RESUMO
Why do some genomes stay small and simple, while others become huge, and why are some genomes more stable? In contrast to angiosperms and gymnosperms, liverworts are characterized by small genomes with low variation in size and conserved chromosome numbers. We quantified genome evolution among five Marchantiophyta (liverworts), measuring gene characteristics, transposable element (TE) landscape, collinearity, and sex chromosome evolution that might explain the small size and limited variability of liverwort genomes. No genome duplications were identified among examined liverworts and levels of duplicated genes are low. Among the liverwort species, Lunularia cruciata stands out with a genome size almost twice that of the other liverwort species investigated here, and most of this increased size is due to bursts of Ty3/Gypsy retrotransposons. Intrachromosomal rearrangements between examined liverworts are abundant but occur at a slower rate compared with angiosperms. Most genes on L. cruciata scaffolds have their orthologs on homologous Marchantia polymorpha chromosomes, indicating a low degree of rearrangements between chromosomes. Still, translocation of a fragment of the female U chromosome to an autosome was predicted from our data, which might explain the uniquely small U chromosome in L. cruciata. Low levels of gene duplication, TE activity, and chromosomal rearrangements might contribute to the apparent slow rate of morphological evolution in liverworts.
Assuntos
Hepatófitas , Hepatófitas/genética , Filogenia , Evolução Molecular , Plantas/genética , Genoma de PlantaRESUMO
Plants commonly referred to as "bryophytes" belong to three major lineages of non-vascular plants: the liverworts, the hornworts and the mosses. They are unique among land plants in having a dominant haploid generation and a short-lived diploid sporophytic generation. The dynamics of selection acting on a haploid genome differs from those acting on a diploid genome: new mutations are directly exposed to selection. The general aim of this paper is to investigate the diversification rateof bryophytes - measured as silent site substitution rate representing neutral evolution (mutation rate) and the nonsynonymous to synonymous substitution rate ratio (dN/dS) representing selective evolution - and compare it with earlier studies on vascular plants. Results show that the silent site substitution rate is lower for liverworts as compared to angiosperms, but not as low as for gymnosperms. The selection pressure, measured as dN/dS, isnot remarkably lower for bryophytes as compared to other diploid dominant plants as would be expected by the masking hypothesis, indicating that other factors are more important than ploidy.
Assuntos
Briófitas , Hepatófitas , Briófitas/genética , Evolução Molecular , Hepatófitas/genética , Filogenia , Plantas/genéticaRESUMO
The potential role of introgression in evolution has gained increased interest in recent years. Although some fascinating examples have been reported, more information is needed to generalize the importance of hybridization and introgression for adaptive divergence. As limited data exist on haploid dominant species, we analyzed genomes of three subspecies of the liverwort Marchantia polymorpha. We used available genomic data for subsp. ruderalis and carried out whole-genome (PacBio) sequencing for one individual each of subsp. montivagans and subsp. polymorpha as well as Illumina resequencing of additional genomes for all three subspecies. The three subspecies were compared against M. paleacea as outgroup. Our analyses revealed separation of the three taxa, but all three possible topologies were richly represented across the genomes, and the underlying divergence order less obvious. This uncertainty could be the result of the divergence of the three subspecies close in time, or that introgression has been frequent since divergence. In particular, we found that pseudo-chromosome 2 in subsp. montivagans was much more diverged than other parts of the genomes. This could either be explained by specific capture of chromosome 2 from an unknown related species through hybridization or by conservation of chromosome 2 despite intermittent or ongoing introgression affecting more permeable parts of the genomes. A higher degree of chromosomal rearrangements on pseudo-chromosome 2 support the second hypothesis. Species tree analyses recovered an overall topology where subsp. montivagans diverged first and subsp. ruderalis and subsp. polymorpha appeared as sister lineages. Each subspecies was associated with its own chloroplast and mitochondrial haplotype group. Our data suggest introgression but refute a previous hypothesis that subsp. ruderalis is a new stabilized hybrid between the other two subspecies.
RESUMO
Plants are the foundation of terrestrial ecosystems, and their colonization of land was probably facilitated by mutualistic associations with arbuscular mycorrhizal fungi. Following this founding event, plant diversification has led to the emergence of a tremendous diversity of mutualistic symbioses with microorganisms, ranging from extracellular associations to the most intimate intracellular associations, where fungal or bacterial symbionts are hosted inside plant cells. Here, through analysis of 271 transcriptomes and 116 plant genomes spanning the entire land-plant diversity, we demonstrate that a common symbiosis signalling pathway co-evolved with intracellular endosymbioses, from the ancestral arbuscular mycorrhiza to the more recent ericoid and orchid mycorrhizae in angiosperms and ericoid-like associations of bryophytes. By contrast, species forming exclusively extracellular symbioses, such as ectomycorrhizae, and those forming associations with cyanobacteria, have lost this signalling pathway. This work unifies intracellular symbioses, revealing conservation in their evolution across 450 million yr of plant diversification.
Assuntos
Cianobactérias/fisiologia , Fungos/fisiologia , Genoma de Planta , Plantas/microbiologia , Transdução de Sinais , Simbiose/fisiologia , Transcriptoma , Evolução Biológica , Micorrizas , Fenômenos Fisiológicos VegetaisRESUMO
While angiosperm clocks can be described as an intricate network of interlocked transcriptional feedback loops, clocks of green algae have been modelled as a loop of only two genes. To investigate the transition from a simple clock in algae to a complex one in angiosperms, we performed an inventory of circadian clock genes in bryophytes and charophytes. Additionally, we performed functional characterization of putative core clock genes in the liverwort Marchantia polymorpha and the hornwort Anthoceros agrestis. Phylogenetic construction was combined with studies of spatiotemporal expression patterns and analysis of M. polymorpha clock gene mutants. Homologues to core clock genes identified in Arabidopsis were found not only in bryophytes but also in charophytes, albeit in fewer copies. Circadian rhythms were detected for most identified genes in M. polymorpha and A. agrestis, and mutant analysis supports a role for putative clock genes in M. polymorpha. Our data are in line with a recent hypothesis that adaptation to terrestrial life occurred earlier than previously expected in the evolutionary history of charophyte algae. Both gene duplication and acquisition of new genes was important in the evolution of the plant circadian clock, but gene loss has also contributed to shaping the clock of bryophytes.
Assuntos
Evolução Biológica , Relógios Circadianos , Embriófitas/fisiologia , Relógios Circadianos/genética , Ritmo Circadiano/genética , Embriófitas/genética , Flores/fisiologia , Regulação da Expressão Gênica de Plantas , Técnicas de Inativação de Genes , Genes de Plantas , Genes Reporter , Luciferases/metabolismo , Medições Luminescentes , Família Multigênica , Mutação/genética , Filogenia , Regiões Promotoras Genéticas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Homologia de Sequência de Aminoácidos , Fatores de TempoRESUMO
In this study, the complete genome sequence of a Newcastle disease virus (NDV) isolate collected from an outbreak in 1995 in chickens was fully characterized and compared with other NDV sequences. The genome was found to be 15,192 nucleotides long and to consist of six genes in the order 3'-NP-P-M-F-HN-L-5', similar to other avian paramyxoviruses type-I. However, a six-nucleotide insertion was observed in the 5' non-coding regions of the nucleoprotein (NP) gene, a feature that is unique to some NDV isolates. The isolate shows the amino acid sequence (112)RRQKRF(117) at the cleavage site of the F protein, which is identical to a known motif for virulent pathotypes of NDV. The phylogenetic analysis of the coding region of the F gene indicated that this isolate belongs to genotype VI, more specifically to genotype VId, along with isolates from the other European countries (Denmark, Switzerland and Austria). The same genotype caused outbreaks in the Middle East and Greece in the late 1960s, and in Hungary, in the early 1980s, suggesting a common source for these outbreaks.
Assuntos
Surtos de Doenças/veterinária , Genoma Viral/genética , Doença de Newcastle/epidemiologia , Vírus da Doença de Newcastle/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Galinhas/virologia , Dados de Sequência Molecular , Doença de Newcastle/virologia , Vírus da Doença de Newcastle/classificação , Vírus da Doença de Newcastle/isolamento & purificação , Fases de Leitura Aberta/genética , Filogenia , Doenças das Aves Domésticas/epidemiologia , Doenças das Aves Domésticas/virologia , Alinhamento de Sequência , SuéciaRESUMO
The complete genome sequence of a Newcastle disease virus (NDV) isolated from a chicken in Sweden was determined and compared with other NDV sequences. The isolate was shown to belong to genotype VIIb, which arose in the Far East and spread around the world during the 1990s. It had a length of 15,192 bases and consisted of six genes in the order 3'-NP-P-M-F-HN-L-5'. The F protein cleavage site was 112-RRQRRF-117, corresponding to that of a virulent pathotype.
Assuntos
Surtos de Doenças , Genoma Viral , Doença de Newcastle/epidemiologia , Vírus da Doença de Newcastle/genética , Vírus da Doença de Newcastle/isolamento & purificação , Doenças das Aves Domésticas/epidemiologia , RNA Viral/genética , Animais , Galinhas , Análise por Conglomerados , Ordem dos Genes , Genes Virais , Genótipo , Dados de Sequência Molecular , Doença de Newcastle/virologia , Filogenia , Doenças das Aves Domésticas/virologia , Análise de Sequência de DNA , Homologia de Sequência , Suécia/epidemiologiaRESUMO
The complete genome sequence of an avian paramyxovirus serotype 1 (APMV-1) isolated from a black-headed gull (Larus ridibundus) in Sweden was determined and compared with other APMV-1 sequences. Sequence analyses showed that this isolate consists of six genes in the order 3'-NP-P-M-F-HN-L-5', is 15,186 nucleotides long, and contains a typical, avirulent fusion protein cleavage site. It was also shown to have a hemagglutinin-neuraminidase protein with a length of 585 amino acids (aa) instead of the expected 616 aa. Phylogenetic analyses showed that the isolate belongs to genotype I, and the relationship with some other, known APMV-1 virus sequences was revealed. Waterfowl have been considered to act as a reservoir for APMV-1 and, therefore, it is important to broaden the knowledge of viruses circulating within this population.
Assuntos
Charadriiformes , Genoma Viral , Doença de Newcastle/virologia , Vírus da Doença de Newcastle/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Regulação Viral da Expressão Gênica , Doença de Newcastle/epidemiologia , Filogenia , Suécia/epidemiologia , Proteínas Virais/química , Proteínas Virais/genética , Proteínas Virais/metabolismoRESUMO
Hepatitis E virus (HEV) has been detected in humans and in a broad range of animals, including pigs. For the first time the full-length genomic sequence of a HEV of European porcine origin, termed swX07-E1, was determined. Comparative analysis of 76 complete or nearly complete nucleotide sequences showed that swX07-E1 shares the highest nucleotide identity with Japanese swine HEV swJ8-5 and swJ12-4. The whole-genome phylogenetic analysis showed that swX07-E1 from Europe belongs to genotype-3 HEV, clusters with variants from Japan, Mongolia and Kyrgyzstan in subgroup 3c, but it is divergent from the prototype US HEV. Our analysis indicates that swX07-E1 represents a new subgroup of genotype-3 and that analysis of full-length sequences is necessary to discover new subgroups of HEV. According to our knowledge, swX07-E1 is the first full-length genome sequence of HEV from European swine. Knowledge about the full length HEV sequence from European swine is very important for understanding the HEV evolutionary events and the molecular mechanism of infection in human and in animals.
Assuntos
Genoma Viral , Vírus da Hepatite E/genética , Hepatite E/virologia , Filogenia , Suínos/virologia , Animais , Reservatórios de Doenças/virologia , Europa (Continente) , Evolução Molecular , Fezes/virologia , Vírus da Hepatite E/classificação , Vírus da Hepatite E/isolamento & purificação , Humanos , Dados de Sequência Molecular , Análise de Sequência de DNARESUMO
Neurosteroids are endogenously derived compounds, mediating rapid effects in the central nervous system. They participate in vital processes, including memory and learning, neuroplasticity, and neuroprotection in Alzheimer's disease. However, the mechanisms behind those effects remain to be elucidated. The neurosteroids pregnenolone sulphate (PS) and pregnanolone sulphate (3alpha5betaS) have recently been shown to allosterically alter the NMDA receptor in nanomolar concentrations. Those studies featured ifenprodil, which is a dirty drug, with affinity to many targets. In this study we compare the NMDA receptors in the hippocampus to recombinant NMDA receptors, using [3H]-MK-801 as radioligand. The results show that neurosteroids modulate the ifenprodil binding kinetics in a narrow concentration interval, addressing it to the NR2B subunit, since no effects were recorded at recombinant NR1/NR2A receptors. The effects were also seen as changes in the manner ifenprodil displaced or induced the dissociation of [3H]-MK-801. It indicates that the neurosteroidal effects indeed alter the ion pore of the NMDA receptor, why it is reasonable to believe that these findings have physiological relevance.