Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros













Base de dados
Intervalo de ano de publicação
1.
J Cheminform ; 16(1): 67, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849874

RESUMO

Identification of interactions between chemical compounds and proteins is crucial for various applications, including drug discovery, target identification, network pharmacology, and elucidation of protein functions. Deep neural network-based approaches are becoming increasingly popular in efficiently identifying compound-protein interactions with high-throughput capabilities, narrowing down the scope of candidates for traditional labor-intensive, time-consuming and expensive experimental techniques. In this study, we proposed an end-to-end approach termed SPVec-SGCN-CPI, which utilized simplified graph convolutional network (SGCN) model with low-dimensional and continuous features generated from our previously developed model SPVec and graph topology information to predict compound-protein interactions. The SGCN technique, dividing the local neighborhood aggregation and nonlinearity layer-wise propagation steps, effectively aggregates K-order neighbor information while avoiding neighbor explosion and expediting training. The performance of the SPVec-SGCN-CPI method was assessed across three datasets and compared against four machine learning- and deep learning-based methods, as well as six state-of-the-art methods. Experimental results revealed that SPVec-SGCN-CPI outperformed all these competing methods, particularly excelling in unbalanced data scenarios. By propagating node features and topological information to the feature space, SPVec-SGCN-CPI effectively incorporates interactions between compounds and proteins, enabling the fusion of heterogeneity. Furthermore, our method scored all unlabeled data in ChEMBL, confirming the top five ranked compound-protein interactions through molecular docking and existing evidence. These findings suggest that our model can reliably uncover compound-protein interactions within unlabeled compound-protein pairs, carrying substantial implications for drug re-profiling and discovery. In summary, SPVec-SGCN demonstrates its efficacy in accurately predicting compound-protein interactions, showcasing potential to enhance target identification and streamline drug discovery processes.Scientific contributionsThe methodology presented in this work not only enables the comparatively accurate prediction of compound-protein interactions but also, for the first time, take sample imbalance which is very common in real world and computation efficiency into consideration simultaneously, accelerating the target identification and drug discovery process.

3.
Brief Bioinform ; 25(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38517693

RESUMO

Numerous investigations increasingly indicate the significance of microRNA (miRNA) in human diseases. Hence, unearthing associations between miRNA and diseases can contribute to precise diagnosis and efficacious remediation of medical conditions. The detection of miRNA-disease linkages via computational techniques utilizing biological information has emerged as a cost-effective and highly efficient approach. Here, we introduced a computational framework named ReHoGCNES, designed for prospective miRNA-disease association prediction (ReHoGCNES-MDA). This method constructs homogenous graph convolutional network with regular graph structure (ReHoGCN) encompassing disease similarity network, miRNA similarity network and known MDA network and then was tested on four experimental tasks. A random edge sampler strategy was utilized to expedite processes and diminish training complexity. Experimental results demonstrate that the proposed ReHoGCNES-MDA method outperforms both homogenous graph convolutional network and heterogeneous graph convolutional network with non-regular graph structure in all four tasks, which implicitly reveals steadily degree distribution of a graph does play an important role in enhancement of model performance. Besides, ReHoGCNES-MDA is superior to several machine learning algorithms and state-of-the-art methods on the MDA prediction. Furthermore, three case studies were conducted to further demonstrate the predictive ability of ReHoGCNES. Consequently, 93.3% (breast neoplasms), 90% (prostate neoplasms) and 93.3% (prostate neoplasms) of the top 30 forecasted miRNAs were validated by public databases. Hence, ReHoGCNES-MDA might serve as a dependable and beneficial model for predicting possible MDAs.


Assuntos
MicroRNAs , Neoplasias da Próstata , Humanos , Masculino , Algoritmos , Biologia Computacional/métodos , Bases de Dados Genéticas , MicroRNAs/genética , Estudos Prospectivos , Neoplasias da Próstata/genética , Feminino
4.
Protein Sci ; 33(1): e4841, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37983648

RESUMO

The recognition of T-cell receptor (TCR) on the surface of T cell to specific epitope presented by the major histocompatibility complex is the key to trigger the immune response. Identifying the binding rules of TCR-epitope pair is crucial for developing immunotherapies, including neoantigen vaccine and drugs. Accurate prediction of TCR-epitope binding specificity via deep learning remains challenging, especially in test cases which are unseen in the training set. Here, we propose TEPCAM (TCR-EPitope identification based on Cross-Attention and Multi-channel convolution), a deep learning model that incorporates self-attention, cross-attention mechanism, and multi-channel convolution to improve the generalizability and enhance the model interpretability. Experimental results demonstrate that our model outperformed several state-of-the-art models on two challenging tasks including a strictly split dataset and an external dataset. Furthermore, the model can learn some interaction patterns between TCR and epitope by extracting the interpretable matrix from cross-attention layer and mapping them to the three-dimensional structures. The source code and data are freely available at https://github.com/Chenjw99/TEPCAM.


