Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros













Base de dados
Intervalo de ano de publicação
1.
Biol Open ; 11(11)2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36412269

RESUMO

Euglenoids (Euglenida) are unicellular flagellates possessing exceptionally wide geographical and ecological distribution. Euglenoids combine a biotechnological potential with a unique position in the eukaryotic tree of life. In large part these microbes owe this success to diverse genetics including secondary endosymbiosis and likely additional sources of genes. Multiple euglenoid species have translational applications and show great promise in production of biofuels, nutraceuticals, bioremediation, cancer treatments and more exotically as robotics design simulators. An absence of reference genomes currently limits these applications, including development of efficient tools for identification of critical factors in regulation, growth or optimization of metabolic pathways. The Euglena International Network (EIN) seeks to provide a forum to overcome these challenges. EIN has agreed specific goals, mobilized scientists, established a clear roadmap (Grand Challenges), connected academic and industry stakeholders and is currently formulating policy and partnership principles to propel these efforts in a coordinated and efficient manner.


Assuntos
Euglena , Euglena/fisiologia , Biotecnologia , Simbiose
2.
Biology (Basel) ; 9(8)2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32707990

RESUMO

Aside from two samples collected nearly 50 years ago, little is known about the microbial composition of wind tidal flats in the hypersaline Laguna Madre, Texas. These mats account for ~42% of the lagoon's area. These microbial communities were sampled at four locations that historically had mats in the Laguna Madre, including Laguna Madre Field Station (LMFS), Nighthawk Bay (NH), and two locations in Kenedy Ranch (KRN and KRS). Amplicon sequencing of 16S genes determined the presence of 51 prokaryotic phyla dominated by Bacteroidota, Chloroflexi, Cyanobacteria, Desulfobacteria, Firmicutes, Halobacteria, and Proteobacteria. The microbial community structure of NH and KR is significantly different to LMFS, in which Bacteroidota and Proteobacteria were most abundant. Twenty-three cyanobacterial taxa were identified via genomic analysis, whereas 45 cyanobacterial taxa were identified using morphological analysis, containing large filamentous forms on the surface, and smaller, motile filamentous and coccoid forms in subsurface mat layers. Sample sites were dominated by species in Oscillatoriaceae (i.e., Lyngbya) and Coleofasciculaceae (i.e., Coleofasciculus). Most cyanobacterial sequences (~35%) could not be assigned to any established taxa at the family/genus level, given the limited knowledge of hypersaline cyanobacteria. A total of 73 cyanobacterial bioactive metabolites were identified using ultra performance liquid chromatography-Orbitrap MS analysis from these commu nities. Laguna Madre seems unique compared to other sabkhas in terms of its microbiology.

3.
J Vis Exp ; (143)2019 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-30663718

RESUMO

Scanning electron microscopy (SEM) is a widely available technique that has been applied to study biological specimens ranging from individual proteins to cells, tissues, organelles, and even whole organisms. This protocol focuses on two chemical drying methods, hexamethyldisilazane (HMDS) and t-butyl alcohol (TBA), and their application to imaging of both prokaryotic and eukaryotic organisms using SEM. In this article, we describe how to fix, wash, dehydrate, dry, mount, sputter coat, and image three types of organisms: cyanobacteria (Toxifilum mysidocida, Golenkina sp., and an unknown sp.), two euglenoids from the genus Monomorphina (M. aenigmatica and M. pseudopyrum), and the fruit fly (Drosophila melanogaster). The purpose of this protocol is to describe a fast, inexpensive, and simple method to obtain detailed information about the structure, size, and surface characteristics of specimens that can be broadly applied to a large range of organisms for morphological assessment. Successful completion of this protocol will allow others to use SEM to visualize samples by applying these techniques to their system.


Assuntos
Dessecação/métodos , Células Eucarióticas/ultraestrutura , Microscopia Eletrônica de Varredura , Células Procarióticas/ultraestrutura , Animais , Cianobactérias/ultraestrutura , Drosophila melanogaster/ultraestrutura , Euglena/ultraestrutura , Células Eucarióticas/metabolismo , Olho/ultraestrutura , Compostos de Organossilício , Fenótipo , Células Procarióticas/metabolismo
4.
J Phycol ; 53(1): 188-197, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27809340

RESUMO

Cyanobacteria occupy many niches within terrestrial, planktonic, and benthic habitats. The diversity of habitats colonized, similarity of morphology, and phenotypic plasticity all contribute to the difficulty of cyanobacterial identification. An unknown marine filamentous cyanobacterium was isolated from an aquatic animal rearing facility having mysid mortality events. The cyanobacterium originated from Corpus Christi Bay, TX. Filaments are rarely solitary, benthic mat forming, unbranched, and narrowing at the ends. Cells are 2.1 × 3.1 µm (width × length). Thylakoids are peripherally arranged on the outer third of the cell; cyanophycin granules and polyphosphate bodies are present. Molecular phylogenetic analysis in addition to morphology (transmission electron microscopy and scanning electron microscopy) and chemical composition all confirm it as a new genus and species we name Toxifilum mysidocida. At least one identified Leptolyngbya appears (based on genetic evidence and TEM) to belong to this new genus.


Assuntos
Cianobactérias/classificação , Cianobactérias/genética , Cianobactérias/ultraestrutura , DNA Bacteriano/genética , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Tilacoides/ultraestrutura
5.
J Phycol ; 52(3): 404-11, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27273533

RESUMO

The Euglenophyceae chloroplast was acquired when a heterotrophic euglenoid engulfed a green alga and subsequently retained the algal chloroplast, in a process known as secondary endosymbiosis. Since this event, Euglenophyceae have diverged widely and their chloroplast genomes (cpGenomes) have as well. Changes to the cpGenome include extensive gene rearrangement and the proliferation of introns, the analyses of which have proven to be useful in examining cpGenome changes throughout the Euglenophyceae. The Euglenales fall into two families, Euglenaceae and Phacaceae. Euglenaceae contains eight genera and at least one cpGenome has been published for each genus. Phacaceae, on the other hand, contains three genera, none of which have had a representative chloroplast genome sequenced. Members of this family have many small disk-shaped chloroplasts that lack pyrenoids. We sequenced and annotated the cpGenome of Phacus orbicularis in order to fill in the large gap in our understanding of Euglenophyceae cpGenome evolution, especially in regard to intron number and gene order. We compared this cpGenome to those of species from both the Euglenaceae and Eutreptiales of the Euglenophyceae phylogenetic tree. The cpGenome showed characteristics that were more derived than that of the basal species Eutreptia viridis, with extensive gene rearrangements and nearly three times as many introns. In contrast, it contained fewer introns than all but one of the previously reported Euglenaceae cpGenomes, had a smaller estimated genome size, and shared greater synteny with two main branches of that family.


Assuntos
Euglênidos/classificação , Euglênidos/genética , Genoma de Cloroplastos , Evolução Molecular , Rearranjo Gênico , Íntrons , Anotação de Sequência Molecular , Filogenia , Análise de Sequência de DNA
6.
Mol Ecol ; 23(6): 1418-1432, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24765662

RESUMO

Teredinibacter turnerae is a cultivable intracellular endosymbiont of xylotrophic (woodfeeding)bivalves of the Family Teredinidae (shipworms). Although T. turnerae has been isolated from many shipworm taxa collected in many locations, no systematic effort has been made to explore genetic diversity within this symbiont species across the taxonomic and geographical range of its hosts. The mode of symbiont transmission is unknown. Here, we examine sequence diversity in fragments of six genes (16S rRNA, gyrB, sseA, recA, rpoB and celAB) among 25 isolates of T. turnerae cultured from 13 shipworm species collected in 15 locations in the Atlantic, Pacific and Indian Oceans. While 16S rRNA sequences are nearly invariant between all examined isolates (maximum pairwise difference <0.26%), variation between examined protein-coding loci is greater (mean pairwise difference 2.2­5.9%). Phylogenetic analyses based on each protein-coding locus differentiate the 25 isolates into two distinct and well-supported clades. With five exceptions, clade assignments for each isolate were supported by analysis of alleles of each of the five protein-coding loci. These exceptions include (i) putative recombinant alleles of the celAB and gyrB loci in two isolates (PMS-535T.S.1b.3 and T8510), suggesting homologous recombination between members of the two clades; and (ii) evidence for a putative lateral gene transfer event affecting a second locus (recA) in three isolates (T8412, T8503 and T8513). These results demonstrate that T. turnerae isolates do not represent a homogeneous global population. Instead, they indicate the emergence of two lineages that, although distinct, likely experience some level of genetic exchange with each other and with other bacterial species.


Assuntos
Bivalves/microbiologia , Gammaproteobacteria/classificação , Filogenia , Simbiose , Animais , Oceano Atlântico , DNA Bacteriano/genética , Gammaproteobacteria/genética , Gammaproteobacteria/isolamento & purificação , Genes Bacterianos , Variação Genética , Oceano Índico , Oceano Pacífico , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
7.
Protist ; 161(4): 603-19, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20434949

RESUMO

Using Maximum Likelihood and Bayesian analyses of three genes, nuclear SSU (nSSU) and LSU (nLSU) rDNA, and chloroplast SSU (cpSSU) rDNA, the relationships among 82 plastid-containing strains of euglenophytes were clarified. The resulting tree split into two major clades: clade one contained Euglena, Trachelomonas, Strombomonas, Colacium, Monomorphina, Cryptoglena and Euglenaria; clade two contained Lepocinclis, Phacus and Discoplastis. The majority of the members of Euglena were contained in clade A, but seven members were outside of this clade. Euglena limnophila grouped with, and was thus transferred to Phacus. Euglena proxima was a single taxon at the base of clade one and is unassociated with any subclade. Five members of Euglena grouped together within clade one and were transferred into the newly erected genus Euglenaria. The monophyly of the remaining genera was supported by Bayesian and Maximum Likelihood analyses. Combining datasets resolved the relationships among ten genera of photosynthetic euglenoids.


Assuntos
Euglênidos/classificação , Euglênidos/genética , Teorema de Bayes , Cloroplastos/genética , DNA de Protozoário/genética , DNA Ribossômico/genética , Funções Verossimilhança , Filogenia , Subunidades Ribossômicas Maiores de Eucariotos/genética , Subunidades Ribossômicas Menores de Eucariotos/genética
8.
Plant Physiol ; 130(4): 1686-96, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12481051

RESUMO

Three maize (Zea mays) bacterial artificial chromosome (BAC) libraries were constructed from inbred line B73. High-density filter sets from all three libraries, made using different restriction enzymes (HindIII, EcoRI, and MboI, respectively), were evaluated with a set of complex probes including the 185-bp knob repeat, ribosomal DNA, two telomere-associated repeat sequences, four centromere repeats, the mitochondrial genome, a multifragment chloroplast DNA probe, and bacteriophage lambda. The results indicate that the libraries are of high quality with low contamination by organellar and lambda-sequences. The use of libraries from multiple enzymes increased the chance of recovering each region of the genome. Ninety maize restriction fragment-length polymorphism core markers were hybridized to filters of the HindIII library, representing 6x coverage of the genome, to initiate development of a framework for anchoring BAC contigs to the intermated B73 x Mo17 genetic map and to mark the bin boundaries on the physical map. All of the clones used as hybridization probes detected at least three BACs. Twenty-two single-copy number core markers identified an average of 7.4 +/- 3.3 positive clones, consistent with the expectation of six clones. This information is integrated into fingerprinting data generated by the Arizona Genomics Institute to assemble the BAC contigs using fingerprint contig and contributed to the process of physical map construction.


Assuntos
Cromossomos Artificiais Bacterianos/genética , Biblioteca Gênica , Hibridização de Ácido Nucleico/métodos , Mapeamento Físico do Cromossomo/métodos , Zea mays/genética , Southern Blotting , Mapeamento de Sequências Contíguas/métodos , Polimorfismo de Fragmento de Restrição , Mapeamento por Restrição/métodos , DNA Metiltransferases Sítio Específica (Adenina-Específica)/genética , DNA Metiltransferases Sítio Específica (Adenina-Específica)/metabolismo
9.
J Phycol ; 36(4): 740-746, 2000 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-29542147

RESUMO

Almost since the creation of the genus Euglena (Ehrenberg), the taxa assigned to it have been separated, split apart, and reorganized into new genera based on morphological relationships, resulting in the creation of the genera Phacus (Dujardin), Lepocinclis (Perty), Astasia (Pringsheim), and Khawkinea ( Jahn and McKibben) based on intuitive methods. In an effort to assess the validity of these genera, we have used small subunit (SSU) rDNA data to generate a phylogenetic framework for these genera, with particular attention to the genus Euglena. Using the conserved sequence areas, we performed a phylogenetic analysis using parsimony, maximum likelihood, and distance methods. These different criteria have resulted in trees of the same topology. The euglenoid clade was composed of phagotrophic euglenoids at the base, which gave rise to phototrophs that in turn gave rise to osmotrophs. Among the photosynthetic taxa, the biflagellate form diverged prior to the uniflagellate form. Additionally, the need for a revision in the taxonomy of some of these genera was demonstrated. Currently, taxa from the photosynthetic genera Euglena, Phacus, and Lepocinclis do not form monophyletic clades, but are intermixed with each other as well as with the osmotrophic taxa, Astasia and Khawkinea.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA