHW patterns in Brazil while providing insights about the impacts on fire occurrence and public health. Evidence is mounting that heatwaves are becoming increasingly linked with droughts in northeastern and southeastern Brazil, the Amazonia, and the Pantanal. In those regions, recent studies have begun to build a better understanding of the physical mechanisms behind CDHW events, such as the soil moisture-atmosphere coupling, promoted by exceptional atmospheric blocking conditions. Results hint at a synergy between CDHW events and high fire activity in the country over the last decades, with the most recent example being the catastrophic 2020 fires in the Pantanal. Moreover, we show that HWs were responsible for increasing mortality and preterm births during record-breaking droughts in southeastern Brazil. This work paves the way for a more in-depth understanding on CDHW events and their impacts, which is crucial to enhance the adaptive capacity of different Brazilian sectors.


Assuntos
Secas , Ecossistema , Recém-Nascido , Humanos , Brasil , Mudança Climática , Solo
6.
Nat Commun ; 13(1): 4051, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35831284

RESUMO

A significant proportion of carbon (C) captured by terrestrial primary production is buried in lacustrine ecosystems, which have been substantially affected by anthropogenic activities globally. However, there is a scarcity of sedimentary organic carbon (OC) accumulation information for lakes surrounded by highly productive rainforests at warm tropical latitudes, or in response to land cover and climate change. Here, we combine new data from intensive campaigns spanning 13 lakes across remote Amazonian regions with a broad literature compilation, to produce the first spatially-weighted global analysis of recent OC burial in lakes (over ~50-100-years) that integrates both biome type and forest cover. We find that humid tropical forest lake sediments are a disproportionately important global OC sink of ~80 Tg C yr-1 with implications for climate change. Further, we demonstrate that temperature and forest conservation are key factors in maintaining massive organic carbon pools in tropical lacustrine sediments.


Assuntos
Carbono , Lagos , Sequestro de Carbono , Ecossistema , Florestas , Sedimentos Geológicos , Clima Tropical
7.
Sci Total Environ ; 835: 155386, 2022 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-35461933

RESUMO

Wildfires are behaving differently now compared to other time in history in relation to frequency, intensity and affected ecosystems. In Brazil, unprecedented fires are being experienced in the last decade. Thus, to prevent and minimize similar disasters, we must better understand the natural and human drivers of such extreme events. The Brazilian Pantanal is the largest contiguous wetland in the world and a complex environmental system. In 2020, Pantanal experienced catastrophic wildfires due to the synergy between climate, inadequate fire management strategies and weak environmental regulations. In this study, we analyzed recent patterns and changes in fire behavior across the Pantanal based on land use and cover (LULC) classes. The inter-annual variability of the fire and land cover changes between 2000 and 2021 was assessed using BA from MCD64A1 V.6 product and LULC data from Landsat satellite. Our work reveals that fires in the Pantanal over the last two decades tended to occur more frequently in grassland than in others land cover types, but the 2020 fires have preferentially burned forest regions. Large fire patches are more frequent in forest and grasslands; in contrast, croplands exhibit small patches. The results highlight that a broad scale analysis does not reflect distinct localized patterns, thus stratified and refined studies are required. Our work contributes as a first step to disentangling the role of anthropogenic-related drivers, namely LULC changes, in shaping the fire regime in the Pantanal biome. This is crucial not only to predict future fire activity but also to guide appropriated fire management in the region.


Assuntos
Incêndios , Incêndios Florestais , Ecossistema , Florestas , Humanos , Áreas Alagadas
8.
Sci Rep ; 12(1): 964, 2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-35046481

RESUMO

The Pantanal, the largest contiguous wetland in the world with a high diversity of ecosystems and habitat for several endangered species, was impacted by record-breaking wildfires in 2020. In this study, we integrate satellite and modeling data that enable exploration of natural and human contributing factors to the unprecedented 2020 fires. We demonstrate that the fires were fueled by an exceptional multi-year drought, but dry conditions solely could not explain the spatial patterns of burning. Our analysis reveals how human-caused fires exacerbated drought effects on natural ecosystem within the Pantanal, with large burned fractions primarily over natural (52%), and low cattle density areas (44%) in 2020. The post-fire ecosystem and hydrology changes also had strong ecological effects, with vegetation productivity less than - 1.5 σ over more than 30% of the natural and conservation areas. In contrast to more managed areas, there was a clear decrease in evaporation (by ~ 9%) and an increase in runoff (by ~ 5%) over the natural areas, with long-term impacts on ecosystem recovery and fire risk. This study provides the first tropical evidence outside rainforests of the synergy between climate, land management and fires, and the associated impacts on the ecosystem and hydrology over the largest contiguous wetlands in the world.

9.
Sci Total Environ ; 820: 153021, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35026277

RESUMO

The identification of fire causes and characteristics is of fundamental importance to better understand fire regimes and drivers. Particularly for Brazil, there is a gap in the quantification of lightning-caused fires. Accordingly, this work is a novel probabilistic assessment of the spatial-temporal patterns of lightning-ignited wildfires in the Pantanal wetland. Here, remote sensing information such as VIIRS active fires, MODIS burned area (BA) and STARNET lightning observations from 2012 to 2017, were combined to estimate the location, number of scars and amount of BA associated with atmospheric discharges on a seasonal basis. The highest lightning activity occurs during summer (December-February), and the lowest during winter (June-August). Conversely, the highest fire activity occurred during spring (September-November) and the lowest during autumn (March-May). Our analysis revealed low evidence of an association between fires and lightning, suggesting that human-related activities are the main source of ignitions. Weak evidence of natural-caused fire occurrence is conveyed by the low spatial-temporal match of lightning and fire throughout the studied period. Natural-caused fires accounted for only 5% of the annual total scars and 83.8% of the BA was human-caused. Most of the fires with extension larger than 1000 ha were not related to lighting. Lightning-fires seem an important element of the summer fire regime given that around half of the total BA during this season may be originated by lightning. By contrast, in the rest of the year the lightning-fires represent a minor percentage of the fire activity in the region. The density of lightning-ignited fires varies considerably, being higher in the north part of the Pantanal. This work provides a basis for a better understanding of lightning-related fire outbreaks in tropical ecosystems, particularly wetlands, which is fundamental to improve region-based strategies for land management actions, ecological studies and modeling climatic and anthropogenic drivers of wildfires.


Assuntos
Incêndios , Raio , Incêndios Florestais , Efeitos Antropogênicos , Ecossistema
10.
Sci Rep ; 11(1): 23547, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34916541

RESUMO

Anthropogenic factors have significantly influenced the frequency, duration, and intensity of meteorological drought in many regions of the globe, and the increased frequency of wildfires is among the most visible consequences of human-induced climate change. Despite the fire role in determining biodiversity outcomes in different ecosystems, wildfires can cause negative impacts on wildlife. We conducted ground surveys along line transects to estimate the first-order impact of the 2020 wildfires on vertebrates in the Pantanal wetland, Brazil. We adopted the distance sampling technique to estimate the densities and the number of dead vertebrates in the 39,030 square kilometers affected by fire. Our estimates indicate that at least 16.952 million vertebrates were killed immediately by the fires in the Pantanal, demonstrating the impact of such an event in wet savanna ecosystems. The Pantanal case also reminds us that the cumulative impact of widespread burning would be catastrophic, as fire recurrence may lead to the impoverishment of ecosystems and the disruption of their functioning. To overcome this unsustainable scenario, it is necessary to establish proper biomass fuel management to avoid cumulative impacts caused by fire over biodiversity and ecosystem services.