Assuntos
Aprendizado Profundo , Linfócitos T , Receptores de Antígenos de Linfócitos T , Ligação Proteica , Epitopos de Linfócito T/química
5.
J Chem Inf Model ; 63(23): 7363-7372, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38037990

RESUMO

Protein-protein interactions (PPIs) are essential for various biological processes and diseases. However, most existing computational methods for identifying PPI modulators require either target structure or reference modulators, which restricts their applicability to novel PPI targets. To address this challenge, we propose MultiPPIMI, a sequence-based deep learning framework that predicts the interaction between any given PPI target and modulator. MultiPPIMI integrates multimodal representations of PPI targets and modulators and uses a bilinear attention network to capture intermolecular interactions. Experimental results on our curated benchmark data set show that MultiPPIMI achieves an average AUROC of 0.837 in three cold-start scenarios and an AUROC of 0.994 in the random-split scenario. Furthermore, the case study shows that MultiPPIMI can assist molecular docking simulations in screening inhibitors of Keap1/Nrf2 PPI interactions. We believe that the proposed method provides a promising way to screen PPI-targeted modulators.


Assuntos
Aprendizado Profundo , Mapeamento de Interação de Proteínas , Mapeamento de Interação de Proteínas/métodos , Simulação de Acoplamento Molecular , Proteína 1 Associada a ECH Semelhante a Kelch , Fator 2 Relacionado a NF-E2
6.
Methods ; 220: 1-10, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37858611

RESUMO

The joint use of multiple drugs can result in adverse drug-drug interactions (DDIs) and side effects that harm the body. Accurate identification of DDIs is crucial for avoiding accidental drug side effects and understanding potential mechanisms underlying DDIs. Several computational methods have been proposed for multi-type DDI prediction, but most rely on the similarity profiles of drugs as the drug feature vectors, which may result in information leakage and overoptimistic performance when predicting interactions between new drugs. To address this issue, we propose a novel method, MATT-DDI, for predicting multi-type DDIs based on the original feature vectors of drugs and multiple attention mechanisms. MATT-DDI consists of three main modules: the top k most similar drug pair selection module, heterogeneous attention mechanism module and multi­type DDI prediction module. Firstly, based on the feature vector of the input drug pair (IDP), k drug pairs that are most similar to the input drug pair from the training dataset are selected according to cosine similarity between drug pairs. Then, the vectors of k selected drug pairs are averaged to obtain a new drug pair (NDP). Next, IDP and NDP are fed into heterogeneous attention modules, including scaled dot product attention and bilinear attention, to extract latent feature vectors. Finally, these latent feature vectors are taken as input of the classification module to predict DDI types. We evaluated MATT-DDI on three different tasks. The experimental results show that MATT-DDI provides better or comparable performance compared to several state-of-the-art methods, and its feasibility is supported by case studies. MATT-DDI is a robust model for predicting multi-type DDIs with excellent performance and no information leakage.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Humanos , Interações Medicamentosas
7.
J Biomol Struct Dyn ; 41(22): 12586-12598, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36661370

RESUMO

Critically infected patients with COVID-19 (coronavirus disease 2019) are prone to develop sepsis-related coagulopathy as a result of a robust immune response. The mechanism underlying the relationship between sepsis and COVID-19 is largely unknown. LMWH (low molecular weight heparin) exhibits both anti-inflammatory and anti-coagulating properties that result in a better prognosis of severely ill patients with COVID-19 co-associated with sepsis-induced coagulopathy or with a higher D-dimer value. Heparin-associated molecular targets and their mechanism of action in sepsis/COVID-19 are not well understood. In this work, we characterize the pharmacological targets, biological functions and therapeutic actions of heparin in sepsis/COVID-19 from the perspective of network pharmacology. A total of 38 potential targets for heparin action against sepsis/COVID-19 and 8 core pharmacological targets were identified, including IL6, KNG1, CXCL8, ALB, VEGFA, F2, IL10 and TNF. Moreover, enrichment analysis showed that heparin could help in treating sepsis/COVID-19 through immunomodulation, inhibition of the inflammatory response, regulation of angiogenesis and antiviral activity. The pharmacological effects of heparin against these targets were further confirmed by molecular docking and simulation analysis, suggesting that heparin exerts effective binding capacity by targeting the essential residues in sepsis/COVID-19. Prospective clinical practice evaluations may consider the use of these key prognostic indicators for the treatment of sepsis/COVID-19.Communicated by Ramaswamy H. Sarma.


Assuntos
COVID-19 , Medicamentos de Ervas Chinesas , Sepse , Humanos , Heparina/farmacologia , Heparina/uso terapêutico , Heparina de Baixo Peso Molecular/farmacologia , Heparina de Baixo Peso Molecular/uso terapêutico , Farmacologia em Rede , Simulação de Acoplamento Molecular , Estudos Prospectivos , Sepse/tratamento farmacológico
8.
J Cheminform ; 14(1): 81, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36380384

RESUMO

The joint use of multiple drugs may cause unintended drug-drug interactions (DDIs) and result in adverse consequence to the patients. Accurate identification of DDI types can not only provide hints to avoid these accidental events, but also elaborate the underlying mechanisms by how DDIs occur. Several computational methods have been proposed for multi-type DDI prediction, but room remains for improvement in prediction performance. In this study, we propose a supervised contrastive learning based method, MDDI-SCL, implemented by three-level loss functions, to predict multi-type DDIs. MDDI-SCL is mainly composed of three modules: drug feature encoder and mean squared error loss module, drug latent feature fusion and supervised contrastive loss module, multi-type DDI prediction and classification loss module. The drug feature encoder and mean squared error loss module uses self-attention mechanism and autoencoder to learn drug-level latent features. The drug latent feature fusion and supervised contrastive loss module uses multi-scale feature fusion to learn drug pair-level latent features. The prediction and classification loss module predicts DDI types of each drug pair. We evaluate MDDI-SCL on three different tasks of two datasets. Experimental results demonstrate that MDDI-SCL achieves better or comparable performance as the state-of-the-art methods. Furthermore, the effectiveness of supervised contrastive learning is validated by ablation experiment, and the feasibility of MDDI-SCL is supported by case studies. The source codes are available at https://github.com/ShenggengLin/MDDI-SCL .

9.
Comput Biol Med ; 149: 105984, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35994933

RESUMO

Polypharmacy (multiple use of drugs) is an effective strategy for combating complex or co-existing diseases. However, a major consequence of polypharmacy is a higher risk of adverse side effects due to drug-drug interactions, which are rare and observed in relatively small clinical testing. Thus, identification of polypharmacy side effects remains challenging. Here, we propose a deep learning-based method, DeepPSE, to predict polypharmacy side effects in an end-to-end way. DeepPSE is composed of two main modules. First, multiple types of neural networks are constructed and fused to learn the deep representation of a drug pair. Second, the encoder block of transformer that includes self-attention mechanism is built to get latent features, which are further fed into the fully connected layer to predict polypharmacy side effects of drug pairs. Further, DeepPSE is compared with five baseline or state-of-the-art methods on a benchmark dataset of 964 types of polypharmacy side effects across 63473 drug pairs. Experimental results demonstrate that DeepPSE achieves better performance than that of all five methods. The source codes and data are available at https://github.com/ShenggengLin/DeepPSE.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Polimedicação , Humanos , Redes Neurais de Computação , Software
10.
Brief Bioinform ; 23(1)2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-34671814

RESUMO

One of the main problems with the joint use of multiple drugs is that it may cause adverse drug interactions and side effects that damage the body. Therefore, it is important to predict potential drug interactions. However, most of the available prediction methods can only predict whether two drugs interact or not, whereas few methods can predict interaction events between two drugs. Accurately predicting interaction events of two drugs is more useful for researchers to study the mechanism of the interaction of two drugs. In the present study, we propose a novel method, MDF-SA-DDI, which predicts drug-drug interaction (DDI) events based on multi-source drug fusion, multi-source feature fusion and transformer self-attention mechanism. MDF-SA-DDI is mainly composed of two parts: multi-source drug fusion and multi-source feature fusion. First, we combine two drugs in four different ways and input the combined drug feature representation into four different drug fusion networks (Siamese network, convolutional neural network and two auto-encoders) to obtain the latent feature vectors of the drug pairs, in which the two auto-encoders have the same structure, and their main difference is the number of neurons in the input layer of the two auto-encoders. Then, we use transformer blocks that include self-attention mechanism to perform latent feature fusion. We conducted experiments on three different tasks with two datasets. On the small dataset, the area under the precision-recall-curve (AUPR) and F1 scores of our method on task 1 reached 0.9737 and 0.8878, respectively, which were better than the state-of-the-art method. On the large dataset, the AUPR and F1 scores of our method on task 1 reached 0.9773 and 0.9117, respectively. In task 2 and task 3 of two datasets, our method also achieved the same or better performance as the state-of-the-art method. More importantly, the case studies on five DDI events are conducted and achieved satisfactory performance. The source codes and data are available at https://github.com/ShenggengLin/MDF-SA-DDI.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Redes Neurais de Computação , Interações Medicamentosas , Humanos , Oligossacarídeos , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA