Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.418
Filtrar
1.
BMC Infect Dis ; 24(1): 794, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39112970

RESUMO

BACKGROUND: COVID-19 is a new infectious disease. To investigate whether severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection increases the adverse reactions of subcutaneous specific immunotherapy (SCIT) in children. METHODS: This study was conducted by collecting relevant data from children who underwent house dust mite SCIT from April 3, 2021, to March 18, 2023, including information on the time of COVID-19 infection, symptoms, and adverse reactions after each allergen injection. A mixed effects model was used to analyze the changes in adverse reactions before and after the COVID-19 infection. RESULTS: Among the records of adverse reactions from 2658 injections in 123 children who underwent SCIT, the overall adverse reaction rate before COVID-19 infection was 39.8% and 30.0% after COVID-19 infection. Compared with pre-infection with COVID-19, the risks of overall adverse reactions, local adverse reactions, and systemic adverse reactions of immunotherapy after COVID-19 infection were reduced (odds ratio [OR] = 0.24, 0.31, and 0.28, all P < 0.05). Among the local adverse reactions, the incidence of the unvaccinated group was the highest (15.3% vs. 7.1%). The incidence of overall and local adverse reactions to SCIT decreased in 2-vaccinated COVID-19 recipients (OR = 0.29-0.31, P < 0.05). CONCLUSIONS: In children, SARS-CoV-2 infection does not increase the incidence of adverse reactions to SCIT. This finding can provide a basis for the implementation of allergen-specific immunotherapy (AIT) during the COVID-19 pandemic.


Assuntos
COVID-19 , Dessensibilização Imunológica , SARS-CoV-2 , Humanos , COVID-19/terapia , COVID-19/imunologia , Criança , Estudos Retrospectivos , Masculino , Feminino , Pré-Escolar , SARS-CoV-2/imunologia , Injeções Subcutâneas , Dessensibilização Imunológica/efeitos adversos , Dessensibilização Imunológica/métodos , Adolescente , Animais , Pyroglyphidae/imunologia , Alérgenos/imunologia , Alérgenos/efeitos adversos , Alérgenos/administração & dosagem , Lactente
2.
Nat Commun ; 15(1): 6670, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39107311

RESUMO

Thermal management emerges as a grand challenge of next-generation electronics. Efforts to develop compact, solid-state cooling devices have led to the exploration of the electrocaloric effect of ferroelectric polymers. Despite recent advances, the applications of electrocaloric polymers on electronics operating at elevated temperatures remain essentially unexplored. Here, we report that the ferroelectric polymer composite composed of highly-polarized barium strontium titanate nanofibers and electron-accepting [6,6] phenyl-C61-butyric acid methyl ester retains fast electrocaloric responses and stable cyclability at elevated temperatures. We demonstrate the effectiveness of electrocaloric cooling in a polymer composite for a pyroelectric energy harvesting device. The device utilizes a simulated central processing unit (CPU) as the heat source. Our results show that the device remains operational even when the CPU is overheated. Furthermore, we show that the composite functions simultaneously as a pyroelectric energy converter to harvest thermal energy from an overheated chip into electricity in the electrocaloric process. This work suggests a distinct approach for overheating protection and recycling waste heat of microelectronics.

3.
Quant Imaging Med Surg ; 14(8): 5408-5419, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39144008

RESUMO

Background: Automated tumor segmentation and survival prediction are critical to clinical diagnosis and treatment. This study aimed to develop deep-learning models for automatic tumor segmentation and survival prediction in magnetic resonance imaging (MRI) of cervical cancer (CC) by combining deep neural networks and Transformer architecture. Methods: This study included 406 patients with CC, each with comprehensive clinical information and MRI scans. We randomly divided patients into training, validation, and independent test cohorts in a 6:2:2 ratio. During the model training, we employed two architecture types: one being a hybrid model combining convolutional neural network (CNN) and ransformer (CoTr) and one of pure CNNs. For survival prediction, the hybrid model combined tumor image features extracted by segmentation models with clinical information. The performance of the segmentation models was evaluated using the Dice similarity coefficient (DSC) and 95% Hausdorff distance (HD95). The performance of the survival models was assessed using the concordance index. Results: The CoTr model performed well in both contrast-enhanced T1-weighted (ceT1W) and T2-weighted (T2W) imaging segmentation tasks, with average DSCs of 0.827 and 0.820, respectively, which outperformed other the CNN models such as U-Net (DSC: 0.807 and 0.808), attention U-Net (DSC: 0.814 and 0.811), and V-Net (DSC: 0.805 and 0.807). For survival prediction, the proposed deep-learning model significantly outperformed traditional methods, yielding a concordance index of 0.732. Moreover, it effectively divided patients into low-risk and high-risk groups for disease progression (P<0.001). Conclusions: Combining Transformer architecture with a CNN can improve MRI tumor segmentation, and this deep-learning model excelled in the survival prediction of patients with CC as compared to traditional methods.

4.
ACS Nano ; 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39197041

RESUMO

Potential exposure to cobalt nanoparticles (CoNPs) occurs in various fields, including hard alloy industrial production, the increasing use of new energy lithium-ion batteries, and millions of patients with metal-on-metal joint prostheses. Evidence from human, animal, and in vitro experiments suggests a close relationship between CoNPs and neurotoxicity. However, a systematic assessment of central nervous system (CNS) impairment due to CoNPs exposure and the underlying molecular mechanisms is lacking. In this study, we found that CoNPs induced neurodegenerative damage both in vivo and in vitro, including cognitive impairment, ß-amyloid deposition and Tau hyperphosphorylation. CoNPs promoted the formation of autophagosomes and impeding autophagosomal-lysosomal fusion in vivo and in vitro, leading to toxic protein accumulation. Moreover, CoNPs exposure reduced the level of transcription factor EB (TFEB) and the abundance of lysosome, causing a blockage in autophagosomal-lysosomal fusion. Interestingly, overexpression of long noncoding RNA NR_030777 mitigated CoNPs-induced neurodegenerative damage in both in vivo and in vitro models. Fluorescence in situ hybridization assay revealed that NR_030777 directly binds and stabilizes TFEB mRNA, alleviating the blockage of autophagosomal-lysosomal fusion and ultimately restoring neurodegeneration induced by CoNPs in vivo and in vitro. In summary, our study demonstrates that autophagic dysfunction is the main toxic mechanism of neurodegeneration upon CoNPs exposure and NR_030777 plays a crucial role in CoNPs-induced autophagic dysfunction. Additionally, the proposed adverse outcome pathway contributes to a better understanding of CNS toxicity assessment of CoNPs.

5.
Anal Chem ; 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39197063

RESUMO

Long nanowires offer an increased surface area for biomolecule immobilization, facilitating enhanced binding capacity and sensitivity in the detection of target analytes. However, robust long-nanowire fabrication remains a significant challenge. In this paper, we developed a novel construction of a micro chemical pen (MCP), called a clean-assisted micro chemical pen (CAMCP), for robust long-nanowire fabrication. CAMCP, based on localized hydrodynamic flow confinement, was conducted by incorporating a clean phase to effectively dissolve aggregated silver particles in the aspiration channel's shell, thereby enhancing the MCP's longevity by 60.84%, allowing for an 840 µm extension in nanowire patterning capability. A 4600-aspect ratio (length:1200 µm, width: 260 nm) nanowire was fabricated by CAMCP and utilized as a nanowire sensor, showing a 39.7% increase in IgA detection sensitivity compared to a 3000-aspect ratio sensor. Furthermore, the longer nanowire sensor exhibited enhanced signal responses, a higher signal-to-noise ratio, and a lower limit of detection (LOD). The preponderant bioassay performances of the longer nanowire sensor in bioassays, facilitated by CAMCP, open up its possibilities for chemical-synthesis nanowires (NWs) in ultrasensitive biodetection.

6.
Anal Chem ; 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39189349

RESUMO

Macrophage-derived foam cells play a crucial role in plaque formation and rupture during the progression of atherosclerosis. Traditional studies have often overlooked the heterogeneity of foam cells, focusing instead on populations of cells. To address this, we have developed time-resolved, single-cell metabolomics and lipidomics approaches to explore the heterogeneity of macrophages during foam cell formation. Our dynamic metabolomic and lipidomic analyses revealed a dual regulatory axis involving inflammation and ferroptosis. Further, single-cell metabolomics and lipidomics have delineated a continuum of macrophage states, with varied susceptibilities to apoptosis and ferroptosis. Single-cell transcriptomic profiling confirmed these divergent fates, both in established cell lines and in macrophages derived from peripheral blood monocytes. This research has uncovered the complex molecular interactions that dictate these divergent cell fates, providing crucial insights into the pathogenesis of atherosclerosis.

7.
Front Med (Lausanne) ; 11: 1394268, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39139789

RESUMO

Objective: This study synthesized the highest level of evidence to analyse the effectiveness and safety of using extracorporeal shock wave therapy (ESWT) to treat upper limb tendonitis, which was unknown. Design: We conducted a systematic review and meta-analysis of 18 randomized controlled trials (RCTs) in PubMed, Embase, Web of Science, Medline, and the Cochrane Library. Methods: Two researchers performed the screening, data extraction, literature quality assessment, and heterogeneity analysis of the searched RCTs. Results: The main types of morbidity included rotator cuff tendonitis, lateral epicondylitis, finger tendonitis, and long bicipital tendonitis. The results of the meta-analysis showed that ESWT was effective in relieving pain in all four types of tendonitis. In addition, ESWT was more effective in relieving pain in patients with upper limb tendonitis than placebo at the 3- and 6-month follow-ups, especially with radial ESWT (RESWT). Data analysis of the forest plot showed that the experimental group with ESWT as an intervention had a significant improvement in function in patients with rotator cuff tendonitis at the 3-month follow-up. However, subgroup analysis showed that low-energy ESWT was effective in improving function in patients with calcified and non-calcified rotator cuff tendonitis, whereas it was not effective in relieving pain. Conclusion: ESWT can effectively improve the functional activity in patients with rotator cuff tendonitis and may produce positive analgesic effects in patients with upper limb tendonitis. The incidence of adverse effects is low. Systematic Review Registration: https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42023403594, identifier: PROSPERO, CRD42023403594.

8.
Anal Chem ; 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39150516

RESUMO

With the advantages of high-throughput manufacturing and customizability, on-microsphere construction of in vitro multicellular analytical systems has garnered significant attention. However, achieving a precise, biocompatible cell arrangement and spatial signal analysis in hydrogel microspheres remains challenging. In this work, a microfluidic method is reported for the biocompatible generation of addressable supersegmented multicompartmental microspheres. Additionally, these microspheres are developed as novel label-free multicellular systems. In the microfluidic approach, controllable microfluidics is used to finely tune the internal microstructure of the microspheres, and the gas ejector ensures the biocompatibility of the preparation process. As a proof of concept, six- and twenty-compartment microspheres were obtained without the addition of any biohazardous reagents. For microsphere decoding, the visualization of two basic compartments can provide clues for identifying label-free cells due to the structural regularity of the microspheres. Finally, by encapsulating cells of different types, these microspheres as multicellular systems were successfully used for cell coculture and drug testing. These biocompatible, scalable, and analyzable microspheres will open up new prospects for biomedical analysis.

9.
Chemosphere ; 363: 142960, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39079588

RESUMO

Despite the emergence of hydrogels as ideal candidates for preparing the superhydrophilic materials for emulsion separation, their structural stability and swelling still hinder their long-term use, mainly due to structure defects after swelling. Herein, differing from the common modification, the eco-friendly poly 2-hydroxyethyl methacrylate (pHEMA) hydrogel foam was designed and synthesized via a one-step strategy by using the high internal phase emulsion (HIPE) template method, which endowed it with a highly interpenetrated porous structure. Unlike the normal swellable hydrogels such as poly(N-isoproplyacrylamide) (PNIPAM) hydrogel, or modified hydrogel coatings, the pHEMA hydrogel foam displayed stable structure and underwater superoleophobicity after 20 d of immersion in water. The pHEMA hydrogel foam could separate different kinds of highly surfactant-stabilized oil-in-water (O/W) emulsions with a high separation efficiency of 99.3% for liquid paraffin emulsion obtained solely under gravity-driven. Additionally, it exhibited excellent antifouling performance and long-term acid/alkali tolerance over 100 h without decrease in emulsion separation efficiency (98.0%, oil/water ratio of 99:1) and permeation flux (over 2000 L·m-2·h-1) attributed to its stable bulky structure. Moreover, the pHEMA hydrogel foam demonstrated high cell viability of 96.87% and 95.96% after culturing the 3T3 clone A31 cells in the pHEMA hydrogel foam for 24 h and 48 h, respectively, indicating good biocompatibility. Hence, our work provides a new design to develop an eco-friendly bulk hydrogel foam that achieves stable structure and performance for emulsion separation.


Assuntos
Emulsões , Hidrogéis , Poli-Hidroxietil Metacrilato , Poli-Hidroxietil Metacrilato/química , Emulsões/química , Hidrogéis/química , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Água/química , Animais , Porosidade , Tensoativos/química
10.
Anal Chem ; 96(28): 11472-11478, 2024 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-38957093

RESUMO

It is well-known that the bacterial microenvironment imposes restrictions on the growth and behavior of bacteria. The localized monitoring of microenvironmental factors is appreciated when consulting bacterial adaptation and behavior in the presence of chemical or mechanical stimuli. Herein, we developed a novel liquid crystal (LC) biosensor in a microsphere configuration for real-time 3D monitoring of the bacteria microenvironment, which was implemented by a microfluidic chip. As a proof of concept, a LC gel (LC-Gel) microsphere biosensor was prepared and employed in the localized pH changes of bacteria by observing the configuration change of LC under polarized optical microscopy. Briefly, the microsphere biosensor was constructed in core-shell configuration, wherein the core contained LCE7 (a nematic LC) doped with 4-pentylbiphenyl-4'-carboxylic acid (PBA), and the shell encapsulated the bacteria. The protonation of carboxyl functional groups of the PBA induced a change in charge density on the surface of LCE7 and the orientation of E7 molecules, resulting in the transitions of the LC nucleus from axial to bipolar. The developed LC-Gel microspheres pH sensor exhibited its dominant performance on localized pH real-time sensing with a resolution of 0.1. An intriguing observation from the prepared pH biosensor was that the diverse bacteria impelled distinct acidifying or alkalizing effects. Overall, the facile LC-Gel microsphere biosensor not only provides a versatile tool for label-free, localized pH monitoring but also opens avenues for investigating the effects of chemical and mechanical stimuli on cellular metabolism within bacterial microenvironments.


Assuntos
Técnicas Biossensoriais , Cristais Líquidos , Microesferas , Concentração de Íons de Hidrogênio , Cristais Líquidos/química , Escherichia coli
11.
Mol Med ; 30(1): 99, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982366

RESUMO

BACKGROUND: Enhanced glycolysis is a crucial metabolic event that drives the development of liver fibrosis, but the molecular mechanisms have not been fully understood. Lactate is the endproduct of glycolysis, which has recently been identified as a bioactive metabolite binding to G-protein-coupled receptor 81 (GPR81). We then questioned whether GPR81 is implicated in the development of liver fibrosis. METHODS: The level of GPR81 was determined in mice with carbon tetrachloride (CCl4)-induced liver fibrosis and in transforming growth factor beta 1 (TGF-ß1)-activated hepatic stellate cells (HSCs) LX-2. To investigate the significance of GPR81 in liver fibrosis, wild-type (WT) and GPR81 knockout (KO) mice were exposed to CCl4, and then the degree of liver fibrosis was determined. In addition, the GPR81 agonist 3,5-dihydroxybenzoic acid (DHBA) was supplemented in CCl4-challenged mice and TGF-ß1-activated LX-2 cells to further investigate the pathological roles of GPR81 on HSCs activation. RESULTS: CCl4 exposure or TGF-ß1 stimulation significantly upregulated the expression of GPR81, while deletion of GPR81 alleviated CCl4-induced elevation of aminotransferase, production of pro-inflammatory cytokines, and deposition of collagen. Consistently, the production of TGF-ß1, the expression of alpha-smooth muscle actin (α-SMA) and collagen I (COL1A1), as well as the elevation of hydroxyproline were suppressed in GPR81 deficient mice. Supplementation with DHBA enhanced CCl4-induced liver fibrogenesis in WT mice but not in GPR81 KO mice. DHBA also promoted TGF-ß1-induced LX-2 activation. Mechanistically, GPR81 suppressed cAMP/CREB and then inhibited the expression of Smad7, a negative regulator of Smad3, which resulted in increased phosphorylation of Smad3 and enhanced activation of HSCs. CONCLUSION: GPR81 might be a detrimental factor that promotes the development of liver fibrosis by regulating CREB/Smad7 pathway.


Assuntos
Tetracloreto de Carbono , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , Células Estreladas do Fígado , Cirrose Hepática , Camundongos Knockout , Receptores Acoplados a Proteínas G , Transdução de Sinais , Proteína Smad7 , Animais , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Cirrose Hepática/metabolismo , Cirrose Hepática/genética , Cirrose Hepática/patologia , Cirrose Hepática/etiologia , Cirrose Hepática/induzido quimicamente , Camundongos , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Células Estreladas do Fígado/metabolismo , Proteína Smad7/metabolismo , Proteína Smad7/genética , Fator de Crescimento Transformador beta1/metabolismo , Masculino , Humanos , Linhagem Celular , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Deleção de Genes
12.
Comput Methods Programs Biomed ; 255: 108333, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39047576

RESUMO

BACKGROUND AND OBJECTIVE: Diabetic foot (DF) complications often lead to severe vascular issues. This study investigated the effectiveness of enhanced external counterpulsation (EECP) and its derived innovative compression strategies in addressing poor perfusion in DF. Although developing non-invasive and efficient treatment methods for DF is critical, the hemodynamic alterations during EECP remain underexplored despite promising outcomes in microcirculation. This research sought to address this gap by developing a patient-specific 0D-1D model based on clinical ultrasound data to identify potentially superior compression strategies that could substantially enhance blood flow in patients with DF complications. METHODS: Data were gathered from 10 patients with DF utilizing ultrasound for blood flow rate and computed tomography angiography (CTA) to identify lower limb conditions. Clinical measurements during standard EECP, with varying cuff pressures, facilitated the creation of a patient-specific 0D-1D model through a two-step parameter estimation process. The accuracy of this model was verified via comparison with the clinical measurements. Four compression strategies were proposed and rigorously evaluated using this model: EECP-Simp-I (removing hip cuffs), EECP-Simp-II (further removing the cuffs around the lower leg), EECP-Impr-I (removing all cuffs around the affected side), and EECP-Impr-II (building a loop circulation from the healthy side to the affected side). RESULTS: The predicted results under the rest and standard EECP states were generally closely aligned with clinical measurements. The patient-specific 0D-1D model demonstrated that EECP-Simp-I and EECP-Impr-I contributed similar enhancement to perfusion in the dorsal artery (DA) and were comparable to standard EECP, while EECP-Simp-II had the least effect and EECP-Impr-II displayed the most significant enhancement. Pressure at the aortic root (AO) remained consistent across strategies. CONCLUSIONS: EECP-Simp-I is recommended for patients with DF, emphasizing device simplification. However, EECP-Simp-II is discouraged as it significantly diminished blood perfusion in this study, except in cases of limb fragility. EECP-Impr-II showed superior enhancement of blood perfusion in DA to all other strategies but required a more complex EECP device. Despite increased AO pressure in all the proposed compression strategies, safety could be guaranteed as the pressue remained within a safe range.


Assuntos
Contrapulsação , Pé Diabético , Modelos Cardiovasculares , Humanos , Pé Diabético/terapia , Contrapulsação/métodos , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Hemodinâmica , Angiografia por Tomografia Computadorizada
13.
ACS Nano ; 2024 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-39034461

RESUMO

Abnormal tumor metabolism creates a complex tumor immune microenvironment that plays a dominant role in the metastasis of triple-negative breast cancer (TNBC). TNBC is insensitive to immune checkpoint blockade (ICB) therapy because of insufficient cytotoxic T lymphocyte (CTL) infiltration and a hyper-lactic acid-suppressive immune microenvironment caused by abnormal glycolysis. Herein, we propose an amplified strategy based on lactic acid regulation to reprogram the immunosuppressive tumor microenvironment (ITM) and combine it with ICB therapy to achieve enhanced antitumor immunotherapy effects. Specifically, we constructed CASN, a carrier-free photodynamic bioregulator, through the self-assembly of the photosensitizer Chlorin e6 and monocarboxylate transporter 1 (MCT1) inhibitor AZD3965. CASN exhibited a uniform structure, good stability, and drug accumulation at the tumor site. CASN-mediated photodynamic therapy following laser irradiation inhibited primary tumor growth and induced immunogenic cell death. Furthermore, CASN reduced lactic acid-mediated regulatory T cell generation and M2 tumor-associated macrophage polarization by blocking MCT1-mediated lactic acid efflux to attenuate immune suppression, inducing the recruitment and activation of CTLs. Ultimately, CASN-mediated immunopotentiation combined with ICB therapy considerably strengthened tumor immunotherapy and effectively inhibited tumor growth and metastasis of TNBC. This synergistic amplification strategy overcomes the limitations of an acidic ITM and presents a potential clinical treatment option for metastatic tumors.

14.
Artigo em Inglês | MEDLINE | ID: mdl-39075732

RESUMO

PURPOSE: To evaluate depth of focus (DOF) and visual acuities (VAs) by manifest refractive spherical equivalent (MRSE) and degree of preoperative corneal astigmatism with the IC-8® small aperture intraocular lens (SA IOL) (AptheraTM, Bausch & Lomb, Inc). SETTING: 21 investigational sites in the United States. DESIGN: Prospective, multi-center, open-label, parallel-group, non-randomized, examiner-masked, one-year clinical study. METHODS: Included patients had cataract and ≤1.5D preoperative corneal astigmatism. Patients received either the SA IOL in one eye targeted to -0.75D and a monofocal or monofocal toric IOL in the other targeted to plano (SA IOL Group) or bilateral monofocal/monofocal toric IOLs targeted to plano (Control Group). Monocular and binocular assessments included defocus curves and uncorrected VAs (distance, intermediate, and near) by postoperative MRSE; monocular VAs were assessed by degree of preoperative corneal astigmatism. RESULTS: The SA IOL Group (n=343) achieved 0.82D additional binocular DOF versus the Control Group (n=110), and SA IOL eyes achieved 0.91D additional monocular DOF over fellow eyes. Across all MRSEs, the SA IOL Group achieved monocular uncorrected VAs of 20/40 or better and binocular uncorrected VAs of 20/32 or better across all distances. Additionally, SA IOL eyes with higher (1.0-1.5D) versus lower (<1.0D) preoperative corneal astigmatism achieved equivalent monocular uncorrected VAs. CONCLUSIONS: The SA IOL provides increased DOF versus monofocal/monofocal toric IOLs and consistent monocular and binocular vision across several postoperative MRSEs and up to 1.5D of preoperative corneal astigmatism, giving patients with cataract and mild astigmatism the potential for an extended range of vision and reliable visual outcomes.

15.
Polymers (Basel) ; 16(14)2024 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-39065400

RESUMO

Polycarbonate/acrylonitrile butadiene styrene (PC/ABS) blends are widely used as engineering plastic alloys; however, they have a low fire safety level. To improve the flame-retardant property of PC/ABS, a zirconium-based metal-organic framework material (UiO-66) was synthesized with zirconium chloride and terephthalic acid and used as a flame-retardant cooperative agent. Its flame-retardant performance and mode of action in the PC/ABS blends were carefully investigated. The results showed that UiO-66 had good thermal stability and delayed the pyrolysis of the materials, thus significantly enhancing the efficiency of intumescent flame retardants. By compounding 7.0 wt% hexaphenyloxy-cyclotri-phosphazene (HPCTP) with 3.0 wt% UiO-66, the PC/ABS blends reached a limiting oxygen index value of 27.0% and V0 rating in the UL-94 test, showing significantly improved resistance to combustion dripping. In addition, UiO-66 enhanced the smoke and heat suppression characteristics of the intumescent flame-retardant materials. Finally, the flame-retardant mode of action in the blends was indicative of UiO-66 having a cooperative effect on the flame-retardant performance of PC/ABS/HPCTP materials. This work provides good ideas for further development of the flame-retardant ABS/PC.

16.
Diabetol Metab Syndr ; 16(1): 168, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39014458

RESUMO

BACKGROUND: There is ongoing debate on the correlation between chronic kidney disease (CKD) and insulin resistance (IR)-related indices. Our objective was to explore the prognostic ability of IR-related indexes for the prevalence of CKD, as well as the mortality from all causes and cardiovascular disease (CVD) in CKD patients. METHODS: The data used in this study came from the National Health and Nutrition Examination Survey (NHANES). Binary logistic regression analysis, Cox proportional hazards model, and restricted cubic spline (RCS) were used to analyze the relationship between IR-related indexes, including metabolic score of IR (METS-IR), homeostatic model assessment for IR (HOMA-IR), triglyceride glucose index (TyG), triglyceride glucose-waist-to-height ratio (TyG-WHtR), triglyceride glucose-body mass index (TyG-BMI), with CKD and its all-cause mortality and CVD mortality. Subgroup analysis was performed to test the stability of the results. Finally, the predictive power of IR-related indexes for CKD was tested by the receiver operating characteristic (ROC) curve. RESULTS: Among the recruited 10,660 participants, 15.42% were CKD patients. All IR-related indexes were found to be nonlinearly correlated to the prevalence of CKD in the study. When the TyG index was higher than 9.05, it was positively associated with CKD (OR: 1.77, 95% CI 1.44-2.18). Moreover, increased TyG-WHtR level was correlated with a greater prevalence of CKD when it was higher than 4.3 (OR: 1.31, 95% CI 1.19-1.45). Other IR-related indexes (METS-IR, HOMA-IR, and TyG-BMI) showed fewer notable correlations with CKD. The association of IR-related indexes and the prevalence of CKD remained consistent in most subgroups (P for interactions > 0.05). TyG-WHtR was also the predictor of all-cause mortality in CKD patients (HR: 1.34, 95% CI 1.14-1.58), while other IR-related indexes were not correlated with the all-cause mortality or CVD mortality in CKD patients (P > 0.05). Otherwise, ROC curves showed that TyG-WHtR had more robust diagnostic efficacy than other IR-related indexes (METS-IR, HOMA-IR, TyG, and TyG-BMI) in predicting CKD (area under the curve: 0.630, 95% CI 0.615-0.644). CONCLUSIONS: IR-related biomarkers (METS-IR, HOMA-IR, TyG, and TyG-BMI) were positively correlated with the prevalence of CKD. Moreover, TyG-WHtR enhanced CKD and its all-cause mortality prediction. In patients with elevated levels of IR-related indexes, the early detection and intervention of IR may reduce the occurrence of CKD and the prognosis of CKD patients.

18.
Respir Res ; 25(1): 283, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39020401

RESUMO

BACKGROUND: Microbial infection and colonization are frequently associated with disease progression and poor clinical outcomes in bronchiectasis. Identification of pathogen spectrum is crucial for precision treatment at exacerbation of bronchiectasis. METHODS: We conducted a prospective cohort study in patients with bronchiectasis exacerbation onset and stable state. Bronchoalveolar lavage fluid (BALF) was collected for conventional microbiological tests (CMTs) and metagenomic Next-Generation Sequencing (mNGS). Bronchiectasis patients were monitored for documenting the time to the next exacerbation during longitudinal follow-up. RESULTS: We recruited 168 eligible participants in the exacerbation cohorts, and 38 bronchiectasis patients at stable state at longitudinal follow-up. 141 bronchiectasis patients at exacerbation onset had definite or probable pathogens via combining CMTs with mNGS reports. We identified that Pseudomonas aeruginosa, non-tuberculous mycobacteria, Haemophilus influenzae, Nocardia spp, and Staphylococcus aureus were the top 5 pathogens with a higher detection rate in our cohorts via combination of CMTs and mNGS analysis. We also observed strong correlations of Pseudomonas aeruginosa, Haemophilus influenzae, non-tuberculous mycobacteria with disease severity, including the disease duration, Bronchiectasis Severity Index, and lung function. Moreover, the adjusted pathogenic index of potential pathogenic microorganism negatively correlated (r = -0.7280, p < 0.001) with the time to the next exacerbation in bronchiectasis. CONCLUSION: We have revealed the pathogenic microbial spectrum in lower airways and the negative correlation of PPM colonization with the time to the next exacerbation in bronchiectasis. These results suggested that pathogens contribute to the progression of bronchiectasis.


Assuntos
Bronquiectasia , Humanos , Bronquiectasia/microbiologia , Bronquiectasia/diagnóstico , Feminino , Masculino , Estudos Prospectivos , Pessoa de Meia-Idade , Idoso , Líquido da Lavagem Broncoalveolar/microbiologia , Estudos de Coortes , Seguimentos , Adulto , Progressão da Doença , Estudos Longitudinais
19.
Ren Fail ; 46(2): 2371055, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38946159

RESUMO

IgA nephropathy (IgAN) is one of the most common primary glomerulonephritis, and serum Helicobacter pylori (H. pylori) antibody levels are increased in patients with IgA N, but the role of H. pylori infection in the pathogenesis of IgAN is unclear. In this study, we investigated whether there is a causal relationship and reverse causality between IgAN and H. pylori infection by using a bidirectional two-sample Mendelian randomization (MR) analysis. This study was estimated using inverse variance weighted (IVW), MR-Egger and weighted median methods, with the IVW method having the strongest statistical efficacy. Seven common serum H. pylori antibodies were selected as exposure factors for positive MR analysis. The results showed that there was no evidence of a causal relationship between H. pylori infection and IgAN. Reverse MR analysis showed that there was also no evidence that the occurrence of IgAN leads to an increased risk of H. pylori infection.


Assuntos
Glomerulonefrite por IGA , Infecções por Helicobacter , Helicobacter pylori , Análise da Randomização Mendeliana , Humanos , Infecções por Helicobacter/complicações , Glomerulonefrite por IGA/microbiologia , Glomerulonefrite por IGA/genética , Glomerulonefrite por IGA/sangue , Helicobacter pylori/isolamento & purificação , Anticorpos Antibacterianos/sangue , Fatores de Risco
20.
Foods ; 13(14)2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39063371

RESUMO

Pickled tea is an anaerobically fermented tea common in Thailand, Myanmar and Yunnan minority areas. γ-aminobutyric acid (GABA) is non-protein amino acid with multiple bioactives, which can be easily produced under anaerobic conditions. During the processing of pickled tea, controlling the process parameters is effective for the production of GABA-rich products; however, the precise parameters remain to be clarified. In the present study, the fresh leaves of Camellia sinensis (L.) Kuntze (C. sinensis) 'FudingDabai', C. sinensis 'MabianLv No. 1', C. sinensis 'Wuniuzao' and C. sinensis 'Fuxuan No. 9' were used as raw materials to process GABA-rich pickled tea. Single-factor and orthogonal experiments were conducted to determine the best tea cultivars and optimize the best processing parameters via comparing the content of GABA, tea polyphenols (TPs) and other biochemical components of GABA-rich pickled tea. The results of the signal-factor experiment showed that the fresh leaves of C. sinensis 'MabianLv No. 1' had the highest GABA content of 2.61 mg·g-1 after treatment with vacuum for 6 h; therefore, C. sinensis 'MabianLv No. 1' was selected as the raw material for the subsequent experiments. Orthogonal experiments showed that the highest GABA content of 2.53 mg·g-1 was found in the pickled tea with 8 h of vacuum treatment, 20 min of rolling after microwave fixing, 20 min of spreading and 20 d of anaerobic fermentation at room temperature. Further, the sensory evaluation showed that it possesses a strong sour taste with a slight sweetness and a light yellow color and better comprehensive quality. This indicates that these parameters are optimal for the processing of GABA-rich pickled tea. This study will provide scientific basis for the subsequent production of high GABA tea.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...