RESUMO
Self-powered ultraviolet photodetectors generally operate by utilizing the built-in electric field within heterojunctions or Schottky junctions. However, the effectiveness of self-powered detection is severely limited by the weak built-in electric field. Hence, advances in modulating the built-in electric field within heterojunctions are crucial for performance breakthroughs. Here, we suggest a method to enhance the built-in electric field by taking advantage of the dual-coupling effect between heterojunction and the self-polarization field of ferroelectrics. Under zero bias, the fabricated AgNWs/TiO2/PZT/GaN device achieves a responsivity of 184.31â mA/W and a specific detectivity of 1.7 × 1013 Jones, with an on/off ratio of 8.2 × 106 and rise/decay times reaching 0.16â ms/0.98â ms, respectively. The outstanding properties are primarily attributed to the substantial self-polarization of PZT induced by the p-GaN and the subsequent enhancement of the built-in electric field of the TiO2/PZT heterojunction. Under UV illumination, the dual coupling of the enhanced heterojunction and the self-polarizing field synergistically boost the photo-generated carrier separation and transport, leading to breakthroughs in ferroelectric-based self-powered photodetectors.