Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Biomaterials ; 311: 122649, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38850718

RESUMO

Innovative solutions are required for the intervention of implant associated infections (IAIs), especially for bone defect patients with chronic inflammatory diseases like diabetes mellitus (DM). The complex immune microenvironment of infections renders implants with direct antibacterial ability inadequate for the prolonged against of bacterial infections. Herein, a synergistic treatment strategy was presented that combined sonodynamic therapy (SDT) with adaptive immune modulation to treat IAIs in diabetes patients. A multifunctional coating was created on the surface of titanium (Ti) implants, consisting of manganese dioxide nanoflakes (MnO2 NFs) with cascade catalytic enzyme activity and a responsive degradable hydrogel containing a sonosensitizer. The reactive oxygen species (ROS) generated by glucose-hydrogen peroxide (H2O2) cascade catalysis and ultrasound (US) activation sonosensitizer helped kill bacteria and release bacterial antigens. Meanwhile, Mn2+ facilitated dendritic cells (DCs) maturation, enhancing antigen presentation to activate both cellular and humoral adaptive immunity against bacterial infections. This approach effectively eliminated bacteria in established diabetic IAIs model and activated systemic antibacterial immunity, providing long-term antibacterial protection. This study presents a non-antibiotic immunotherapeutic strategy for fighting IAIs in chronic diseases.

2.
J Hazard Mater ; 475: 134917, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38889472

RESUMO

Crystal facet and defect engineering are crucial for designing heterogeneous catalysts. In this study, different solvents were utilized to generate NiO with distinct shapes (hexagonal layers, rods, and spheres) using nickel-based metal-organic frameworks (MOFs) as precursors. It was shown that the exposed crystal facets of NiO with different morphologies differed from each other. Various characterization techniques and density functional theory (DFT) calculations revealed that hexagonal-layered NiO (NiO-L) possessed excellent low-temperature reducibility and oxygen migration ability. The (111) crystal plane of NiO-L contained more lattice defects and oxygen vacancies, resulting in enhanced propane oxidation due to its highest O2 adsorption energy. Furthermore, the higher the surface active oxygen species and surface oxygen vacancy concentrations, the lower the C-H activation energy of the NiO catalyst and hence the better the catalytic activity for the oxidation of propane. Consequently, NiO-L exhibited remarkable catalytic activity and good stability for propane oxidation. This study provided a simple strategy for controlling NiO crystal facets, and demonstrated that the oxygen defects could be more easily formed on NiO(111) facets, thus would be beneficial for the activation of C-H bonds in propane. In addition, the results of this work can be extended to the other fields, such as propane oxidation to propene, fuel cells, and photocatalysis.

3.
Exp Dermatol ; 33(1): e14926, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37702410

RESUMO

Systemic lupus erythematosus (SLE) is an autoimmune disease in which defective T cells, immune complex deposition and other immune system alterations contribute to pathological changes of multiple organ systems. The vitamin D metabolite c is a critical immunomodulator playing pivotal roles in the immune system. Epidemiological evidence indicates that vitamin D deficiency is correlated with the severity of SLE. Our aim is to investigate the effects of 1,25(OH)2D3 (VitD3) on the activation of myeloid dendritic cells (mDCs) by autologous DNA-containing immune complex (DNA-ICs), and the effects of VitD3 on immune system balance during SLE. We purified DNA-ICs from the serum of SLE patients and isolated mDCs from normal subjects. In vitro studies showed that DNA-ICs were internalized and consumed by mDCs. VitD3 blocked the effects of DNA-ICs on RelB, IL-10 and TNF-α in mDCs. Further analysis indicated that DNA-ICs stimulated histone acetylation in the RelB promoter region, which was inhibited by VitD3. Knockdown of the histone deacetylase 3 gene (HDAC3) blocked these VitD3-mediated effects. Co-culture of mDCs and CD4+ T cells showed that VitD3 inhibited multiple processes mediated by DNA-ICs, including proliferation, downregulation of IL-10, TGF-ß and upregulation of TNF-α. Moreover, VitD3 could also reverse the effects of DNA-IC-induced imbalance of CD4+ CD127- Foxp3+ T cells and CD4+ IL17+ T cells. Taken together, our results indicated that autologous DNA-ICs stimulate the activation of mDCs in the pathogenesis of SLE, and VitD3 inhibits this stimulatory effects of DNA-ICs by negative transcriptional regulation of RelB gene and maintaining the Treg/Th17 immune cell balance. These results suggest that vitamin D may have therapeutic value for the treatment of SLE.


Assuntos
Colecalciferol , Lúpus Eritematoso Sistêmico , Humanos , Colecalciferol/farmacologia , Interleucina-10 , Complexo Antígeno-Anticorpo , Fator de Necrose Tumoral alfa , Inflamação , Vitamina D/farmacologia , Células Dendríticas/metabolismo , DNA
4.
Nat Commun ; 14(1): 7639, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37993431

RESUMO

While mesenchymal stem cells (MSCs) have gained enormous attention due to their unique properties of self-renewal, colony formation, and differentiation potential, the MSC secretome has become attractive due to its roles in immunomodulation, anti-inflammatory activity, angiogenesis, and anti-apoptosis. However, the precise stimulation and efficient production of the MSC secretome for therapeutic applications are challenging problems to solve. Here, we report on Acoustofluidic Interfaces for the Mechanobiological Secretome of MSCs: AIMS. We create an acoustofluidic mechanobiological environment to form reproducible three-dimensional MSC aggregates, which produce the MSC secretome with high efficiency. We confirm the increased MSC secretome is due to improved cell-cell interactions using AIMS: the key mediator N-cadherin was up-regulated while functional blocking of N-cadherin resulted in no enhancement of the secretome. After being primed by IFN-γ, the secretome profile of the MSC aggregates contains more anti-inflammatory cytokines and can be used to inhibit the pro-inflammatory response of M1 phenotype macrophages, suppress T cell activation, and support B cell functions. As such, the MSC secretome can be modified for personalized secretome-based therapies. AIMS acts as a powerful tool for improving the MSC secretome and precisely tuning the secretory profile to develop new treatments in translational medicine.


Assuntos
Células-Tronco Mesenquimais , Secretoma , Citocinas/genética , Anti-Inflamatórios , Caderinas
5.
Int J Biol Macromol ; 253(Pt 1): 126499, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37659484

RESUMO

Although a high prevalence of benign prostate hyperplasia (BPH) has been documented, the risk factors are poorly understood. Metabolic syndrome increases the risk of BPH. Succinylation, a type of posttranslational modification, mostly targets metabolic processes. The level of succinylation was investigated in 4 BPH patients and 4 healthy controls. Additionally, 176 patients with BPH were analyzed by using pan-antisuccinyllysine antibody blotting. TMT-labeling proteomic and sc-RNAseq Cellchat analyses were employed to identify key signaling factors involved in the development of BPH. In vivo and in vitro experiments were used to confirm the role of integrin receptors. The global succinylation level in BPH was higher than that in the healthy prostate. Positive correlations of prostate volume with IHC score sand urodynamics testing were found in large clinical cohorts. The extracellular matrix (ECM), metabolic processes and immune signaling were involved in succinylation in BPH, as indicated by using TMT-labeling proteomic analysis, and this finding was also confirmed by sc-RNAseq CellChat analysis. The proteins upregulated in SIRT5 knockout WPMY-1 cells were also enriched in the extracellular matrix and metabolic processes. More importantly, integrin receptor inhibition in a mouse model of BPH significantly ameliorated prostate hyperplasia. High levels of succinylation modifications were found in BPH, and succinylated proteins influenced the activation of the ECM. Inhibition of ECM signaling further ameliorated prostate hyperplasia in mice.


Assuntos
Hiperplasia Prostática , Masculino , Humanos , Camundongos , Animais , Próstata/metabolismo , Hiperplasia/complicações , Hiperplasia/metabolismo , Hiperplasia/patologia , Proteômica , Matriz Extracelular/metabolismo
6.
Front Oncol ; 13: 1271492, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37692858

RESUMO

[This corrects the article DOI: 10.3389/fonc.2022.1009948.].

7.
Mil Med Res ; 10(1): 21, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37143145

RESUMO

BACKGROUND: Treatment of methicillin-resistant Staphylococcus aureus (MRSA) biofilm infections in implant placement surgery is limited by the lack of antimicrobial activity of titanium (Ti) implants. There is a need to explore more effective approaches for the treatment of MRSA biofilm infections. METHODS: Herein, an interfacial functionalization strategy is proposed by the integration of mesoporous polydopamine nanoparticles (PDA), nitric oxide (NO) release donor sodium nitroprusside (SNP) and osteogenic growth peptide (OGP) onto Ti implants, denoted as Ti-PDA@SNP-OGP. The physical and chemical properties of Ti-PDA@SNP-OGP were assessed by scanning electron microscopy, X-ray photoelectron spectroscope, water contact angle, photothermal property and NO release behavior. The synergistic antibacterial effect and elimination of the MRSA biofilms were evaluated by 2',7'-dichlorofluorescein diacetate probe, 1-N-phenylnaphthylamine assay, adenosine triphosphate intensity, o-nitrophenyl-ß-D-galactopyranoside hydrolysis activity, bicinchoninic acid leakage. Fluorescence staining, assays for alkaline phosphatase activity, collagen secretion and extracellular matrix mineralization, quantitative real­time reverse transcription­polymerase chain reaction, and enzyme-linked immunosorbent assay (ELISA) were used to evaluate the inflammatory response and osteogenic ability in bone marrow stromal cells (MSCs), RAW264.7 cells and their co-culture system. Giemsa staining, ELISA, micro-CT, hematoxylin and eosin, Masson's trichrome and immunohistochemistry staining were used to evaluate the eradication of MRSA biofilms, inhibition of inflammatory response, and promotion of osseointegration of Ti-PDA@SNP-OGP in vivo. RESULTS: Ti-PDA@SNP-OGP displayed a synergistic photothermal and NO-dependent antibacterial effect against MRSA following near-infrared light irradiation, and effectively eliminated the formed MRSA biofilms by inducing reactive oxygen species (ROS)-mediated oxidative stress, destroying bacterial membrane integrity and causing leakage of intracellular components (P < 0.01). In vitro experiments revealed that Ti-PDA@SNP-OGP not only facilitated osteogenic differentiation of MSCs, but also promoted the polarization of pro-inflammatory M1 macrophages to the anti-inflammatory M2-phenotype (P < 0.05 or P < 0.01). The favorable osteo-immune microenvironment further facilitated osteogenesis of MSCs and the anti-inflammation of RAW264.7 cells via multiple paracrine signaling pathways (P < 0.01). In vivo evaluation confirmed the aforementioned results and revealed that Ti-PDA@SNP-OGP induced ameliorative osseointegration in an MRSA-infected femoral defect implantation model (P < 0.01). CONCLUSIONS: These findings suggest that Ti-PDA@SNP-OGP is a promising multi-functional material for the high-efficient treatment of MRSA infections in implant replacement surgeries.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Ratos , Animais , Osseointegração , Titânio/farmacologia , Titânio/química , Óxido Nítrico/farmacologia , Ratos Sprague-Dawley , Osteogênese , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Imunoterapia , Biofilmes
9.
Adv Healthc Mater ; 12(19): e2300494, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36929688

RESUMO

Implant-associated infections (IAIs) significantly impair the integration between titanium (Ti) implants and bone tissues. Bacteria colonized on the surface of the implant can induce innate immune suppression of the host to resist clearance. Herein, an interfacial functionalization strategy is employed to introduce FeIII TA nanoparticles (NPs) and acetyl Bletilla striata polysaccharide (acBSP) on the Ti substrate to obtain the Ti-TF-acBSP system. Under near-infrared (NIR) irradiation, the hyperthermal effect induced by FeIII TA NPs directly killed bacteria. Meanwhile, macrophages are induced by acBSP to polarize into pro-inflammatory M1 phenotype, which enhanced the phagocytosis ability of macrophages and activated host innate immunity. Moreover, the asBSP instructed macrophages to secrete pro-osteogenic cytokine, which promoted osteogenic differentiation of MSCs. The results of the animal experiment in vivo confirmed that the Ti-TF-acBSP implant effectively eliminated bacterial infection under NIR irradiation, enhanced the expression of pro-inflammatory cytokine, and induced the production of bone-forming related factors. In a word, the functionalized Ti implant not only have a direct bactericidal effect but also regulate macrophage polarization as well as macrophage-mediated bactericidal and osteogenic effect. The strategy of combining photothermal therapy with immunoregulation will present a potential candidate for the development of novel antibacterial orthopedic devices.


Assuntos
Terapia Fototérmica , Titânio , Animais , Titânio/farmacologia , Osteogênese , Compostos Férricos/farmacologia , Antibacterianos/farmacologia , Citocinas/metabolismo , Propriedades de Superfície , Osseointegração
10.
Front Oncol ; 12: 1009948, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36263222

RESUMO

Sustaining proliferative signaling and enabling replicative immortality are two important hallmarks of cancer. The complex of cyclin-dependent kinase (CDK) and its cyclin plays a decisive role in the transformation of the cell cycle and is also critical in the initiation and progression of cancer. CRIF1, a multifunctional factor, plays a pivotal role in a series of cell biological progresses such as cell cycle, cell proliferation, and energy metabolism. CRIF1 is best known as a negative regulator of the cell cycle, on account of directly binding to Gadd45 family proteins or CDK2. In addition, CRIF1 acts as a regulator of several transcription factors such as Nur77 and STAT3 and partly determines the proliferation of cancer cells. Many studies showed that the expression of CRIF1 is significantly altered in cancers and potentially regarded as a tumor suppressor. This suggests that targeting CRIF1 would enhance the selectivity and sensitivity of cancer treatment. Moreover, CRIF1 might be an indispensable part of mitoribosome and is involved in the regulation of OXPHOS capacity. Further, CRIF1 is thought to be a novel target for the underlying mechanism of diseases with mitochondrial dysfunctions. In summary, this review would conclude the latest aspects of studies about CRIF1 in cancers and mitochondria-related diseases, shed new light on targeted therapy, and provide a more comprehensive holistic view.

11.
Biomaterials ; 287: 121683, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35870263

RESUMO

Ideal titanium implants are required to participate in bone repair actively to improve in situ osteointegration. However, the traditional surface functionalization methods of titanium implants are difficult to both achieve the active regulation and long-term stability of bioactive components. Here, a novel functionalized titanium which loaded with thymosin ß4 (Tß4) and covered by a hydrogel coating was designed and evaluated. A strong adhesion between the coating and the titanium substrate was realized by the synergistic action of borate ester bonds and surface topological structure. The hydrogel coating also achieved an in vivo adhesion between implant and tissue through hydrogen bonds and borate bonds. In addition, based on the ROS response property of borate bonds, the implant can release Tß4 in response to the immune reaction of bone healing by regulating the polarization of macrophages, thereby reducing the fibrosis formation around the implant interface and promoting vascularization and osteointegration of bone defects.

12.
Front Bioeng Biotechnol ; 10: 858862, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35573227

RESUMO

Cementless total knee arthroplasty (TKA) can achieve long-term biological fixation, but its application is limited by the risk of early aseptic loosening. One of the important reasons for early aseptic loosening is that mechanical osteotomy tools cannot achieve ideal bone preparation because of poor accuracy and serious bone tissue damage produced by them. Therefore, we designed an ultra-pulsed CO2 laser osteotomy system to solve these problems. To reveal the safety at the tissue and cell levels of the ultra-pulsed CO2 laser osteotomy system, a series of experiments on distal femur osteotomy in animals were performed. Then, the bone surface characteristics were analyzed through scanning electron microscopy, and the bone thermal and mechanical damage was evaluated via histological analysis. Finally, mesenchymal stem cells (MSCs) were inoculated on the bone surfaces prepared by the two osteotomy tools, and the effect of cell adhesion was analyzed through a confocal laser scanning microscope (CLSM). We successfully achieved TKA bone preparation of animal knees with the ultra-pulsed CO2 laser osteotomy system. Moreover, the biological evaluation results indicated that compared with the traditional mechanical saw, the laser can preserve the natural bone structure and cause no thermal damage to the bone. In addition, CLSM examination results showed that the laser-cut bone surface was more conducive to cell adhesion and infiltration than the bone surface cut by a mechanical saw. Overall, these results indicate that ultra-pulsed CO2 laser can achieve non-invasive bone cutting, which can be a new option for TKA bone preparation and has the potential to lead in the future.

