Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 812: 152432, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-34942243

RESUMO

Montmorillonite was modified with iron (Fe-MMT) for controlling mercury release across mercury-contaminated soil-air interface in greenhouse. With addition of Fe-MMT, although the root Hg contents in Brassica Pekinensis increased, the edible part (leaf) Hg concentrations decreased significantly, even achieved the Tolerance Limit of Mercury in Foods. The decrease of leaf Hg concentrations was attributed to the lower atmospheric Hg concentrations, which is caused by the lower soil Hg0 release fluxes. Besides the Fe-MMT can direct adsorb soil Hg0, it can also immobilize ionic Hg and decrease soil Hg reactivity via surface adsorption, chemical complexation, and situ co-precipitation. Then the contents of leachable Hg and the percentages of bioavailable speciation in soil were reduced, resulting in the soil Hg0 generation was inhibited and soil Hg0 release fluxes declined. Applying Fe-MMT to soil enhanced the diversity indexes of Streptomyces, which could promote the oxidation of soil Hg0 to Hg2+; subsequently, the soil Hg0 release fluxes decreased. After amending with Fe-MMT, the root Hg contents in Brassica Pekinensis increased because both the soil Hg and microorganisms loaded Hg could be adsorbed by iron oxides and retained on the root surface. This work can provide research basis for Fe-MMT application in Hg-contaminated soil in greenhouse.


Assuntos
Mercúrio , Poluentes do Solo , Bentonita , Ferro , Mercúrio/análise , Solo , Poluentes do Solo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...