Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Learn Behav ; 52(1): 92-104, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38052764

RESUMO

Solitarily foraging ant species differ in their reliance on their two primary navigational systems- path integration and visual learning. Despite many species of Australian bull ants spending most of their foraging time on their foraging tree, little is known about the use of these systems while climbing. "Rewinding" displacements are commonly used to understand navigational system usage, and work by introducing a mismatch between these navigational systems, by displacing foragers after they have run-down their path integration vector. We used rewinding to test the role of path integration on the arboreal and terrestrial navigation of M. midas. We rewound foragers along either the vertical portion, the ground surface portion, or across both portions of their homing trip. Since rewinding involves repeatedly capturing and releasing foragers, we included a nondisplacement, capture-and-release control, in which the path integration vector is unchanged. We found that rewound foragers do not seem to accumulate path integration vector, although a limited effect of vertical rewinding was found, suggesting a potential higher sensitivity while descending the foraging tree. However, the decrease in navigational efficiency due to capture was larger than the vertical rewinding effect, which along with the negative impact of the vertical surface, and an interaction between capture and rewinding, may suggest aversion rather than path integration caused the vertical rewinding response. Together these results add to the evidence that M. midas makes minimal use of path integration while foraging, and the growing evidence that they are capable of quickly learning from aversive stimulus.


Assuntos
Formigas , Sinais (Psicologia) , Animais , Austrália , Formigas/fisiologia , Comportamento de Retorno ao Território Vital/fisiologia , Aprendizagem Espacial
2.
Learn Behav ; 51(4): 446-457, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37620644

RESUMO

Ants store and recall views associated with foraging success, facilitating future foraging journeys. Negative views are also learned, but instead prompt avoidance behaviors such as turning away. However, little is known about the aversive view's role in navigation, the effect of cue conflict, or the contextual relationship between learning and recalling. In this study, we tested Myrmecia midas' capacity for aversive learning of views either independently of or in conflict with appetitive events. We either captured and released foragers when reaching a location or let them pass unhindered. After a few journeys, captured foragers exhibited aversive learning by circumventing the capture location and increasing both meandering and scanning. Ants that experienced foraging-appetitive and homing-aversive events on their journeys exhibited lower rates of avoidance behavior and scans than those experiencing aversive events in both outbound and homebound journeys. The foraging-aversive and homing-aversive ants exhibited similar levels of avoidance and scanning as those that experienced the foraging-aversive and homing-appetitive. We found that foragers showed evidence of context specificity in their scanning behavior, but not in other measures of aversive learning. The foragers did not increase their meandering and scans while approaching the views associated with aversive events. In addition to shedding light on the role of aversive views in navigation, our finding has important implications for understanding the learning mechanisms triggered by handling animals.


Assuntos
Formigas , Sinais (Psicologia) , Animais , Comportamento de Retorno ao Território Vital , Aprendizagem , Rememoração Mental
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...