Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 293: 133600, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35031254

RESUMO

The obvious contrast between the remarkable durability and the high consumption of plastic products leads to the deposition of at least 100 million tons of plastics per year in nature. Since 2010, several studies have shown the potential of insect larvae to biodegrade different types of plastics, at higher rates than those reported for microorganisms. This review discusses a compilation of studies about the consumption and biodegradation of hydrocarbon-based plastics, particularly PE, PS, PP and PVC, by lepidopteran and coleopteran larvae. Insects of the Coleoptera order seem to have a better adaptation for PS biodegradation, while those of the Lepidoptera order can better biodegrade PE. Tenebrio molitor biomineralize PE and PS into CO2, and PVC into HCl; while Tenebrio obscurus and Zophobas atratus converts PE and PS into CO2, respectively. Plastic biodegradation by T. molitor has been shown to be dependent on microbiota, exception for PE. Similar PS and PE biodegradation profile has been shown for T. obscurus. PS, PP and PE biodegradation by Z. atratus is also reported to be microbial-dependent. For Galleria mellonella, microbial role on PE biodegradation is still controversial, but the PS metabolism was proved to be microbiota-independent. Advances in this field has stimulated new studies with other insect species, which need to be better explored. Uncovering and understanding the chemical processes behind the innate plastic biodegradation by insect larvae will open the perspective to new eco-friendly innovative biotechnological solutions for the challenge of plastic waste.


Assuntos
Plásticos , Tenebrio , Animais , Biodegradação Ambiental , Hidrocarbonetos , Insetos , Larva
2.
Mater Sci Eng C Mater Biol Appl ; 107: 110264, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31761183

RESUMO

In vitro drug screening is widely used in the development of new drugs, because they constitute a cost-effective approach to select compounds with more potential for therapy. They are also an attractive alternative to in vivo testing. However, most of these assays are done in two-dimensional culture models, where cells are grown on a polystyrene or glass flat surface. In order to develop in vitro models that would more closely resemble physiological conditions, three-dimensional models have been developed. Here, we introduce two novel fully synthetic scaffolds produced using the polymer polyhydroxybutyrate (PHB): a Solvent-Casting Particle-Leaching (SCPL) membrane; and an electrospun membrane, to be used for 3D cultures of B16 F10 murine melanoma cells and 4T1 murine breast cancer cells. A 2D cell culture system in regular tissue culture plates and a classical 3D model where cells are grown on a commercially available gel derived from Engelbreth-Holm Swarm (EHS) tumor were used for comparison with the synthetic scaffolds. Cells were also collected from in vivo tumors grown as grafts in syngeneic mice. Morphology, cell viability, response to chemotherapy and gene expression analysis were used to compare all systems. In the electrospun membrane model, cells were grown on nanometer-scale fibers and in the SCPL membrane, which provides a foam-like structure for cell growth, pore sizes varied. Cells grown on all 3D models were able to form aggregates and spheroids, allowing for increased cell-cell contact when compared with the 2D system. Cell morphology was also more similar between 3D systems and cells collected from the in vivo tumors. Cells grown in 3D models showed an increase in resistance to dacarbazine, and cisplatin. Gene expression analysis also revealed similarities among all 3D platforms. The similarities between the two synthetic systems to the classic EHS gel model highlight their potential application as cost effective substitutes in drug screening, in which fully synthetic models could represent a step towards higher reproducibility. We conclude PHB synthetic membranes offer a valuable alternative for 3D cultures.


Assuntos
Técnicas de Cultura de Células/métodos , Proliferação de Células , Expressão Gênica , Animais , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Melanoma Experimental/genética , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL
3.
An Acad Bras Cienc ; 91(4): e20181190, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31778455

RESUMO

Waterborne polyurethanes (WPUs) are interesting materials for coatings when compared to solvent-based polyurethanes, once that reducing the concentration of volatile organic compounds that are harmful for human health and the environment. However, the WPU has low weathering resistance. In order to improve this behavior among others properties, inorganic fillers has been added in these systems. SiO2 particles from various sources, mainly, from agro-industrial waste, as rice husk has attracted the scientific and technological interest. In this study, the accelerated weathering essay was performed in waterborne polyurethane (WPU)/ silica (from rice husk ash) composites in order to evaluate the thermal and physical changes in these materials. These composites were prepared by two distinct methods: in situ polymerization and blending method. The highest resistance to thermal degradation and to accelerated weathering was reached with WPU/silica composites obtained by blending method due the interactions between SiO2 particles and the polymer matrices. Blending method for preparation WPU/silica composites proved to be a simpler and faster method, with no drawback for large scale application.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...