13.
Mater Today Bio ; 13: 100216, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35243291

RESUMO

Gelatin-based hydrogels have a broad range of biomedical fields due to their biocompatibility, convenience for chemical modifications, and degradability. However, gelatin-based hydrogels present poor antibacterial ability that hinders their applications in treating infected wound healing. Herein, a series of multifunctional hydrogels (Gel@Zn) were fabricated through free-radical polymerization interaction based on gelatin methacrylate (GelMA) and dopamine methacrylate (DMA), and then immersed them into zinc nitrate solutions based on the metal coordination and ionic bonding interaction. These designed hydrogels wound dressings show strong antibacterial activity against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) by increasing intracellular reactive oxygen species (ROS) level and changing bacterial membrane permeability. Meanwhile, the hydrogels exhibit good cytocompatibility, enhance the adhesion, proliferation, and migration of NIH-3T3 cells. Furthermore, Gel@Zn-0.08 (0.08 â€‹M Zn2+ immersed with Gel sample) presents a good balance between antibacterial effect, cell viability, and hemolytic property. Compared with 3 â€‹M commercial dressings, Gel@Zn-0.04, and Gel@Zn-0.16, the Gel@Zn-0.08 could significantly improve the healing process of S. aureus-infected full-thickness wounds via restrained the inflammatory responses, enhanced epidermis and granulation tissue information, and stimulated angiogenesis. Our study indicates that the Zn-incorporated hydrogels are promising bioactive materials as wound dressings for infected full-thickness wound healing and skin regeneration.

14.
J Mater Chem B ; 10(15): 2875-2888, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35285467

RESUMO

Diabetes is a universal disease in the world. In the wounds of diabetic individuals, chronic inflammation and an inefficient fibrogenic process hinder the formation and deposition of the ECM, which delays the process of wound healing. To reconstruct the ECM of a diabetic patient's wound, in this work, we designed a pH-responsive "Double H-bonds" (hydrogen bond and hydrazone bond) hyaluronic acid-collagen hydrogel. This hydrogel can be self-gelled quickly in neutral and alkaline environments. But the weakly acidic inflammatory environment of diabetic wounds may accelerate the degradation of the hydrogel and the release of metformin. The in vitro results showed that the hydrogel can enhance the adhesion and infiltration of fibroblasts while inhibiting the growth of macrophages. Meanwhile, metformin could be released and polarize macrophages from M1 to M2, thereby accelerating the migration of fibroblasts and the production of collagen in a high glucose environment. The in vivo results proved that this hydrogel could remodel the ECM in diabetic mice wounds.


Assuntos
Diabetes Mellitus Experimental , Metformina , Animais , Diabetes Mellitus Experimental/tratamento farmacológico , Ácido Hialurônico/farmacologia , Hidrogéis/química , Hidrogéis/farmacologia , Concentração de Íons de Hidrogênio , Inflamação/tratamento farmacológico , Camundongos
15.
Bioact Mater ; 13: 300-311, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35224310

RESUMO

A moderate inflammatory response at the early stages of fracture healing is necessary for callus formation. Over-active and continuous inflammation, however, impairs fracture healing and leads to excessive tissue damage. Adequate fracture healing could be promoted through suppression of local over-active immune cells in the fracture site. In the present study, we achieved an enriched concentration of PD-L1 from exosomes (Exos) of a genetically engineered Human Umbilical Vein Endothelial Cell (HUVECs), and demonstrated that exosomes overexpressing PD-L1 specifically bind to PD-1 on the T cell surface, suppressing the activation of T cells. Furthermore, exosomal PD-L1 induced Mesenchymal Stem Cells (MSCs) towards osteogenic differentiation when pre-cultured with T cells. Moreover, embedding of Exos into an injectable hydrogel allowed Exos delivery to the surrounding microenvironment in a time-released manner. Additionally, exosomal PD-L1, embedded in a hydrogel, markedly promoted callus formation and fracture healing in a murine model at the early over-active inflammation phase. Importantly, our results suggested that activation of T cells in the peripheral lymphatic tissues was inhibited after local administration of PD-L1-enriched Exos to the fracture sites, while T cells in distant immune organs such as the spleen were not affected. In summary, this study provides the first example of using PD-L1-enriched Exos for bone fracture repair, and highlights the potential of Hydrogel@Exos systems for bone fracture therapy through immune inhibitory effects.

16.
ACS Nano ; 16(2): 2381-2398, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35041395

RESUMO

Ferroptosis is a recently discovered route of regulated cell death that offers the opportunities for the treatment of chemotherapy-resistant tumor indications, but its efficacy can be affected by the glutathione peroxidase 4 (GPX4) and ferroptosis suppressor protein 1 (FSP1) antioxidant mechanisms, posing significant challenges for its clinical translation. In this study, we report a Cu-tetra(4-carboxyphenyl)porphyrin chloride(Fe(III)) (Cu-TCPP(Fe)) metal organic framework (MOF)-based nanosystem for the efficient incorporation of Au nanoparticles (NPs) and RSL3, which can demonstrate enzyme-like activities to universally suppress the antiferroptotic pathways in tumor cells for amplifying ferroptotic damage. Herein, Cu-TCPP(Fe) MOF nanosheets were integrated with Au NPs via in situ nucleation and loaded with RSL3 via π-π stacking, which were eventually modified with polyethylene glycol (PEG) and iRGD for tumor-targeted drug delivery. Specifically, the Au NPs can demonstrate glucose oxidase-like activities for efficient glucose depletion, thus disrupting the pentose phosphate pathway to impede reduced glutathione (GSH) biosynthesis and prevent the recycling of coenzyme Q10 (CoQ10) to CoQ10H2, while Cu species can oxidize GSH into oxidized glutathione (GSSG). These nanocatalytic activities can lead to the simultaneous inhibition of the GPX4/GSH and FSP1/CoQ10H2 pathways and cooperate with the GPX4-deactivating function of RSL3 to cause pronounced ferroptotic damage, thereby providing a strong rationale for the application of ferroptosis therapy in the clinic.


Assuntos
Ferroptose , Nanopartículas Metálicas , Neoplasias de Mama Triplo Negativas , Compostos Férricos , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Ouro/farmacologia , Humanos , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Neoplasias de Mama Triplo Negativas/tratamento farmacológico
17.
Small ; 18(1): e2104229, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34791802

RESUMO

The treatment of diabetic wounds remains a major challenge in clinical practice, with chronic wounds characterized by multiple drug-resistant bacterial infections, angiopathy, and oxidative damage to the microenvironment. Herein, a novel in situ injectable HA@MnO2 /FGF-2/Exos hydrogel is introduced for improving diabetic wound healing. Through a simple local injection, this hydrogel is able to form a protective barrier covering the wound, providing rapid hemostasis and long-term antibacterial protection. The MnO2 /ε-PL nanosheet is able to catalyze the excess H2 O2 produced in the wound, converting it to O2 , thus not only eliminating the harmful effects of H2 O2 but also providing O2 for wound healing. Moreover, the release of M2-derived Exosomes (M2 Exos) and FGF-2 growth factor stimulates angiogenesis and epithelization, respectively. These in vivo and in vitro results demonstrate accelerated healing of diabetic wounds with the use of the HA@MnO2 /FGF-2/Exos hydrogel, presenting a viable strategy for chronic diabetic wound repair.


Assuntos
Diabetes Mellitus , Exossomos , Exossomos/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Humanos , Hidrogéis , Compostos de Manganês , Estresse Oxidativo , Óxidos , Cicatrização
18.
Biomaterials ; 279: 121235, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34749070

RESUMO

To control the fate of mesenchymal stem cells (MSCs) in a 3D environment by adjusting the mechanical parameters of MSC-loading scaffolds, is one of the hot topics in the field of regenerative biomaterials. However, a thorough understanding of the relevant MSCs behaviors affected by viscoelasticity, a dynamic physical parameter of scaffolds, is still lacking. Herein, we established an alginate hydrogel system with constant stiffness and tunable stress relaxation rate, which is a key parameter for the viscoelastic property of material. MSCs were cultured inside three groups of alginate hydrogels with various stress relaxation rates, and then RNA-seq analysis of cells was performed. Results showed that the change of stress relaxation rates of hydrogels regulated the most of the different expression genes of MSCs, which were enriched in cell proliferation-related pathways. MSCs cultured in hydrogels with fast stress relaxation rate presented a high self-renewal proliferation profile via activating phosphatidylinositol 3- kinase (PI3K)/protein kinase B (Akt) pathway. In contrast, a slow stress relaxation rate of hydrogels induced MSCs to enter a reversible quiescence state due to the weakened PI3K/Akt activation. Combined with a further finite element analysis, we speculated that the quiescence of MSCs could be served as a positive strategy for MSCs to deal with the matrix with a low deformation to keep stemness. Based on the results, we identified that stress relaxation rate of hydrogel was a potential physical factor of hydrogel to regulate the self-renewal or quiescence of MSCs. Thus, our findings provide a significant guiding principle for the design of MSCs-encapsulated biomaterials.


Assuntos
Células-Tronco Mesenquimais , Proteínas Proto-Oncogênicas c-akt , Diferenciação Celular , Hidrogéis , Fosfatidilinositol 3-Quinase , Fosfatidilinositol 3-Quinases
19.
Small ; 17(47): e2102907, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34665526

RESUMO

Implant-associated bacterial infections significantly impair the integration between titanium and soft tissues. Traditional antibacterial modifications of titanium implants are able to eliminate bacteria, but the resulting pro-inflammatory reactions are usually ignored, which still poses potential risks to human bodies. Here, a dual drug-loading system on titanium has been developed via the adhesion of a catechol motif-modified methacrylated gelatin hydrogel onto TiO2 nanotubes. Then synthesized CaO2 nanoparticles (NPs) are embedded into the hydrogel, and interleukin-4 (IL-4) is loaded into the nanotubes to achieve both antibacterial and anti-inflammatory properties. The dual drug-loading system can eliminate Staphylococcus aureus (S. aureus) rapidly, attributed to the H2 O2 release from CaO2 NPs. The potential cytotoxicity of CaO2 NPs is also remarkably reduced after being embedded into the hydrogel. More importantly, with the gradual release of IL-4, the dual drug-loading system is capable of modulating pro-inflammatory reactions by inducing M2 phenotype polarization of macrophages. In a subcutaneous infection model, the S. aureus contamination is effectively resolved after 2 days, and the resulting pro-inflammatory reactions are also inhibited after 7 days. Finally, the damaged tissue is significantly recovered. Taken together, the dual drug-loading system exhibits great therapeutic potential in effectively killing pathogens and inhibiting the resulting pro-inflammatory reactions.


Assuntos
Nanopartículas , Nanotubos , Antibacterianos/farmacologia , Anti-Inflamatórios/farmacologia , Bactérias , Humanos , Peróxidos , Staphylococcus aureus , Titânio
20.
Biomaterials ; 279: 121193, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34700227

RESUMO

The blood-brain barrier (BBB) is one of the major limitations of glioblastoma therapy in the clinic. Nanodrugs have shown great potential for glioblastoma therapy. Herein, we purposefully developed a multicomponent self-assembly nanocomplex with very high drug loading content for curing orthotopic glioblastoma with synergistic chemo-photothermal therapy. The nanocomplex consisted of self-assembled pH-responsive nanodrugs derived from amino acid-conjugated camptothecin (CPT) and canine dyes (IR783) coated with peptide Angiopep-2-conjugated copolymer of Ang-PEG-g-PLL. Specifically, the carrier-free nanocomplex exhibited a high drug loading content (up to 62%), good biocompatibility, and effective glioma accumulation ability. Moreover, the nanocomplex displayed good stability and pH-responsive behavior ex vivo. Both in vitro and in vivo results revealed that the nanocomplex could effectively cross the BBB and target glioma cells. Furthermore, the combination of chemotherapy and photothermal therapy of the nanocomplex achieved a better therapeutic effect, longer survival time, and minimized toxic side effects in orthotopic glioblastoma tumor-bearing nude mice. Overall, we modified the chemotherapeutic drug CPT so that it could self-assemble with other molecules into nanoparticles, which providing an alternative for the preparation of the carrier-free nanodrugs. The results highlighted the potential of self-assembly nanodrugs as a novel platform for effective glioblastoma therapy.


Assuntos
Glioblastoma , Nanopartículas , Animais , Linhagem Celular Tumoral , Cães , Doxorrubicina/uso terapêutico , Sistemas de Liberação de Medicamentos , Glioblastoma/tratamento farmacológico , Camundongos , Camundongos Nus , Terapia Fototérmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...