Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 175
Filtrar
1.
BMC Plant Biol ; 24(1): 583, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38898384

RESUMO

BACKGROUND: Leaf morphology plays a crucial role in photosynthetic efficiency and yield potential in crops. Cigar tobacco plants, which are derived from common tobacco (Nicotiana tabacum L.), possess special leaf characteristics including thin and delicate leaves with few visible veins, making it a good system for studying the genetic basis of leaf morphological characters. RESULTS: In this study, GWAS and QTL mapping were simultaneously performed using a natural population containing 185 accessions collected worldwide and an F2 population consisting of 240 individuals, respectively. A total of 26 QTLs related to leaf morphological traits were mapped in the F2 population at three different developmental stages, and some QTL intervals were repeatedly detected for different traits and at different developmental stages. Among the 206 significant SNPs identified in the natural population using GWAS, several associated with the leaf thickness phenotype were co-mapped via QTL mapping. By analyzing linkage disequilibrium and transcriptome data from different tissues combined with gene functional annotations, 7 candidate genes from the co-mapped region were identified as the potential causative genes associated with leaf thickness. CONCLUSIONS: These results presented a valuable cigar tobacco resource showing the genetic diversity regarding its leaf morphological traits at different developmental stages. It also provides valuable information for novel genes and molecular markers that will be useful for further functional verification and for molecular breeding of leaf morphological traits in crops in the future.


Assuntos
Mapeamento Cromossômico , Estudo de Associação Genômica Ampla , Nicotiana , Folhas de Planta , Locos de Características Quantitativas , Nicotiana/genética , Nicotiana/anatomia & histologia , Nicotiana/crescimento & desenvolvimento , Folhas de Planta/anatomia & histologia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Fenótipo , Polimorfismo de Nucleotídeo Único , Desequilíbrio de Ligação
2.
Gac Sanit ; 38: 102397, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38772059

RESUMO

OBJECTIVE: To determine the role of social health insurance programs in reducing inequality in the incidence and intensity of catastrophic health expenditure (CHE) of cancer patients in China. METHOD: A convenient sample of 2534 cancer patients treated in nine hospitals in 2015 and 2016 were followed up through face-to-face interviews in March-December 2018. The incidence and intensity (mean positive overshoot) of CHE (≥ 40% household consumption) were calculated. RESULTS: About 72% of cancer patients experienced CHE events after insurance compensation, with the catastrophic mean positive overshoot amounting to 28.27% (SD: 15.83%) of the household consumption. Overall, social insurance contributed to a small percentage of drop in CHE events. Income-related inequality in CHE persisted before and after insurance compensation. Richer patients benefit more than poorer ones. CONCLUSIONS: Cancer treatment is associated with high incidence of CHE events in China. The alleviating effect of social health insurance on CHE events is limited.

3.
J Inflamm Res ; 17: 2977-2989, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38764494

RESUMO

Background: Some patients with COVID-19 rapidly develop respiratory failure or mortality, underscoring the necessity for early identification of those prone to severe illness. Numerous studies focus on clinical and lab traits, but only few attend to chest computed tomography. The current study seeks to numerically quantify pulmonary lesions using early-phase CT scans calculated through artificial intelligence algorithms in conjunction with clinical and laboratory helps clinicians to early identify the development of severe illness and death in a group of COVID-19 patients. Methods: From December 15, 2022, to January 30, 2023, 191 confirmed COVID-19 patients admitted to Xinhua Hospital Affiliated with Shanghai Jiao Tong University School of Medicine were consecutively enrolled. All patients underwent chest CT scans and serum tests within 48 hours prior to admission. Variables significantly linked to critical illness or mortality in univariate analysis were subjected to multivariate logistic regression models post collinearity assessment. Adjusted odds ratio, 95% confidence intervals, sensitivity, specificity, Youden index, receiver-operator-characteristics (ROC) curves, and area under the curve (AUC) were computed for predicting severity and in-hospital mortality. Results: Multivariate logistic analysis revealed that myoglobin (OR = 1.003, 95% CI 1.001-1.005), APACHE II score (OR = 1.387, 95% CI 1.216-1.583), and the infected CT region percentage (OR = 113.897, 95% CI 4.939-2626.496) independently correlated with in-hospital COVID-19 mortality. Prealbumin stood as an independent safeguarding factor (OR = 0.965, 95% CI 0.947-0.984). Neutrophil counts (OR = 1.529, 95% CI 1.131-2.068), urea nitrogen (OR = 1.587, 95% CI 1.222-2.062), SOFA score(OR = 3.333, 95% CI 1.476-7.522), qSOFA score(OR = 15.197, 95% CI 3.281-70.384), PSI score(OR = 1.053, 95% CI 1.018-1.090), and the infected CT region percentage (OR = 548.221, 95% CI 2.615-114,953.586) independently linked to COVID-19 patient severity.

4.
Inquiry ; 61: 469580241246461, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38646896

RESUMO

Concerns have been raised globally regarding the long-term effects of the novel coronavirus disease 2019 (COVID-19). This study aimed to investigate the impact of long COVID on the health of patients recovering from acute COVID-19 in China. We conducted a cross-sectional questionnaire survey from 1 February to 9 March 2023. Propensity score matching (PSM) was used to understand the differences in health utility values between individuals with and without long COVID. Factors associated with health-related quality of life (HRQoL) were determined using a multiple linear regression model. A chi-square test was used to compare differences between the 2 groups for each dimension of the EuroQoL-5 Dimension-5 Level (EQ-5D-5L) scale. In total, 307 participants were included in the analysis, of which 40.39% exhibited at least 1 persistent symptom. The common symptoms of long COVID were fatigue/weakness, coughing, memory decline, poor concentration, and phlegm in the throat. Most patients with long COVID reported mild effects from their symptoms. After propensity score matching, the long-COVID group had lower health utility scores than the non-long-COVID group (0.94 vs 0.97). In the multivariable linear regression analysis, persistent symptoms and low annual household income were associated with lower health utility values (P < .05). Anxiety/depression and pain/discomfort were the major problems experienced by the participants with long COVID. Long-COVID symptoms following acute COVID-19 infection have a serious impact on health-related quality of life. Therefore, it is necessary to implement interventions to improve patient health after the recovery from acute COVID-19.


Assuntos
COVID-19 , Qualidade de Vida , SARS-CoV-2 , Humanos , COVID-19/psicologia , COVID-19/epidemiologia , Estudos Transversais , Masculino , Feminino , Pessoa de Meia-Idade , China/epidemiologia , Adulto , Inquéritos e Questionários , Síndrome de COVID-19 Pós-Aguda , Pontuação de Propensão , Idoso
5.
Microb Ecol ; 87(1): 59, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38619730

RESUMO

As one of the important biodiversity conservation areas in China, the ecosystem in the lower reaches of the Yarlung Zangbo River is fragile, and is particularly sensitive to global changes. To reveal the diversity pattern of phytoplankton, the metabarcode sequencing was employed in the Medog section of the lower reaches of the Yarlung Zangbo River during autumn 2019 in present study. The phytoplankton assemblies can be significantly divided into the main stem and the tributaries; there are significant differences in the phytoplankton biomass, alpha and beta diversity between the main stem and the tributaries. While both the main stem and the tributaries are affected by dispersal limitation, the phytoplankton assemblages in the entire lower reaches are primarily influenced by heterogeneous selection. Community dissimilarity and assembly process were significantly correlated with turbidity, electrical conductivity, and nitrogen nutrition. The tributaries were the main source of the increase in phytoplankton diversity in the lower reaches of the Yarlung Zangbo River. Such diversity pattern of phytoplankton in the lower reach may be caused by the special habitat in Medog, that is, the excessive flow velocity, and the significant spatial heterogeneity in physical and chemical factors between stem and tributaries. Based on the results and conclusions obtained in present study, continuous long-term monitoring is essential to assess and quantify the impact of global changes on phytoplankton.


Assuntos
Ecossistema , Rios , Biodiversidade , Biomassa , Fitoplâncton
6.
Stem Cells ; 42(5): 475-490, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38427800

RESUMO

Cellular senescence significantly affects the proliferative and differentiation capacities of mesenchymal stem cells (MSCs). Identifying key regulators of senescence and exploring potential intervention strategies, including drug-based approaches, are active areas of research. In this context, S-adenosyl-l-methionine (SAM), a critical intermediate in sulfur amino acid metabolism, emerges as a promising candidate for mitigating MSC senescence. In a hydrogen peroxide-induced MSC aging model (100 µM for 2 hours), SAM (50 and 100 µM) was revealed to alleviate the senescence of MSCs, and also attenuated the level of reactive oxygen species and enhanced the adipogenic and osteogenic differentiation in senescent MSCs. In a premature aging mouse model (subcutaneously injected with 150 mg/kg/day d-galactose in the neck and back for 7 weeks), SAM (30 mg/kg/day by gavage for 5 weeks) was shown to delay the overall aging process while increasing the number and thickness of bone trabeculae in the distal femur. Mechanistically, activation of PI3K/AKT signaling and increased phosphorylation of forkhead box O3 (FOXO3a) was proved to be associated with the antisenescence role of SAM. These findings highlight that the PI3K/AKT/FOXO3a axis in MSCs could play a crucial role in MSCs senescence and suggest that SAM may be a potential therapeutic drug for MSCs senescence and related diseases.


Assuntos
Senescência Celular , Proteína Forkhead Box O3 , Células-Tronco Mesenquimais , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , S-Adenosilmetionina , Transdução de Sinais , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Animais , Senescência Celular/efeitos dos fármacos , Proteína Forkhead Box O3/metabolismo , Proteína Forkhead Box O3/genética , Transdução de Sinais/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , S-Adenosilmetionina/farmacologia , S-Adenosilmetionina/metabolismo , Camundongos , Diferenciação Celular/efeitos dos fármacos , Masculino , Humanos , Camundongos Endogâmicos C57BL
7.
Plants (Basel) ; 13(5)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38475594

RESUMO

Stigeoclonium is a genus of green algae that is widely distributed in freshwater habitats around the world. The genus comprises species with variously developed prostrates and erect systems of uniseriate branched filaments and grows attached to a wide range of different surfaces. It holds significant promise for applications in water quality indicators, sewage treatment, and the development of high-value-added products. Nevertheless, our comprehension of Stigeoclonium remains unclear and perplexing, particularly regarding its fundamental systematic taxonomy. Recent molecular analyses have revealed that the morphologically well-defined genus Stigeoclonium is polyphyletic and requires taxonomic revision. Phylogenetic analysis based on a single molecular marker and limited samples is insufficient to address the polyphyletic nature of Stigeoclonium. In the present study, 34 out of 45 strains of Stigeoclonium were newly acquired from China. Alongside the morphological data, a concatenated dataset of three markers (18S rDNA + ITS2 + tufA) was utilized to determine their molecular phylogeny. The phylogenetic analysis successfully resolved the broadly defined Stigeoclonium into three robustly supported clades (Stigeoclonim tenue clade, S. farctum clade, and S. helveticum clade). The morphological characteristics assessment results showed that the cell type of the main axis-producing branch, considered a crucial morphological characteristic of the Stigeoclonium taxonomy, did not accurately reflect the real phylogeny of the genus. A new taxonomical classification of the genus Stigeoclonium was proposed based on zoospores' germination types, which aligned well with the phylogenetic topologies. Species where zoospores showed erect germination (S. helveticum clade) formed a distinct monophyletic clade, clearly separated from the other two clades, with zoospores showing prostrate germination or pseudo-erect germination. Consequently, a new genus, Pseudostigeoclonium gen. nov., is suggested to include all species in the broadly defined Stigeoclonium with zoospores with erect germination. The taxonomic diversity is supported by distinctive morphological differences and phylogenetic divergence within the broadly defined Stigeoclonium identified in this study. Further evaluation of the genus Stigeoclonium is necessary, especially via examining additional specimens and re-evaluating morphological characters under precisely defined laboratory conditions.

8.
Food Funct ; 15(4): 1909-1922, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38258992

RESUMO

Mogroside V (MV) is a natural sweetener extracted from the edible plant Siraitia grosvenorii that possesses anti-inflammatory bioactivity. It has been reported that microRNAs (miRNAs) play an important role in the inflammation response suppression by natural agents. However, whether the anti-inflammation effect of mogroside V is related to miRNAs and the underlying mechanism remains unclear. Our study aimed to identify the key miRNAs important for the anti-inflammation effect of MV and reveal its underlying mechanisms. Our results showed that MV effectively alleviated lung inflammation in ovalbumin-induced (OVA-induced) asthmatic mice. miRNA-seq and mRNA-seq combined analysis identified miR-21-5p as an important miRNA for the inflammation inhibition effect of MV and it predicted SPRY1 to be a target gene of miR-21-5p. We found that MV significantly inhibited the production of tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), interleukin-2 (IL-2), interleukin-6 (IL-6), and nitric oxide (NO), as well as the protein expression of p-P65/P65, cyclooxygenase-2 (COX-2), and inducible nitric oxide synthase (iNOS) in OVA-induced asthmatic mice and LPS-treated RAW 264.7 cells. Moreover, the release of ROS increased in LPS-stimulated RAW 264.7 cells but was mitigated by MV pretreatment. In the meantime, the expression of miR-21-5p was decreased by MV, leading to an increase in the expression of SPRY1 in RAW 264.7 cells. Furthermore, miR-21-5p overexpression or SPRY1 knockdown reversed MV's protective effect on inflammatory responses. Conversely, miR-21-5p inhibition or SPRY1 overexpression enhanced MV's effect on inflammatory responses in LPS-exposed RAW 264.7 cells. Therefore, the significant protective effect of mogroside V on inflammation response is related to the downregulation of miR-21-5p and upregulation of SPRY1 in vitro and in vivo, MiR-21-5p/SPRY1 may be novel therapeutic targets of MV for anti-inflammation treatment.


Assuntos
Lipopolissacarídeos , MicroRNAs , Triterpenos , Animais , Camundongos , Ovalbumina , Lipopolissacarídeos/farmacologia , MicroRNAs/genética , MicroRNAs/metabolismo , Inflamação/tratamento farmacológico , Inflamação/genética , Anti-Inflamatórios/farmacologia , Interleucina-6/metabolismo
9.
PhytoKeys ; 237: 23-35, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38250523

RESUMO

During the investigation of the freshwater diatoms from Tibet, a monoraphid species was observed from a hot spring near Anduo County, located on a plateau in the central portion of Tibet. This species shares the diagnostic features of Crenotia, such as the valve bent along the transapical axis, striae uniseriate to biseriate from centre to the apices and areolae with special structures located at the end of each stria. We compared the morphological characters of this new species with the others in this genus and show it to be new; it is named Crenotiatibetiasp. nov. This species has small valves with slightly protracted ends with nearly capitate apices, lanceolate axial area, central area unilaterally expanded to the margin, striae uniseriate to biseriate, but, in some valves, the striae are only uniseriate. Areolae are round small to irregular in shape and, at the end of each stria, there is a horseshoe-shaped areola present. Observations of developing valves show all the striae begin biseriate, then they become covered by silica to form uniseriate striae. Comparisons are made amongst the species in this genus and with genera assigned to the Achnanthidiaceae.

10.
FEMS Microbiol Ecol ; 100(1)2024 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-38100388

RESUMO

Phytoplankton are the main primary producers in aquatic ecosystems and play an important role in food web and geochemical cycles. Its diversity, community structure, and assembly process are influenced by several factors. Alpine lake ecosystems are relatively weak and extremely sensitive to global climate change. However, the impact of climate change on phytoplankton in Qinghai-Tibet Plateau lakes and their responses are still unclear. In this study, we analyzed the diversity, environmental drivers, and assembly process of phytoplankton community in the central QTP lakes. The phytoplankton of these lakes can be primarily distinguished into freshwater and brackish types, with significant differences in species diversity and community dissimilarity. Both shared nearly same key environmental factors that significantly affecting phytoplankton such as EC, and brackish lakes were also positively correlative with TN. Stochastic process was predominant in phytoplankton assembly. Additionally, freshwater and brackish lakes were dominated by dispersal limitation and heterogeneous selection respectively. Alpine lakes had significant EC thresholds, and their diversity and assembly processes changed significantly around the thresholds. The present findings have important implications for understanding and predicting the response of lake phytoplankton communities to climate change and for making decisions to protect the ecological resources of alpine lakes.


Assuntos
Ecossistema , Fitoplâncton , Tibet , Lagos , Condutividade Elétrica
11.
Heliyon ; 9(11): e22392, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38074867

RESUMO

Background: Salmonella, a widespread pathogen, poses a significant threat to global food safety, leading to foodborne diseases and substantial economic losses. The timely and accurate detection of foodborne pathogens is pivotal for averting food contamination and outbreaks across the food production chain. This study assesses the cost-effectiveness of traditional culture-based methods versus risk-based approaches, incorporating polymerase chain reaction (PCR) for Salmonella detection. Methods: We employed a stochastic scenario tree model to simulate scenarios based on the sampling inspection plan for raw aquatic products conducted by the Guangzhou Center for Disease Control and Prevention from 2018 to 2020. Various detection methods (culture or PCR) were applied to these aquatic products based on their categorized risk level. Sensitivity values were derived from published data, and incremental cost-effectiveness ratios were used to compare the different scenarios against the traditional culture method. Results: A total of 360 samples were collected for analysis. The cost of culture-based detection alone amounted to 125,423.20 Chinese Yuan (CNY) and yielded nine instances of positive Salmonella detections. The risk-based detection strategy, which combined the more sensitive PCR method with high-risk sample characteristics, while employing the culture method for the remaining combinations, imposed a total cost of 128,775.83 CNY and yielded ten positive detections. This approach cost approximately 3391.74 CNY per additional positive sample detected compared to the culture method alone. Meanwhile, PCR-only detection imposed a total cost of 62,960.03 CNY. Conclusions: In comparison to traditional culture-based methods, both the risk-based detection strategy and the PCR-only approach demonstrated superior capabilities with respect to detecting contaminated aquatic products. Implementing risk-based detection strategies can enhance cost-effectiveness, not only ensuring food safety but also reducing the incidence and economic burden of foodborne diseases.

12.
J Transl Med ; 21(1): 900, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38082327

RESUMO

BACKGROUND: Intrahepatic cholangiocarcinoma (ICC) accounts for about 15% of primary liver cancer, and the incidence rate has been rising in recent years. Surgical resection is the best treatment for ICC, but the 5-year survival rate is less than 30%. ICC signature genes are crucial for the early diagnosis of ICC, so it is especially important to find its signature genes and therapeutic drug. Here, we studied that bufalin targeting CAMKK2 promotes mitochondrial dysfunction and inhibits the occurrence and metastasis of intrahepatic cholangiocarcinoma through Wnt/ß-catenin signal pathway. METHODS: IC50 of bufalin in ICC cells was determined by CCK8 and invasive and migratory abilities were verified by wound healing, cell cloning, transwell and Western blot. IF and IHC verified the expression of CAMKK2 between ICC patients and normal subjects. BLI and pull-down demonstrated the binding ability of bufalin and CAMKK2. Bioinformatics predicted whether CAMKK2 was related to the Wnt/ß-catenin pathway. SKL2001, an activator of ß-catenin, verified whether bufalin acted through this pathway. In vitro and in vivo experiments verified whether overexpression of CAMKK2 affects the proliferative and migratory effects of ICC. Transmission electron microscopy verified mitochondrial integrity. Associated Ca2+ levels verified the biological effects of ANXA2 on ICC. RESULTS: It was found that bufalin inhibited the proliferation and migration of ICC, and CAMKK2 was highly expressed in ICC, and its high expression was positively correlated with poor prognosis.CAMKK2 is a direct target of bufalin, and is associated with the Wnt/ß-catenin signaling pathway, which was dose-dependently decreased after bufalin treatment. In vitro and in vivo experiments verified that CAMKK2 overexpression promoted ICC proliferation and migration, and bufalin reversed this effect. CAMKK2 was associated with Ca2+, and changes in Ca2+ content induced changes in the protein content of ANXA2, which was dose-dependently decreasing in cytoplasmic ANXA2 and dose-dependently increasing in mitochondrial ANXA2 after bufalin treatment. In CAMKK2 overexpressing cells, ANXA2 was knocked down, and we found that reversal of CAMKK2 overexpression-induced enhancement of ICC proliferation and migration after siANXA2. CONCLUSIONS: Our results suggest that bufalin targeting CAMKK2 promotes mitochondrial dysfunction and inhibits the proliferation and migration of intrahepatic cholangiocarcinoma through Wnt/ß-catenin signal pathway. Thus, bufalin, as a drug, may also be used for cancer therapy in ICC in the future.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Doenças Mitocondriais , Humanos , Via de Sinalização Wnt , beta Catenina/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Colangiocarcinoma/tratamento farmacológico , Colangiocarcinoma/genética , Colangiocarcinoma/patologia , Ductos Biliares Intra-Hepáticos/metabolismo , Neoplasias dos Ductos Biliares/tratamento farmacológico , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/patologia , Doenças Mitocondriais/genética , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/genética , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo
13.
J Cancer ; 14(15): 2759-2770, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37781083

RESUMO

Acidic leucine rich nuclear phosphoprotein-32A (ANP32A) protein has a variety of functions, such as regulating cell differentiation, influencing cell apoptosis and cell cycle progression. Our previous study demonstrated that high expression of ANP32A was found in the tumor tissues of colorectal cancer (CRC) patients and was positively associated with tumor grading. However, the function and underlying mechanisms of ANP32A in CRC metastasis have not been fully explored. In this study, we found that ANP32A knockdown significantly attenuated the migration and invasion, and epithelial-mesenchymal transition (EMT) in cells. Further mechanistic studies revealed that ANP32A knockdown inhibited the expression of ß-catenin and phosphorylated-ERK. The immunofluorescent staining experiment has revealed that ANP32A was expressed in the cell membrane, cytosol and nucleus, and its expression was positively associated with ß-catenin expression levels. Moreover, the ability of cell migration and invasion was inhibited, the expression of E-cadherin was enhanced following ANP32A knockdown, and these affects were abolished by an ERK activator PMA, enhanced by an ERK inhibitor PD98059. Moreover, our animal experiment also demonstrated that silenced ANP32A inhibited CRC cell growth, multi-organ metastasis, ERK activation and EMT progression in vivo. Collectively, these findings demonstrated that ANP32A promotes CRC progression and that may be a promising target for the anti-metastasis treatment of CRC.

14.
Cell Death Discov ; 9(1): 338, 2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37679322

RESUMO

An essential protein regulatory system in cells is the ubiquitin-proteasome pathway. The substrate is modified by the ubiquitin ligase system (E1-E2-E3) in this pathway, which is a dynamic protein bidirectional modification regulation system. Deubiquitinating enzymes (DUBs) are tasked with specifically hydrolyzing ubiquitin molecules from ubiquitin-linked proteins or precursor proteins and inversely regulating protein degradation, which in turn affects protein function. The ubiquitin-specific peptidase 32 (USP32) protein level is associated with cell cycle progression, proliferation, migration, invasion, and other cellular biological processes. It is an important member of the ubiquitin-specific protease family. It is thought that USP32, a unique enzyme that controls the ubiquitin process, is closely linked to the onset and progression of many cancers, including small cell lung cancer, gastric cancer, breast cancer, epithelial ovarian cancer, glioblastoma, gastrointestinal stromal tumor, acute myeloid leukemia, and pancreatic adenocarcinoma. In this review, we focus on the multiple mechanisms of USP32 in various tumor types and show that USP32 controls the stability of many distinct proteins. Therefore, USP32 is a key and promising therapeutic target for tumor therapy, which could provide important new insights and avenues for antitumor drug development. The therapeutic importance of USP32 in cancer treatment remains to be further proven. In conclusion, there are many options for the future direction of USP32 research.

16.
Sensors (Basel) ; 23(11)2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37299758

RESUMO

Accurately detecting falls and providing clear directions for the fall can greatly assist medical staff in promptly developing rescue plans and reducing secondary injuries during transportation to the hospital. In order to facilitate portability and protect people's privacy, this paper presents a novel method for detecting fall direction during motion using the FMCW radar. We analyze the fall direction in motion based on the correlation between different motion states. The range-time (RT) features and Doppler-time (DT) features of the person from the motion state to the fallen state were obtained by using the FMCW radar. We analyzed the different features of the two states and used a two-branch convolutional neural network (CNN) to detect the falling direction of the person. In order to improve the reliability of the model, this paper presents a pattern feature extraction (PFE) algorithm that effectively eliminates noise and outliers in RT maps and DT maps. The experimental results show that the method proposed in this paper has an identification accuracy of 96.27% for different falling directions, which can accurately identify the falling direction and improve the efficiency of rescue.


Assuntos
Algoritmos , Radar , Humanos , Reprodutibilidade dos Testes , Redes Neurais de Computação
17.
Phytomedicine ; 115: 154833, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37137203

RESUMO

BACKGROUND & AIMS: Excessive autophagy induces cell death and is regarded as the treatment of cancer therapy. We have confirmed that the anti-cancer mechanism of curcumol is related to autophagy induction. As the main target protein of curcumol, RNA binding protein nucleolin (NCL) interacted with many tumor promoters accelerating tumor progression. However, the role of NCL in cancer autophagy and in curcumol's anti-tumor effects haven't elucidated. The purpose of the study is to identify the role of NCL in nasopharyngeal carcinoma autophagy and reveal the immanent mechanisms of NCL played in cell autophagy. METHODS & RESULTS: In the current study, we have found that NCL was markedly upregulated in nasopharyngeal carcinoma (NPC) cells. NCL overexpression effectively attenuated the level of autophagy in NPC cells, and NCL silence or curcumol treatment obviously aggravated the autophagy of NPC cells. Moreover, the attenuation of NCL by curcumol lead a significant suppression on PI3K/AKT/mTOR signaling pathway in NPC cells. Mechanistically, NCL was found to be directly interact with AKT and accelerate AKT phosphorylation, which caused the activation of the PI3K/AKT/mTOR pathway. Meanwhile, the RNA Binding Domain (RBD) 2 of NCL interacts with Akt, which was also influenced by curcumol. Notably, the RBDs of NCL delivered AKT expression was related with cell autophagy in the NPC. CONCLUSION: The results demonstrated that NCL regulated cell autophagy was related with interaction of NCL and Akt in NPC cells. The expression of NCL play an important role in autophagy induction and further found that was associated with its effect on NCL RNA-binding domain 2. This study may provide a new perspective on the target protein studies for natural medicines and confirm the effect of curcumol not only regulating the expression of its target protein, but also influencing the function domain of its target protein.


Assuntos
Neoplasias Nasofaríngeas , Proteínas Proto-Oncogênicas c-akt , Humanos , Carcinoma Nasofaríngeo/tratamento farmacológico , Carcinoma Nasofaríngeo/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Linhagem Celular Tumoral , Serina-Treonina Quinases TOR/metabolismo , Proteínas de Ligação a RNA/metabolismo , Autofagia , Motivos de Ligação ao RNA , Neoplasias Nasofaríngeas/tratamento farmacológico , Neoplasias Nasofaríngeas/metabolismo , Proliferação de Células , Nucleolina
18.
Apoptosis ; 28(9-10): 1390-1405, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37253905

RESUMO

Gastric cancer (GC) is the most common malignant tumor of digestive system. Bufalin extracted from Venenum Bufonis is one of the most effective anticancer monomers, which has been proved to play anticancer roles in a variety of cancers such as ovarian cancer, prostate cancer and neuroblastoma. However, there are few studies on bufalin in GC, and lack of clear targets. The effect of bufalin on the proliferation and migration of GC cells was detected by CCK-8, scratch wound healing assay, transwell assay and Western blotting. The potential direct interaction proteins of bufalin were screened by human proteome microarray containing 21,838 human proteins. The target protein was determined by bioinformatics, and the binding sites were predicted by molecular docking technique. Biological experiments in vitro and in vivo were conducted to verify the effect of bufalin directly interaction protein and the mechanism of bufalin targeting the protein to inhibit the development of GC. The results showed that bufalin inhibited the proliferation and migration of MKN-45 and HGC-27 GC cell lines in vitro. BFAR, a direct interaction protein of bufalin has several potential binding sites to bufalin. BFAR is highly expressed in GC and promotes the occurrence and metastasis of GC by activating PI3K/AKT/mTOR signal pathway in vitro and in vivo. Bufalin reversed the promoting effect of BFAR on the carcinogenesis and metastasis of GC by down-regulating the expression of BFAR. Our results show that bufalin targeting BFAR inhibits the occurrence and metastasis of GC through PI3K/AKT/mTOR signal pathway. These results provide a new basis for bufalin as a promising drug for the treatment of GC.


Assuntos
Neoplasias Gástricas , Humanos , Masculino , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Simulação de Acoplamento Molecular , Apoptose , Serina-Treonina Quinases TOR/genética , Transdução de Sinais , Proteínas de Membrana , Proteínas Adaptadoras de Transdução de Sinal , Proteínas Reguladoras de Apoptose
19.
Aging Dis ; 14(4): 1425-1440, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37163424

RESUMO

The senescence of mesenchymal stem cells (MSCs) impairs their regenerative capacity to maintain tissue homeostasis. Numerous studies are focusing on the interventions and mechanisms to attenuate the senescence of MSCs. C-phycocyanin (C-PC) is reported to have multiple functions such as antitumor, antioxidation, anti-inflammation and anti-aging roles, but there is little research about the effects of C-PC on the senescence of MSCs. Here we investigated the roles and mechanism of C-PC on MSCs senescence. In vitro results showed that C-PC could reduce senescence, enhance proliferation, promote the adipogenic and osteogenic differentiation in senescent MSCs induced by oxidative stress. In vivo D-Galactose (D-Gal) induced rats aging models showed C-PC also increased the viability and differentiation of intrinsic senescent bone marrow derived MSCs (BMSCs). Furthermore, C-PC also decreased the levels of oxidative stress markers ROS or MDA, elevated the SOD activity, and increased the anti-inflammatory factors. Proteomic chip analysis showed that C-PC interacted with ZDHHC5, and their interaction was verified by pull down assay. Overexpression of ZDHHC5 aggravated the senescence of MSCs and greatly lessened the beneficial effects of C-PC on senescence. In addition, we found ZDHHC5 regulated autophagy by altering LC3, Beclin1 and PI3K/AKT/mTOR pathway. In summary, our data indicated that C-PC ameliorates the senescence of MSCs through zinc finger Asp-His-His-Cys (DHHC) domain-containing protein 5 (ZDHHC5) mediated autophagy via PI3K/AKT/mTOR pathway. The present study uncovered the key role of autophagy in MSCs senescence and PI3K/AKT/mTOR pathway may be a potential target for anti-senescence studies of MSCs.

20.
Plant Divers ; 45(1): 45-53, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36876308

RESUMO

Phyllosphere algae are common in tropical rainforests, forming visible biofilms or spots on plant leaf surfaces. However, knowledge of phyllosphere algal diversity and the environmental factors that drive that diversity is limited. The aim of this study is to identify the environmental factors that drive phyllosphere algal community composition and diversity in rainforests. For this purpose, we used single molecule real-time sequencing of full-length 18S rDNA to characterize the composition of phyllosphere microalgal communities growing on four host tree species (Ficus tikoua, Caryota mitis, Arenga pinnata, and Musa acuminata) common to three types of forest over four months at the Xishuangbanna Tropical Botanical Garden, Yunnan Province, China. Environmental 18S rDNA sequences revealed that the green algae orders Watanabeales and Trentepohliales were dominant in almost all algal communities and that phyllosphere algal species richness and biomass were lower in planted forest than in primeval and reserve rainforest. In addition, algal community composition differed significantly between planted forest and primeval rainforest. We also found that algal communities were affected by soluble reactive phosphorous, total nitrogen, and ammonium contents. Our findings indicate that algal community structure is significantly related to forest type and host tree species. Furthermore, this study is the first to identify environmental factors that affect phyllosphere algal communities, significantly contributing to future taxonomic research, especially for the green algae orders Watanabeales and Trentepohliales. This research also serves as an important reference for molecular diversity analysis of algae in other specific habitats, such as epiphytic algae and soil algae.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...