Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(14)2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39062858

RESUMO

Sleep deprivation (SD) is a recognized risk factor for atrial fibrillation (AF), yet the precise molecular and electrophysiological mechanisms behind SD-induced AF are unclear. This study explores the electrical and structural changes that contribute to AF in chronic partial SD. We induced chronic partial SD in Wistar rats using a modified multiple-platform method. Echocardiography demonstrated impaired systolic and diastolic function in the left ventricle (LV) of the SD rats. The SD rats exhibited an elevated heart rate and a higher low-frequency to high-frequency ratio in a heart-rate variability analysis. Rapid transesophageal atrial pacing led to a higher incidence of AF and longer mean AF durations in the SD rats. Conventional microelectrode recordings showed accelerated pulmonary vein (PV) spontaneous activity in SD rats, along with a heightened occurrence of delayed after-depolarizations in the PV and left atrium (LA) induced by tachypacing and isoproterenol. A Western blot analysis showed reduced expression of G protein-coupled receptor kinase 2 (GRK2) in the LA of the SD rats. Chronic partial SD impairs LV function, promotes AF genesis, and increases PV and LA arrhythmogenesis, potentially attributed to sympathetic overactivity and reduced GRK2 expression. Targeting GRK2 signaling may offer promising therapeutic avenues for managing chronic partial SD-induced AF. Future investigations are mandatory to investigate the dose-response relationship between SD and AF genesis.


Assuntos
Fibrilação Atrial , Modelos Animais de Doenças , Átrios do Coração , Veias Pulmonares , Ratos Wistar , Privação do Sono , Animais , Fibrilação Atrial/etiologia , Fibrilação Atrial/fisiopatologia , Fibrilação Atrial/metabolismo , Ratos , Privação do Sono/complicações , Privação do Sono/fisiopatologia , Átrios do Coração/fisiopatologia , Átrios do Coração/metabolismo , Átrios do Coração/patologia , Masculino , Frequência Cardíaca , Quinase 2 de Receptor Acoplado a Proteína G/metabolismo , Incidência
2.
Eur J Pharmacol ; 977: 176675, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38825303

RESUMO

BACKGROUND: Ibrutinib, a Bruton's tyrosine kinase inhibitor used in cancer therapy, exerts ventricular proarrhythmic effects; however, the underlying mechanisms remain unclear. Excitation-contraction coupling (E-C) disorders are pivotal for the genesis of ventricular arrhythmias (VAs), which arise mainly from the right ventricular outflow tract (RVOT). In this study, we aimed to comprehensively investigate whether ibrutinib regulates the electromechanical activities of the RVOT, leading to enhanced arrhythmogenesis, and explore the underlying mechanisms. METHODS: We utilized conventional microelectrodes to synchronously record electrical and mechanical responses in rabbit RVOT tissue preparations before and after treatment with ibrutinib (10, 50, and 100 nM) and investigated their electromechanical interactions and arrhythmogenesis during programmed electrical stimulation. The fluorometric ratio technique was used to measure intracellular calcium concentration in isolated RVOT myocytes. RESULTS: Ibrutinib (10-100 nM) shortened the action potential duration. Ibrutinib at 100 nM significantly increased pacing-induced ventricular tachycardia (VT) (from 0% to 62.5%, n = 8, p = 0.025). Comparisons between pacing-induced VT and non-VT episodes demonstrated that VT episodes had a greater increase in contractility than that of non-VT episodes (402.1 ± 41.4% vs. 232.4 ± 29.2%, p = 0.003). The pretreatment of ranolazine (10 µM, a late sodium current blocker) prevented the occurrence of ibrutinib-induced VAs. Ibrutinib (100 nM) increased late sodium current, reduced intracellular calcium transients, and enhanced calcium leakage in RVOT myocytes. CONCLUSION: Ibrutinib increased the risk of VAs in the RVOT due to dysregulated electromechanical responses, which can be attenuated by ranolazine or apamin.


Assuntos
Potenciais de Ação , Adenina , Tirosina Quinase da Agamaglobulinemia , Piperidinas , Inibidores de Proteínas Quinases , Animais , Piperidinas/farmacologia , Coelhos , Adenina/análogos & derivados , Adenina/farmacologia , Tirosina Quinase da Agamaglobulinemia/antagonistas & inibidores , Tirosina Quinase da Agamaglobulinemia/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/efeitos adversos , Potenciais de Ação/efeitos dos fármacos , Pirimidinas/farmacologia , Arritmias Cardíacas/induzido quimicamente , Arritmias Cardíacas/fisiopatologia , Masculino , Ventrículos do Coração/efeitos dos fármacos , Ventrículos do Coração/fisiopatologia , Cálcio/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Taquicardia Ventricular/fisiopatologia , Pirazóis/farmacologia , Acoplamento Excitação-Contração/efeitos dos fármacos
3.
J Biomed Sci ; 31(1): 42, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38650023

RESUMO

BACKGROUND: Myocarditis substantially increases the risk of ventricular arrhythmia. Approximately 30% of all ventricular arrhythmia cases in patients with myocarditis originate from the right ventricular outflow tract (RVOT). However, the role of NLRP3 signaling in RVOT arrhythmogenesis remains unclear. METHODS: Rats with myosin peptide-induced myocarditis (experimental group) were treated with an NLRP3 inhibitor (MCC950; 10 mg/kg, daily for 14 days) or left untreated. Then, they were subjected to electrocardiography and echocardiography. Ventricular tissue samples were collected from each rat's RVOT, right ventricular apex (RVA), and left ventricle (LV) and examined through conventional microelectrode and histopathologic analyses. In addition, whole-cell patch-clamp recording, confocal fluorescence microscopy, and Western blotting were performed to evaluate ionic currents, intracellular Ca2+ transients, and Ca2+-modulated protein expression in individual myocytes isolated from the RVOTs. RESULTS: The LV ejection fraction was lower and premature ventricular contraction frequency was higher in the experimental group than in the control group (rats not exposed to myosin peptide). Myocarditis increased the infiltration of inflammatory cells into cardiac tissue and upregulated the expression of NLRP3; these observations were more prominent in the RVOT and RVA than in the LV. Furthermore, experimental rats treated with MCC950 (treatment group) improved their LV ejection fraction and reduced the frequency of premature ventricular contraction. Histopathological analysis revealed higher incidence of abnormal automaticity and pacing-induced ventricular tachycardia in the RVOTs of the experimental group than in those of the control and treatment groups. However, the incidences of these conditions in the RVA and LV were similar across the groups. The RVOT myocytes of the experimental group exhibited lower Ca2+ levels in the sarcoplasmic reticulum, smaller intracellular Ca2+ transients, lower L-type Ca2+ currents, larger late Na+ currents, larger Na+-Ca2+ exchanger currents, higher reactive oxygen species levels, and higher Ca2+/calmodulin-dependent protein kinase II levels than did those of the control and treatment groups. CONCLUSION: Myocarditis may increase the rate of RVOT arrhythmogenesis, possibly through electrical and structural remodeling. These changes may be mitigated by inhibiting NLRP3 signaling.


Assuntos
Arritmias Cardíacas , Miocardite , Proteína 3 que Contém Domínio de Pirina da Família NLR , Transdução de Sinais , Animais , Ratos , Arritmias Cardíacas/fisiopatologia , Arritmias Cardíacas/etiologia , Arritmias Cardíacas/metabolismo , Furanos/farmacologia , Indenos , Miocardite/metabolismo , Miocardite/fisiopatologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Ratos Sprague-Dawley , Sulfonamidas/farmacologia , Remodelação Ventricular/efeitos dos fármacos , Remodelação Ventricular/fisiologia
4.
Transl Res ; 268: 1-12, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38244770

RESUMO

Interleukin (IL)-33, a cytokine involved in immune responses, can activate its receptor, suppression of tumorigenicity 2 (ST2), is elevated during atrial fibrillation (AF). However, the role of IL-33/ST2 signaling in atrial arrhythmia is unclear. This study explored the pathological effects of the IL-33/ST2 axis on atrial remodeling and arrhythmogenesis. Patch clamping, confocal microscopy, and Western blotting were used to analyze the electrical characteristics of and protein activity in atrial myocytes (HL-1) treated with recombinant IL-33 protein and/or ST2-neutralizing antibodies for 48 hrs. Telemetric electrocardiographic recordings, Masson's trichrome staining, and immunohistochemistry staining of the atrium were performed in mice receiving tail vein injections with nonspecific immunoglobulin (control), IL-33, and IL-33 combined with anti-ST2 antibody for 2 weeks. IL-33-treated HL-1 cells had a reduced action potential duration, lower L-type Ca2+ current, greater sarcoplasmic reticulum (SR) Ca2+ content, increased Na+/Ca2+ exchanger (NCX) current, elevation of K+ currents, and increased intracellular calcium transient. IL-33-treated HL-1 myocytes had greater activation of the calcium-calmodulin-dependent protein kinase II (CaMKII)/ryanodine receptor 2 (RyR2) axis and nuclear factor kappa B (NF-κB) / NLR family pyrin domain containing 3 (NLRP3) signaling than did control cells. IL-33 treated cells also had greater expression of Nav1.5, Kv1.5, NCX, and NLRP3 than did control cells. Pretreatment with neutralizing anti-ST2 antibody attenuated IL-33-mediated activation of CaMKII/RyR2 and NF-κB/NLRP3 signaling. IL-33-injected mice had more atrial ectopic beats and increased AF episodes, greater atrial fibrosis, and elevation of NF-κB/NLRP3 signaling than did controls or mice treated with IL-33 combined with anti-ST2 antibody. Thus, IL-33 recombinant protein treatment promotes atrial remodeling through ST2 signaling. Blocking the IL-33/ST2 axis might be an innovative therapeutic approach for patients with atrial arrhythmia and elevated serum IL-33.


Assuntos
Remodelamento Atrial , Interleucina-33 , Miócitos Cardíacos , Animais , Masculino , Camundongos , Potenciais de Ação/efeitos dos fármacos , Arritmias Cardíacas/fisiopatologia , Arritmias Cardíacas/metabolismo , Fibrilação Atrial/fisiopatologia , Fibrilação Atrial/metabolismo , Remodelamento Atrial/efeitos dos fármacos , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Linhagem Celular , Átrios do Coração/fisiopatologia , Átrios do Coração/metabolismo , Átrios do Coração/efeitos dos fármacos , Átrios do Coração/patologia , Proteína 1 Semelhante a Receptor de Interleucina-1/metabolismo , Interleucina-33/metabolismo , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...