Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 849: 157891, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-35952876

RESUMO

Litter comprises a major nutrient source when decomposed via soil microbes and functions as subtract that limits gas exchange between soil and atmosphere, thereby restricting methane (CH4) uptake in soils. However, the impact and inherent mechanism of litter and its decomposition on CH4 uptake in soils remains unknown in forest. Therefore, to declare the mechanisms of litter input and decomposition effect on the soil CH4 flux in forest, this study performed a litter-removal experiment in a tropical rainforest, and investigated the effects of litter input and decomposition on the CH4 flux among forest ecosystems through a literature review. Cumulative annual CH4 flux was -3.30 kg CH4-C ha-1 y-1. The litter layer decreased annual accumulated CH4 uptake by 8% which greater in the rainy season than the dry season in the tropical rainforest. Litter decomposition and the input of carbon and nitrogen in litter biomass reduced CH4 uptake significantly and the difference in CH4 flux between treatment with litter and without litter was negatively associated with N derived from litter input. Based on the literature review about litter effect on soil CH4 around world forests, the effect of litter dynamics on CH4 uptake was regulated by litter-derived nitrogen input and the amount soil inorganic nitrogen content. Our results suggest that nitrogen input via litter decomposition, which increased with temperature, caused a decline in CH4 uptake by forest soils, which could weaken the contribution of the forest in mitigating global warming.


Assuntos
Metano , Solo , Carbono , Ecossistema , Florestas , Nitrogênio , Floresta Úmida
2.
Ying Yong Sheng Tai Xue Bao ; 32(10): 3567-3575, 2021 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-34676718

RESUMO

We examined the seasonal growth dynamics of a deciduous tree species Garuga floribunda in the tropical seasonal rain forest in Xishuangbanna and monitored the stem radial growth with both high resolution dendrometer and microcoring methods. Combining with the monitoring of non-structural carbohydrates (NSCs) in stem and environmental factors, we analyzed the eco-physiological drivers underlying the seasonal cambial activity and radial growth dynamics. The results of high reso-lution dendrometer method showed that the growth of G. floribunda began at the end of May (day of year, DOY: 149.3±7.2) and ended at the end of August (DOY: 241.0±14.7) in 2020, the annual total radial growth was 3.12 mm, and the maximum growth rate was 0.04 mm·d-1. Based on the microcoring methods, we found that xylem cell enlarging started from March 9th (69.2±6.2) and cell wall thickening ended on September 19th (DOY: 262.8±2.8). The cumulative xylem radial growth was 1.76 mm, and the maximum growth rate was 0.009 mm·d-1. The daily radial growth rate of G. floribunda was significantly and positively correlated with precipitation, relative humidity, daily minimum air temperature, soil moisture and temperature at the depth of 20 cm, and was negatively correlated with daily maximum air temperature, vapor pressure deficit, maximum wind speed, and water vapor pressure. The starch and soluble sugar contents in the sapwood of G. floribunda were relatively higher before the growing season. The starch content was lowest in the end of March, while the content of soluble sugars was lowest in middle of May. At the end of the growing season, the contents of starch and soluble sugar in G. floribunda peaked in the middle of October and the end of December, respectively.


Assuntos
Floresta Úmida , Árvores , Estações do Ano , Solo , Xilema
3.
Sci Total Environ ; 775: 145616, 2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-33631582

RESUMO

Forest soils in the warm-humid tropics significantly contribute to the regional greenhouse gas (GHG) budgets. However, spatial heterogeneity of GHG fluxes is often overlooked. Here, we present a study of N2O and CH4 fluxes over 1.5 years, along a topographic gradient in a rainforest catchment in Xishuangbanna, SW China. From the upper hillslope to the foot of the hillslope, and further to the flat groundwater discharge zone, we observed a decrease of N2O emission associated with an increase of soil water-filled-pore-space (WFPS), which we tentatively attribute to more complete denitrification to N2 at larger WFPS. In the well-drained soils on the hillslope, denitrification at anaerobic microsites or under transient water-saturation was the potential N2O source. Negative CH4 fluxes across the catchment indicated a net soil CH4 sink. As the oxidation of atmospheric CH4 is diffusion-limited, soil CH4 consumption rates were negatively related to WFPS, reflecting the topographic control. Our observations also suggest that during dry seasons N2O emission was significantly dampened (<10 µg N2O-N m-2 h-1) and CH4 uptake was strongly enhanced (83 µg CH4-C m-2 h-1) relative to wet seasons (17 µg N2O-N m-2 h-1 and 56 µg CH4-C m-2 h-1). In a post-drought period, several rain episodes induced exceptionally high N2O emissions (450 µg N2O-N m-2 h-1) in the groundwater discharge zone, likely driven by flushing of labile organic carbon accumulated during drought. Considering the global warming potential associated with both GHGs, we found that N2O emissions largely offset the C sink contributed by CH4 uptake in soils (more significant in the groundwater discharge zone). Our study illustrates important topographic controls on N2O and CH4 fluxes in forest soils. With projected climate change in the tropics, weather extremes may interact with these controls in regulating forest GHG fluxes, which should be accounted for in future studies.

4.
Tree Physiol ; 38(9): 1371-1383, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29474710

RESUMO

The potential impact of drought on the carbon balance in plants has gained great attention. Non-structural carbohydrate (NSC) dynamics have been suggested as an important trait reflecting carbon balance under drought conditions. However, NSC dynamics under drought and the response mechanisms of NSC to drought remain unclear, especially in water-limited savanna ecosystems. A precipitation exclusion experiment was performed to simulate different drought intensities in a savanna ecosystem in Yuanjiang valley in southwestern China. Growth, total NSC concentration and diurnal change of NSC were determined for the leaves and non-photosynthetic organs of three dominant species (Lannea coromandelica, Polyalthia cerasoides and Heteropogon contortus) throughout the growing season. Drought significantly reduced the growth of all the three species. Total NSC concentration averaged ~8.1%, varying with species, organ and sampling period, and did not significantly decrease under drought stress. By contrast, the diurnal change of NSC in these three species increased under drought stress. These results indicate that these three dominant species did not undergo carbon limitation. Thus, relative change in NSC is a more sensitive and effective indicator than carbon reserves in evaluation of plant carbon balance. These findings provide new insights for the understanding of carbon balance and the mechanisms of carbon starvation.


Assuntos
Anacardiaceae/metabolismo , Metabolismo dos Carboidratos , Poaceae/metabolismo , Polyalthia/metabolismo , Anacardiaceae/crescimento & desenvolvimento , China , Ritmo Circadiano , Secas , Ecossistema , Pradaria , Poaceae/crescimento & desenvolvimento , Polyalthia/crescimento & desenvolvimento , Solo/química
5.
Sci Total Environ ; 616-617: 824-840, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29100686

RESUMO

Forest ecosystems play an increasingly important role in the global carbon cycle. However, knowledge on carbon exchanges, their spatio-temporal patterns, and the extent of the key controls that affect carbon fluxes is lacking. In this study, we employed 29-site-years of eddy covariance data to observe the state, spatio-temporal variations and climate sensitivity of carbon fluxes (gross primary productivity (GPP), ecosystem respiration (Reco), and net ecosystem carbon exchange (NEE)) in four representative forest ecosystems in Yunnan. We found that 1) all four forest ecosystems were carbon sinks (the average NEE was -3.40tCha-1yr-1); 2) contrasting seasonality of the NEE among the ecosystems with a carbon sink mainly during the wet season in the Yuanjiang savanna ecosystem (YJ) but during the dry season in the Xishuangbanna tropical rainforest ecosystem (XSBN), besides an equivalent NEE uptake was observed during the wet/dry season in the Ailaoshan subtropical evergreen broad-leaved forest ecosystem (ALS) and Lijiang subalpine coniferous forest ecosystem (LJ); 3) as the GPP increased, the net ecosystem production (NEP) first increased and then decreased when the GPP>17.5tCha-1yr-1; 4) the precipitation determines the carbon sinks in the savanna ecosystem (e.g., YJ), while temperature did so in the tropical forest ecosystem (e.g., XSBN); 5) overall, under the circumstances of warming and decreased precipitation, the carbon sink might decrease in the YJ but maybe increase in the ALS and LJ, while future strength of the sink in the XSBN is somewhat uncertain. However, based on the redundancy analysis, the temperature and precipitation combined together explained 39.7%, 32.2%, 25.3%, and 29.6% of the variations in the NEE in the YJ, XSBN, ALS and LJ, respectively, which indicates that considerable changes in the NEE could not be explained by variations in the temperature and precipitation. Therefore, the effects of other factors (e.g., CO2 concentration, N/P deposition, aerosol and other variables) on the NEE still require extensive research and need to be considered seriously in carbon-cycle-models.


Assuntos
Ciclo do Carbono , Carbono/análise , Monitoramento Ambiental , Florestas , China , Ecossistema , Chuva , Temperatura
6.
Int J Biometeorol ; 61(10): 1885-1892, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28761981

RESUMO

Canopy temperature is a result of the canopy energy balance and is driven by climate conditions, plant architecture, and plant-controlled transpiration. Here, we evaluated canopy temperature in a rubber plantation (RP) and tropical rainforest (TR) in Xishuangbanna, southwestern China. An infrared temperature sensor was installed at each site to measure canopy temperature. In the dry season, the maximum differences (Tc - Ta) between canopy temperature (Tc) and air temperature (Ta) in the RP and TR were 2.6 and 0.1 K, respectively. In the rainy season, the maximum (Tc - Ta) values in the RP and TR were 1.0 and -1.1 K, respectively. There were consistent differences between the two forests, with the RP having higher (Tc - Ta) than the TR throughout the entire year. Infrared measurements of Tc can be used to calculate canopy stomatal conductance in both forests. The difference in (Tc - Ta) at three gc levels with increasing direct radiation in the RP was larger than in the TR, indicating that change in (Tc - Ta) in the RP was relatively sensitive to the degree of stomatal closure.


Assuntos
Hevea , Floresta Úmida , Temperatura , Mudança Climática , Hevea/fisiologia , Raios Infravermelhos , Folhas de Planta/fisiologia , Transpiração Vegetal , Estações do Ano , Árvores/fisiologia , Clima Tropical
7.
Opt Express ; 23(11): A576-81, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-26072882

RESUMO

Increasing studies report blue light to possess a potential hazard to the retina of human eyes, secretion of melatonin and artworks. To devise a human- and artwork-friendly light source and to also trigger a "Lighting Renaissance", we demonstrate here how to enable a quality, blue-hazard free general lighting source on the basis of low color-temperature organic light emitting diodes. With the use of multiple candlelight complementary emitters, the sensationally warm candle light-style emission is proven to be also drivable by electricity. To be energy-saving, highly efficient candle-light emission is demanded. The device shows, at 100 cd m-2 for example, an efficacy of 85.4 lm W-1, an external quantum efficiency of 27.4%, with a 79 spectrum resemblance index and 2,279 K color temperature. The high efficiency may be attributed to the candlelight emitting dyes with a high quantum yield, and the host molecules facilitating an effective host-to-guest energy transfer, as well as effective carrier injection balance.


Assuntos
Eletrônica/instrumentação , Luz , Iluminação/instrumentação , Cor , Nanopartículas/química , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...