Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Cancer Cell ; 42(4): 623-645.e10, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38490212

RESUMO

Genes limiting T cell antitumor activity may serve as therapeutic targets. It has not been systematically studied whether there are regulators that uniquely or broadly contribute to T cell fitness. We perform genome-scale CRISPR-Cas9 knockout screens in primary CD8 T cells to uncover genes negatively impacting fitness upon three modes of stimulation: (1) intense, triggering activation-induced cell death (AICD); (2) acute, triggering expansion; (3) chronic, causing dysfunction. Besides established regulators, we uncover genes controlling T cell fitness either specifically or commonly upon differential stimulation. Dap5 ablation, ranking highly in all three screens, increases translation while enhancing tumor killing. Loss of Icam1-mediated homotypic T cell clustering amplifies cell expansion and effector functions after both acute and intense stimulation. Lastly, Ctbp1 inactivation induces functional T cell persistence exclusively upon chronic stimulation. Our results functionally annotate fitness regulators based on their unique or shared contribution to traits limiting T cell antitumor activity.


Assuntos
Sistemas CRISPR-Cas , Neoplasias , Humanos , Linfócitos T CD8-Positivos , Neoplasias/genética
2.
Sci Immunol ; 8(87): eadf7579, 2023 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-37738363

RESUMO

Mitophagy, a central process guarding mitochondrial quality, is commonly impaired in human diseases such as Parkinson's disease, but its impact in adaptive immunity remains unclear. The differentiation and survival of memory CD8+ T cells rely on oxidative metabolism, a process that requires robust mitochondrial quality control. Here, we found that Parkinson's disease patients have a reduced frequency of CD8+ memory T cells compared with healthy donors and failed to form memory T cells upon vaccination against COVID-19, highlighting the importance of mitochondrial quality control for memory CD8+ T cell formation. We further uncovered that regulators of mitophagy, including Parkin and NIX, were up-regulated in response to interleukin-15 (IL-15) for supporting memory T cell formation. Mechanistically, Parkin suppressed VDAC1-dependent apoptosis in memory T cells. In contrast, NIX expression in T cells counteracted ferroptosis by preventing metabolic dysfunction resulting from impaired mitophagy. Together, our results indicate that the mitophagy machinery orchestrates survival and metabolic dynamics required for memory T cell formation, as well as highlight a deficit in T cell-mediated antiviral responses in Parkinson's disease patients.


Assuntos
COVID-19 , Doença de Parkinson , Humanos , Linfócitos T CD8-Positivos , Células T de Memória , Mitofagia , Morte Celular
3.
EMBO J ; 42(5): e111614, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36715448

RESUMO

Resistance to cancer immunotherapy continues to impair common clinical benefit. Here, we use whole-genome CRISPR-Cas9 knockout data to uncover an important role for Tuberous Sclerosis Complex 2 (TSC2) in determining tumor susceptibility to cytotoxic T lymphocyte (CTL) killing in human melanoma cells. TSC2-depleted tumor cells had disrupted mTOR regulation following CTL attack, which was associated with enhanced cell death. Wild-type tumor cells adapted to CTL attack by shifting their mTOR signaling balance toward increased mTORC2 activity, circumventing apoptosis, and necroptosis. TSC2 ablation strongly augmented tumor cell sensitivity to CTL attack in vitro and in vivo, suggesting one of its functions is to critically protect tumor cells. Mechanistically, TSC2 inactivation caused elevation of TRAIL receptor expression, cooperating with mTORC1-S6 signaling to induce tumor cell death. Clinically, we found a negative correlation between TSC2 expression and TRAIL signaling in TCGA patient cohorts. Moreover, a lower TSC2 immune response signature was observed in melanomas from patients responding to immune checkpoint blockade. Our study uncovers a pivotal role for TSC2 in the cancer immune response by governing crosstalk between TSC2-mTOR and TRAIL signaling, aiding future therapeutic exploration of this pathway in immuno-oncology.


Assuntos
Esclerose Tuberosa , Proteínas Supressoras de Tumor , Humanos , Morte Celular , Serina-Treonina Quinases TOR/metabolismo , Esclerose Tuberosa/genética , Proteína 2 do Complexo Esclerose Tuberosa/genética , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
4.
Melanoma Res ; 33(1): 12-26, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36545919

RESUMO

While immunotherapy has become standard-of-care for cutaneous melanoma patients, primary and acquired resistance prevent long-term benefits for about half of the late-stage patients. Pre-clinical models are essential to increase our understanding of the resistance mechanisms of melanomas, aiming to improve the efficacy of immunotherapy. Here, we present two novel syngeneic transplantable murine melanoma cell lines derived from the same primary tumor induced on BrafV600E Pten-/- mice: MeVa2.1 and MeVa2.2. Derivatives of these cell lines expressing the foreign antigen ovalbumin (dOVA) showed contrasting immune-mediated tumor control. MeVa2.2.dOVA melanomas were initially controlled in immune-competent hosts until variants grew out that had lost their antigens. By contrast, MeVa2.1.dOVA tumors were not controlled despite presenting the strong OVA antigen, as well as infiltration of tumor-reactive CD8+ T cells. MeVa2.1.dOVA displayed reduced sensitivity to T cell-mediated killing and growth inhibition in vitro by both IFN-γ and TNF-α. MeVa2.1.dOVA tumors were transiently controlled in vivo by either targeted therapy, adoptive T cell transfer, regulatory T cell depletion, or immune checkpoint blockade. MeVa2.1.dOVA could thus become a valuable melanoma model to evaluate novel immunotherapy combinations aiming to overcome immune resistance mechanisms.


Assuntos
Melanoma , Neoplasias Cutâneas , Camundongos , Animais , Melanoma/patologia , Neoplasias Cutâneas/genética , Imunoterapia , Linfócitos T CD8-Positivos , Linhagem Celular Tumoral , Antígenos
5.
Nat Commun ; 13(1): 1923, 2022 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-35395848

RESUMO

The cytokine IFNγ differentially impacts on tumors upon immune checkpoint blockade (ICB). Despite our understanding of downstream signaling events, less is known about regulation of its receptor (IFNγ-R1). With an unbiased genome-wide CRISPR/Cas9 screen for critical regulators of IFNγ-R1 cell surface abundance, we identify STUB1 as an E3 ubiquitin ligase for IFNγ-R1 in complex with its signal-relaying kinase JAK1. STUB1 mediates ubiquitination-dependent proteasomal degradation of IFNγ-R1/JAK1 complex through IFNγ-R1K285 and JAK1K249. Conversely, STUB1 inactivation amplifies IFNγ signaling, sensitizing tumor cells to cytotoxic T cells in vitro. This is corroborated by an anticorrelation between STUB1 expression and IFNγ response in ICB-treated patients. Consistent with the context-dependent effects of IFNγ in vivo, anti-PD-1 response is increased in heterogenous tumors comprising both wildtype and STUB1-deficient cells, but not full STUB1 knockout tumors. These results uncover STUB1 as a critical regulator of IFNγ-R1, and highlight the context-dependency of STUB1-regulated IFNγ signaling for ICB outcome.


Assuntos
Interferon gama , Neoplasias , Receptores de Interferon , Ubiquitina-Proteína Ligases , Humanos , Inibidores de Checkpoint Imunológico , Interferon gama/metabolismo , Neoplasias/imunologia , Receptores de Interferon/metabolismo , Transdução de Sinais , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Receptor de Interferon gama
6.
Proc Natl Acad Sci U S A ; 111(1): 279-84, 2014 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-24344305

RESUMO

JMJD5, a Jumonji C domain-containing dioxygenase, is important for embryonic development and cancer growth. Here, we show that JMJD5 is up-regulated by hypoxia and is crucial for hypoxia-induced cell proliferation. JMJD5 interacts directly with pyruvate kinase muscle isozyme (PKM)2 to modulate metabolic flux in cancer cells. The JMJD5-PKM2 interaction resides at the intersubunit interface region of PKM2, which hinders PKM2 tetramerization and blocks pyruvate kinase activity. This interaction also influences translocation of PKM2 into the nucleus and promotes hypoxia-inducible factor (HIF)-1α-mediated transactivation. JMJD5 knockdown inhibits the transcription of the PKM2-HIF-1α target genes involved in glucose metabolism, resulting in a reduction of glucose uptake and lactate secretion in cancer cells. JMJD5, along with PKM2 and HIF-1α, is recruited to the hypoxia response element site in the lactate dehydrogenase A and PKM2 loci and mediates the recruitment of the latter two proteins. Our data uncover a mechanism whereby PKM2 can be regulated by factor-binding-induced homo/heterooligomeric restructuring, paving the way to cell metabolic reprogram.


Assuntos
Proteínas de Transporte/metabolismo , Regulação Neoplásica da Expressão Gênica , Glucose/metabolismo , Histona Desmetilases/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Proteínas de Membrana/metabolismo , Hormônios Tireóideos/metabolismo , Transporte Ativo do Núcleo Celular , Sítio Alostérico , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Proliferação de Células , Feminino , Glicólise , Células HEK293 , Células HeLa , Humanos , Hipóxia , Isoenzimas/metabolismo , L-Lactato Desidrogenase/metabolismo , Lactato Desidrogenase 5 , Ácido Láctico/metabolismo , Células MCF-7 , Neoplasias/metabolismo , Ligação Proteica , Estrutura Quaternária de Proteína , Ativação Transcricional , Proteínas de Ligação a Hormônio da Tireoide
7.
J Biomed Sci ; 19: 52, 2012 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-22621211

RESUMO

BACKGROUND: Autophagy and molecular chaperones both regulate protein homeostasis and maintain important physiological functions. Atg7 (autophagy-related gene 7) and Hsp27 (heat shock protein 27) are involved in the regulation of neurodegeneration and aging. However, the genetic connection between Atg7 and Hsp27 is not known. METHODS: The appearances of the fly eyes from the different genetic interactions with or without polyglutamine toxicity were examined by light microscopy and scanning electronic microscopy. Immunofluorescence was used to check the effect of Atg7 and Hsp27 knockdown on the formation of autophagosomes. The lifespan of altered expression of Hsp27 or Atg7 and that of the combination of the two different gene expression were measured. RESULTS: We used the Drosophila eye as a model system to examine the epistatic relationship between Hsp27 and Atg7. We found that both genes are involved in normal eye development, and that overexpression of Atg7 could eliminate the need for Hsp27 but Hsp27 could not rescue Atg7 deficient phenotypes. Using a polyglutamine toxicity assay (41Q) to model neurodegeneration, we showed that both Atg7 and Hsp27 can suppress weak, toxic effect by 41Q, and that overexpression of Atg7 improves the worsened mosaic eyes by the knockdown of Hsp27 under 41Q. We also showed that overexpression of Atg7 extends lifespan and the knockdown of Atg7 or Hsp27 by RNAi reduces lifespan. RNAi-knockdown of Atg7 expression can block the extended lifespan phenotype by Hsp27 overexpression, and overexpression of Atg7 can extend lifespan even under Hsp27 knockdown by RNAi. CONCLUSIONS: We propose that Atg7 acts downstream of Hsp27 in the regulation of eye morphology, polyglutamine toxicity, and lifespan in Drosophila.


Assuntos
Proteínas de Drosophila/genética , Drosophila , Olho , Proteínas de Choque Térmico HSP27/genética , Animais , Autofagia/genética , Proteína 7 Relacionada à Autofagia , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Epistasia Genética/genética , Olho/anatomia & histologia , Olho/crescimento & desenvolvimento , Olho/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Choque Térmico HSP27/fisiologia , Peptídeos/toxicidade , Interferência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...