12.
J Environ Manage ; 296: 113098, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34225050

RESUMO

The Brazilian savanna (Cerrado) is considered the most floristically diverse savanna in the world, home to more than seven thousand species. The region is a mosaic of savannas, grasslands and forests whose unique biophysical and landscape attributes are on the basis of a recent ecoregional map, paving the way to improved region-based strategies for land management actions. However, as a fire-prone ecosystem, Cerrado owes much of its distribution and ecological properties to the fire regime and contributes to an important parcel of South America burned area. Accordingly, any attempt to use ecoregion geography as a guide for management strategies should take fire into account, as an essential variable. The main aim of this study is to complement the ecoregional map of the Cerrado with information related to the fire component. Using remotely sensed information, we identify patterns and trends of fire frequency, intensity, seasonality, extent and scar size, and combine this information for each ecoregion, relying on a simple classification that summarizes the main fire characteristics over the last two decades. Results show a marked north-south fire activity gradient, with increased contributions from MATOPIBA, the latest agricultural frontier. Five ecoregions alone account for two thirds of yearly burned area. More intense fires are found in the Arc of Deforestation and eastern ecoregions, while ecoregions in MATOPIBA display decreasing fire intensity. An innovative analysis of fire scars stratified by size class shows that infrequent large fires are responsible for the majority of burned area. These large fires display positive trends over many ecoregions, whereas smaller fires, albeit more frequent, have been decreasing in number. The final fire classification scheme shows well defined spatially-aggregated groups, where trends are found to be the key factor to evaluate fire within their regional contexts. Results presented here provide new insights to improve fire management strategies under a changing climate.


Assuntos
Ecossistema , Incêndios , Brasil , Florestas , Pradaria
13.
J Environ Manage ; 293: 112870, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34052615

RESUMO

In the Brazilian Pantanal, wildfire occurrence has increased, reaching record highs of over 40,000 km2 in 2020. Smoke from wildfires worsened the situation of isolated, as well as urban communities, already under an increasing toll of COVID-19. Here we review the impacts and the possible causes of the 2020 mega-fires and recommend improvements for public policies and fire management in this wetland. We calculated the amount of area burnt annually since 2003 and describe patterns in precipitation and water level measurements of the Paraguay River. Our analyses revealed that the 2020 wildfires were historically unprecedented, as 43% of the area (over 17,200 km2) had not been burnt previously in the last two decades. The extent of area affected in 2020 represents a 376% increase compared to the annual average of the area burnt annually in the last two decades, double than the value in 2019. Potential factors responsible for this increase are (i) severe drought decreased water levels, (ii) the fire corridor was located in the Paraguay River flood zone, (iii) constraints on firefighters, (iv) insufficient fire prevention strategy and agency budget reductions, and (v) recent landscape changes. Climate and land use change will further increase the frequency of these extreme events. To make fire management more efficient and cost-effective, we recommend the implementation of an Integrated Fire Management program in the Pantanal. Stakeholders should use existing traditional, local ecological, and scientific knowledge to form a collective strategy with clear, achievable, measurable goals, considering the socio-ecological context. Permanent fire brigades, including indigenous members, should conduct year-round fire management. Communities should cooperate to create a collaborative network for wildfire prevention, the location and characteristics (including flammability) of infrastructures should be (re)planned in fire-prone environments considering and managing fire-catalysed transitions, and depending on the severity of wildfires. The 2020 wildfires were tackled in an ad-hoc fashion and prioritisation of areas for urgent financial investment, management, protection, and restoration is necessary to prevent this catastrophe from happening again.


Assuntos
COVID-19 , Incêndios Florestais , Biodiversidade , Brasil , Florestas , Humanos , Paraguai , SARS-CoV-2 , Áreas Alagadas
14.
J Adv Res ; 34: 123-136, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-35024185

RESUMO

Introduction: Natural products of pharmaceutical interest often do not reach the drug market due to the associated low yields and difficult extraction. Knowledge of biosynthetic pathways is a key element in the development of biotechnological strategies for plant specialized metabolite production. Erythrina species are mainly used as central nervous system depressants in folk medicine and are important sources of bioactive tetracyclic benzylisoquinoline alkaloids (BIAs), which can act on several pathology-related biological targets. Objectives: In this sense, in an unprecedented approach used with a non-model Fabaceae species grown in its unique arid natural habitat, a combined transcriptome and metabolome analyses (seeds and leaves) is presented. Methods: The Next Generation Sequencing-based transcriptome (de novo RNA sequencing) was carried out in a NextSeq 500 platform. Regarding metabolite profiling, the High-resolution Liquid Chromatography was coupled to DAD and a micrOTOF-QII mass spectrometer by using electrospray ionization (ESI) and Time of Flight (TOF) analyzer. The tandem MS/MS data were processed and analyzed through Molecular Networking approach. Results: This detailed macro and micromolecular approach applied to seeds and leaves of E. velutina revealed 42 alkaloids, several of them unique. Based on the combined evidence, 24 gene candidates were put together in a putative pathway leading to the singular alkaloid diversity of this species. Conclusion: Overall, these results could contribute by indicating potential biotechnological targets for modulation of erythrina alkaloids biosynthesis as well as improve molecular databases with omic data from a non-model medicinal plant, and reveal an interesting chemical diversity of Erythrina BIA harvested in Caatinga.


Assuntos
Alcaloides , Erythrina , Perfilação da Expressão Gênica , Folhas de Planta/genética , Sementes/genética , Espectrometria de Massas em Tandem
16.
Int J Biometeorol ; 64(8): 1319-1332, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32314060

RESUMO

Temperature record-breaking events, such as the observed more intense, longer-lasting, and more frequent heat waves, pose a new global challenge to health sectors worldwide. These threats are of particular interest in low-income regions with limited investments in public health and a growing urban population, such as Brazil. Here, we apply a comprehensive interdisciplinary climate-health approach, including meteorological data and a daily mortality record from the Brazilian Health System from 2000 to 2015, covering 21 cities over the Metropolitan Region of Rio de Janeiro. The percentage of absolute mortality increase due to summer extreme temperatures is estimated using a negative binomial regression modeling approach and maximum/minimum temperature-derived indexes as covariates. Moreover, this study assesses the vulnerability to thermal stress for different age groups and both genders and thoroughly analyzes four extremely intense heat waves during 2010 and 2012 regarding their impacts on the population. Results showed that the highest absolute mortality values during heat-related events were linked to circulatory illnesses. However, the highest excess of mortality was related to diabetes, particularly for women within the elderly age groups. Moreover, results indicate that accumulated heat stress conditions during consecutive days preferentially preceded by persistent periods of moderate-temperature, lead to higher excess mortality rather than sporadic single hot days. This work may provide directions in human health policies related to extreme climate events in large tropical metropolitan areas from developing countries, contributing to altering the historically based purely reactive response.


Assuntos
Clima , Temperatura Alta , Idoso , Brasil , Cidades , Mudança Climática , Feminino , Humanos , Masculino , Mortalidade
17.
Sci Total Environ ; 650(Pt 1): 796-808, 2019 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-30308855

RESUMO

Global temperatures have increased considerably over the last decades, directly impacting the number, intensity and duration of extreme events such as heat waves. Climate model projections accounting for anthropogenic factors indicate that deadly mega-heat waves are likely to become more frequent in the future. Although the atmospheric features and social-economic related impacts of heat waves have already been documented in various regions around the world, for other highly populated regions, such as the Metropolitan Region of Rio de Janeiro (MRRJ), a similar objective assessment is still needed. Heat waves directly impact the public health sector and particularly the less wealthy and elderly population groups. During February 2010, an elevated mortality peak occurred during a 8-day period (from 2 to 9 Feb 2010) characterized as a heat wave episode in MRRJ. A total excess of 737 deaths was recorded with the elderly group registering the highest mortality incidence. During this heat wave period, a quasi-stationary anticyclonic anomaly forced in altitude by a Rossby wave train was established over the south Brazilian coast. At the surface, the meteorological scenario from January 2010 to the heat wave period was marked by clear sky conditions, large precipitation deficits, and enhanced diabatic heating. During the heat wave period, warm and dry air masses were advected from interior regions towards the MRRJ, exacerbating temperature conditions by pronounced subsidence and adiabatic heating mechanisms. All these conditions contributed to pronounced positive temperature anomalies, reinforced by land-atmosphere feedbacks.


Assuntos
Atmosfera/química , Clima , Exposição Ambiental/estatística & dados numéricos , Temperatura Alta , Mortalidade/tendências , Idoso , Brasil , Mudança Climática , Humanos , Incidência , Saúde Pública
18.
An Acad Bras Cienc ; 89(3): 1487-1501, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28954172

RESUMO

An automated procedure is here presented that allows identifying and dating burned areas in Portugal using values of daily reflectance from near-infrared and middle-infrared bands, as obtained from the MODIS instrument. The algorithm detects persistent changes in monthly composites of the so-called (V,W) Burn-Sensitive Index and the day of maximum change in daily time series of W is in turn identified as the day of the burning event. The procedure is tested for 2005, the second worst fire season ever recorded in Portugal. Comparison between the obtained burned area map and the reference derived from Landsat imagery resulted in a Proportion Correct of 95.6%. Despite being applied only to the months of August and September, the algorithm is able to identify almost two-thirds of all scars that have occurred during the entire year of 2005. An assessment of the temporal accuracy of the dating procedure was also conducted, showing that 75% of estimated dates presented deviations between -5 and 5 days from dates of hotspots derived from the MODIS instrument. Information about location and date of burning events as provided by the proposed procedure may be viewed as complementary to the currently available official maps based on end-of-season Landsat imagery.

19.
An. acad. bras. ciênc ; 89(3): 1487-1501, July-Sept. 2017. tab, graf
Artigo em Inglês | LILACS | ID: biblio-886740

RESUMO

ABSTRACT An automated procedure is here presented that allows identifying and dating burned areas in Portugal using values of daily reflectance from near-infrared and middle-infrared bands, as obtained from the MODIS instrument. The algorithm detects persistent changes in monthly composites of the so-called (V,W) Burn-Sensitive Index and the day of maximum change in daily time series of W is in turn identified as the day of the burning event. The procedure is tested for 2005, the second worst fire season ever recorded in Portugal. Comparison between the obtained burned area map and the reference derived from Landsat imagery resulted in a Proportion Correct of 95.6%. Despite being applied only to the months of August and September, the algorithm is able to identify almost two-thirds of all scars that have occurred during the entire year of 2005. An assessment of the temporal accuracy of the dating procedure was also conducted, showing that 75% of estimated dates presented deviations between -5 and 5 days from dates of hotspots derived from the MODIS instrument. Information about location and date of burning events as provided by the proposed procedure may be viewed as complementary to the currently available official maps based on end-of-season Landsat imagery.

20.
Ecol Appl ; 18(1): 64-79, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18372556

RESUMO

This paper presents results of the AQL2004 project, which has been develope within the GOFC-GOLD Latin American network of remote sensing and forest fires (RedLatif). The project intended to obtain monthly burned-land maps of the entire region, from Mexico to Patagonia, using MODIS (moderate-resolution imaging spectroradiometer) reflectance data. The project has been organized in three different phases: acquisition and preprocessing of satellite data; discrimination of burned pixels; and validation of results. In the first phase, input data consisting of 32-day composites of MODIS 500-m reflectance data generated by the Global Land Cover Facility (GLCF) of the University of Maryland (College Park, Maryland, U.S.A.) were collected and processed. The discrimination of burned areas was addressed in two steps: searching for "burned core" pixels using postfire spectral indices and multitemporal change detection and mapping of burned scars using contextual techniques. The validation phase was based on visual analysis of Landsat and CBERS (China-Brazil Earth Resources Satellite) images. Validation of the burned-land category showed an agreement ranging from 30% to 60%, depending on the ecosystem and vegetation species present. The total burned area for the entire year was estimated to be 153 215 km2. The most affected countries in relation to their territory were Cuba, Colombia, Bolivia, and Venezuela. Burned areas were found in most land covers; herbaceous vegetation (savannas and grasslands) presented the highest proportions of burned area, while perennial forest had the lowest proportions. The importance of croplands in the total burned area should be taken with reserve, since this cover presented the highest commission errors. The importance of generating systematic products of burned land areas for different ecological processes is emphasized.


Assuntos
Conservação dos Recursos Naturais , Sistemas de Informação Geográfica , América Latina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA