Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
Mais filtros













Base de dados
Intervalo de ano de publicação
1.
J Ethnopharmacol ; 332: 118365, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-38796070

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Fuzheng Touxie Jiedu Huayu Decoction (FTJHD) is a commonly used clinical formula that has been found effective in resisting multidrug resistance-Pseudomonas aeruginosa in previous in vivo and in vitro studies. AIM OF THE STUDY: To investigate the antimicrobial effects of FTJHD and its drug-containing serum alone or in combination with ceftazidime on difficult-to-treat multidrug resistance-P. aeruginosa (DTMDR-P. aeruginosa). MATERIALS AND METHODS: The antibacterial effects of FTJHD and its drug-containing alone or in combination with ceftazidime against DTMDR-P. aeruginosa were examined by the tube dilution method and bacterial growth curves. The changes in the bacterial ultrastructure were examined by transmission electron microscopy. The biofilm formation ability of bacteria was examined by crystal violet staining and scanning electron microscopy. The expression of the MexAB-OprM efflux pump and quorum sensing system genes were validated through quantitative polymerase chain reaction. Molecular docking was used to evaluate the interaction between active components and the MexAB-OprM efflux pump. RESULTS: FTJHD-containing serums at 1-, 2-, 4-, and 8-fold concentrations reduced the minimal inhibitory concentration (MIC) of ceftazidime against DTMDR-P. aeruginosa from 128 µg/mL to 64 µg/mL. Sub-inhibitory concentrations of ceftazidime in combination with FTJHD and FTJHD-containing serum prolonged the lag period of bacterial growth and reduced bacterial numbers. Additionally, 1/2 MIC of ceftazidime combined with FTJHD-containing serum significantly inhibited the activity of the MexAB-OprM efflux pump and quorum sensing system, thus reducing biofilm formation while causing more severe damage to the bacteria. Molecular docking revealed a strong affinity of quercetin, baicalein, luteolin, kaempferol, and ß-sitosterol for the efflux pump regulatory proteins OprM and MexR. CONCLUSION: FTJHD can exert synergistic anti-DTMDR-P. aeruginosa effects with ceftazidime by inhibiting biofilm formation mediated by the MexAB-OprM efflux pump and quorum sensing.


Assuntos
Antibacterianos , Proteínas da Membrana Bacteriana Externa , Biofilmes , Farmacorresistência Bacteriana Múltipla , Medicamentos de Ervas Chinesas , Simulação de Acoplamento Molecular , Pseudomonas aeruginosa , Percepção de Quorum , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/fisiologia , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Percepção de Quorum/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Proteínas da Membrana Bacteriana Externa/metabolismo , Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Membrana Transportadoras/efeitos dos fármacos , Proteínas de Membrana Transportadoras/genética , Ceftazidima/farmacologia
2.
Front Immunol ; 15: 1367253, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38646533

RESUMO

Bovine respiratory disease (BRD) is one of the most common diseases in the cattle industry worldwide; it is caused by multiple bacterial or viral coinfections, of which Mycoplasma bovis (M. bovis) and bovine herpesvirus type 1 (BoHV-1) are the most notable pathogens. Although live vaccines have demonstrated better efficacy against BRD induced by both pathogens, there are no combined live and marker vaccines. Therefore, we developed an attenuated and marker M. bovis-BoHV-1 combined vaccine based on the M. bovis HB150 and BoHV-1 gG-/tk- strain previously constructed in our lab and evaluated in rabbits. This study aimed to further evaluate its safety and protective efficacy in cattle using different antigen ratios. After immunization, all vaccinated cattle had a normal rectal temperature and mental status without respiratory symptoms. CD4+, CD8+, and CD19+ cells significantly increased in immunized cattle and induced higher humoral and cellular immune responses, and the expression of key cytokines such as IL-4, IL-12, TNF-α, and IFN-γ can be promoted after vaccination. The 1.0 × 108 CFU of M. bovis HB150 and 1.0 × 106 TCID50 BoHV-1 gG-/tk- combined strain elicited the most antibodies while significantly increasing IgG and cellular immunity after challenge. In conclusion, the M. bovis HB150 and BoHV-1 gG-/tk- combined strain was clinically safe and protective in calves; the mix of 1.0 × 108 CFU of M. bovis HB150 and 1.0 × 106 TCID50 BoHV-1 gG-/tk- strain was most promising due to its low amount of shedding and highest humoral and cellular immune responses compared with others. This study introduces an M. bovis-BoHV-1 combined vaccine for application in the cattle industry.


Assuntos
Herpesvirus Bovino 1 , Mycoplasma bovis , Vacinas Atenuadas , Vacinas Combinadas , Animais , Bovinos , Herpesvirus Bovino 1/imunologia , Vacinas Combinadas/imunologia , Vacinas Combinadas/administração & dosagem , Vacinas Atenuadas/imunologia , Vacinas Atenuadas/administração & dosagem , Mycoplasma bovis/imunologia , Vacinas Virais/imunologia , Vacinas Virais/administração & dosagem , Vacinas Virais/efeitos adversos , Vacinas Bacterianas/imunologia , Vacinas Bacterianas/administração & dosagem , Vacinas Bacterianas/efeitos adversos , Citocinas/metabolismo , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Infecções por Mycoplasma/prevenção & controle , Infecções por Mycoplasma/veterinária , Infecções por Mycoplasma/imunologia , Vacinas Marcadoras/imunologia , Vacinas Marcadoras/administração & dosagem , Vacinação/veterinária , Eficácia de Vacinas , Imunidade Humoral , Complexo Respiratório Bovino/prevenção & controle , Complexo Respiratório Bovino/imunologia , Complexo Respiratório Bovino/virologia
3.
Animals (Basel) ; 14(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38473133

RESUMO

Bovine respiratory disease (BRD) is one of the most common diseases in the cattle industry; it is a globally prevalent multifactorial infection primarily caused by viral and bacterial coinfections. In China, Mycoplasma bovis (M. bovis) and bovine herpesvirus type 1 (BoHV-1) are the most notable pathogens associated with BRD. Our previous study attempted to combine the two vaccines and conducted a preliminary investigation of their optimal antigenic ratios. Based on this premise, the research extended its investigation by administering varying vaccine doses in a rabbit model to identify the most effective immunization dosage. After immunization, all rabbits in other immunization dose groups had a normal rectal temperature without obvious clinical symptoms. Furthermore, assays performed on the samples collected from immunized rabbits indicated that there were increased humoral and cellular immunological reactions. Moreover, the histological analysis of the lungs showed that immunized rabbits had more intact lung tissue than their unimmunized counterparts after the challenge. Additionally, there appears to be a positive correlation between the protective efficacy and the immunization dose. In conclusion, the different immunization doses of the attenuated and marker M. bovis HB150 and BoHV-1 gG-/tk- combined vaccine were clinically safe in rabbits; the mix of 2.0 × 108 CFU of M. bovis HB150 and 2.0 × 106 TCID50 BoHV-1 gG-/tk- strain was most promising due to its highest humoral and cellular immune responses and a more complete morphology of the lung tissue compared with others. These findings determined the optimal immunization dose of the attenuated and marker M. bovis HB150 and BoHV-1 gG-/tk- combined vaccine, laying a foundation for its clinical application.

4.
Food Chem ; 448: 139115, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38552466

RESUMO

G-quadruplexes (G4) have received significant attention in the field of aptasensors owing to their unique physicochemical characteristics. A dual-mode, protein-free and label-free aptamer sensor based on plasmonic colorimetry and G4 fluorescence (PC@GF-aptasensor) was proposed for ochratoxin A (OTA). Colorimetry mode was achieved through the surface plasmon resonance (SPR) effect, which related to the OTA-Apt-based G4-OTA. The fluorescence mode was reflected by the insertion of thioflavin T (ThT) into G4-OTA. The OTA could be interpreted via three readouts: (1) naked eye (LOD of 2.0 ng mL-1), (2) smartphone (LOD of 1.65 ng mL-1), and (3) spectrofluorometer (LOD of 0.93 ng mL-1). The PC@GF-aptasensor exhibited several advantages, such as a standardised recognition group, simplified operation, low background signal, and practicality. The proposed PC@GF-aptasensor integrated SPR-based multicolour interpretation and ThT-inserted fluorescence reflection to obtain a dual-mode optical biosensor, which may provide valuable insights for the development of other targets with G4-based aptamers.

5.
Metabolites ; 14(2)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38392977

RESUMO

Live prey is characterized by balanced rich nutrients and high palatability and is widely used for the seedling cultivation of freshwater dark sleeper (Odontobutis potamophila) larvae. In this study, we evaluated the effects of four groups of paired feeding regimens (group C (Daphnia magna), group L (Limnodrilus hoffmeisteri), group H (Hypophthalmichthys molitrix fry), and group M (mixed groups C, L, and H)) on glycolipid and energy metabolism in O. potamophila larvae. We observed that fatty acid synthase (FAS) and sterol-regulatory-element-binding protein-1 (SREBP-1) mRNA levels were significantly lower in group H when compared to mRNA levels in the other three groups (p < 0.05) and that carnitine palmitoyltransferase 1α (CPT1-α) mRNA levels were significantly lower in group L when compared to group M (p < 0.05). Relative glucokinase (GK) expression levels were significantly lower in group M when compared to the other three groups (p < 0.05). Using proteomics, we analyzed and compared groups H and L and identified 457 differentially expressed proteins (DEPs), of which 151 were significantly up-regulated and 306 were significantly down-regulated. In the comparison of group M with groups C, L, and H, we found significant enrichment in glycolytic processes, the endoplasmic reticulum lumen, NAD binding, intermediate filaments, and nutrient reservoir activity. Our results provide a theoretical guidance for bait selection during larvae cultivation stages in carnivorous fish.

6.
Aquat Toxicol ; 268: 106844, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38295602

RESUMO

In recent years, excessive discharge of pollutants has led to increasing concentrations of cadmium (Cd) and diclofenac (DCF) in water; however, the toxicity mechanism of combined exposure of the two pollutants to aquatic animals has not been fully studied. Procambarus clarkii is an economically important aquatic species that is easily affected by Cd and DCF. This study examined the effects of combined exposure to Cd and DCF on the tissue accumulation, physiology, biochemistry, and gut microflora of P. clarkii. The results showed that Cd and DCF accumulated in tissues in the order of hepatopancreas > gill > intestine > muscle. The hepatopancreas and intestines were subjected to severe oxidative stress, with significantly increased antioxidant enzyme activity. Pathological examination revealed lumen expansion and epithelial vacuolisation in the hepatopancreas and damage to the villous capillaries and wall in the intestine. The co-exposure to Cadmium (Cd) and Diclofenac (DCF) disrupts the Firmicutes/Bacteroidetes (F/B) ratio, impairing the regular functioning of intestinal microbiota in carbon (C) and nitrogen (N) cycling. This disturbance consequently hinders the absorption and utilization of energy and nutrients in Procambarus clarkii. This study offers critical insights into the toxicological mechanisms underlying the combined effects of Cd and DCF, and suggests potential approaches to alleviate their adverse impacts on aquatic ecosystems.


Assuntos
Poluentes Ambientais , Microbioma Gastrointestinal , Poluentes Químicos da Água , Animais , Cádmio/toxicidade , Antioxidantes/farmacologia , Diclofenaco/toxicidade , Astacoidea , Ecossistema , Poluentes Químicos da Água/toxicidade , Estresse Oxidativo , Água Doce , Poluentes Ambientais/farmacologia
7.
PeerJ ; 12: e16743, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38188162

RESUMO

Nanoplastics (NPs) are an abundant, long-lasting, and widespread type of environmental pollution that is of increasing concern because of the serious threats they might pose to ecosystems and species. Identifying the ecological effects of plastic pollution requires understanding the effects of NPs on aquatic organisms. Here, we used the Pacific white shrimp (Litopenaeus vannamei) as a model species to investigate whether ingestion of polystyrene NPs affects gut microbes and leads to metabolic changes in L. vannamei. The abundance of Proteobacteria increased and that of Bacteroidota decreased after NPs treatment. Specifically, Vibrio spp., photobacterium spp., Xanthomarina spp., and Acinetobacter spp. increased in abundance, whereas Sulfitobacter spp. and Pseudoalteromonas spp. decreased. Histological observations showed that L. vannamei exposed to NP displayed a significantly lower intestinal fold height and damaged intestinal structures compared with the control group. Exposure to NPs also stimulated alkaline phosphatase, lysozyme, and acid phosphatase activity, resulting in an immune response in L. vannamei. In addition, the content of triglycerides, total cholesterol, and glucose were significantly altered after NP exposure. These results provided significant ecotoxicological data that can be used to better understand the biological fate and effects of NPs in L. vannamei.


Assuntos
Microbioma Gastrointestinal , Penaeidae , Animais , Ecossistema , Microplásticos/toxicidade , Fosfatase Alcalina , Bacteroidetes
8.
Mar Biotechnol (NY) ; 25(6): 966-982, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37947961

RESUMO

As an opportunistic pathogen, Aeromonas veronii can cause hemorrhagic septicemia of various aquatic animals. In our present study, a dominant strain SJ4, isolated from naturally infected mandarin fish (Siniperca chuatsi), was identified as A. veronii according to the morphological, physiological, and biochemical features, as well as molecular identification. Intraperitoneal injection of A. veronii SJ4 into S. chuatsi revealed clinical signs similar to the natural infection, and the median lethal dosage (LD50) of the SJ4 to S. chuatsi in a week was 3.8 × 105 CFU/mL. Histopathological analysis revealed that the isolate SJ4 could cause cell enlargement, obvious hemorrhage, and inflammatory responses in S. chuatsi. Detection of virulence genes showed the isolate SJ4 carried act, fim, flgM, ompA, lip, hly, aer, and eprCAL, and the isolate SJ4 also produce caseinase, dnase, gelatinase, and hemolysin. In addition, the complete genome of A. veronii SJ4 was sequenced, and the size of the genome of A. veronii SJ4 was 4,562,694 bp, within a G + C content of 58.95%, containing 4079 coding genes. Nine hundred ten genes encoding for several virulence factors, such as type III and VI secretion systems, flagella, motility, etc., were determined based on the VFDB database. Besides, 148 antibiotic resistance-related genes in 27 categories related to tetracyclines, fluoroquinolones, aminoglycosides, macrolides, chloramphenicol, and cephalosporins were also annotated. The present results suggested that A. veronii was etiological agent causing the bacterial septicemia of S. chuatsi in this time, as well as provided a valuable base for revealing pathogenesis and resistance mechanism of A. veronii.


Assuntos
Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Animais , Aeromonas veronii/genética , Peixes , Virulência/genética , Fatores de Virulência/genética , Antibacterianos , Infecções por Bactérias Gram-Negativas/genética , Doenças dos Peixes/genética
9.
Fish Shellfish Immunol ; 143: 109207, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37923183

RESUMO

Plastics are widely produced for industrial and domestic applications due to their unique properties, and studies on the toxic effects of nanoplastics (NPs) on aquatic animals are essential. In this study, we investigated the transcriptomic patterns of Litopenaeus vannamei after NPs exposure. We found that the lysosome pathway was activated when after NPs exposure, with up-regulated DEGs, including glucocerebrosidase (GBA), hexosaminidase A (HEXA), sphingomyelin phosphodiesterase-1 (SMPD1), and solute carrier family 17 member 5 (SLC17A5). In addition, the PI3K-Akt signaling pathway was strongly affected by NPs, and the upstream genes of PI3K-Akt, including epidermal growth factor receptor (EGFR), integrin subunit beta 1 (ITGB1) and heat shock protein 90 (HSP90) were up-regulation. Other genes involved in lipogenesis, such as sterol regulatory element binding transcription factor 1 (SREBP-1c), fatty acid synthase (FASN) and stearoyl-CoA desaturase (SCD-1), were down-regulated. However, the contents of triglycerides (TG) and total cholesterol (TCH) in L. vanname hepatopancreas were reduced, which indicated that the ingestion of NPs led to the disturbance of hepatic lipid metabolism. What more, NPs treatment of L. vannamei also caused oxidative stress. In addition, NPs can damage part of the tissue structure and affect the physiological function of shrimps. The results of this study provide valuable ecotoxicological data to improve the understanding of the biological fate and effects of nanoplastics in L. vannamei.


Assuntos
Penaeidae , Transcriptoma , Animais , Poliestirenos , Microplásticos , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Penaeidae/fisiologia , Hepatopâncreas/metabolismo
10.
Vaccines (Basel) ; 11(11)2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-38006030

RESUMO

Bovine respiratory disease (BRD) is a global prevalent multifactorial infection primarily caused by viral and bacterial coinfections. In China, Mycoplasma bovis (M. bovis) and bovine herpesvirus type 1 (BoHV-1) are the predominant pathogens associated with BRD. Our previous study involved the development of attenuated M. bovis HB150 and BoHV-1 gG-/tk- vaccine strains, which were thoroughly assessed for their safety profiles and protective efficacy in cattle. In this study, we applied a combination of vaccines in varying ratios and used a rabbit model to determine the safety and protective efficacy. We used PCR/RT-PCR to detect the postimmunization and challenge shedding of M. bovis and BoHV-1. Additionally, we measured antibody titers and the expression of IFN-ß and TNF-α to evaluate the humoral and cellular immune responses, respectively. Furthermore, we performed a histopathological analysis to assess lung damage. Our study provides evidence of the safety and effectiveness of the bivalent M. bovis-BoHV-1 vaccine in rabbits, particularly when applying a combination of 1.0 × 108 CFU of M. bovis HB150 and 1.0 × 106 TCID50 of the BoHV-1 gG-/tk- strain. The bivalent vaccine significantly enhanced both the long-term antibody immune response and cellular protection against the M. bovis and BoHV-1 challenge. These findings provide a valuable model for the potential application in cattle.

11.
Org Lett ; 25(48): 8761-8765, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38019050

RESUMO

A dual-stimulus-driven stiff-stilbene-based dynamic [3]rotaxane has been facilely developed using the threading-stoppering strategy and exhibits reversible shuttling motions and bidirectional rotations upon encountering acid-base and distinct light stimulations, respectively. Herein, the two dibenzo-24-crown-8 macrocycles can undergo reversible switching motion between two different stations along the axle suffered from acid-base stimulation, and simultaneously, the two rotaxanes can also perform cis-trans rotations upon irradiation with distinct light. In other words, the constructed rotaxanes can conduct two modes of regular motions without interference. Interestingly, reciprocating switching motion of the rings along the axle enabled the rotaxanes to exhibit controllable and reversible photoisomerization speed, conversion yield, and quantum yield. Crucially, these rotaxanes also manifest adjustable solid-state organic room-temperature phosphorescence (RTP) and photoluminescence stimulated by dual factors (acid-base and diverse light), which are further applied in information encryption and anticounterfeiting. The presented study provides an instructive way for precisely boosting photoisomerization performances and the fabrication of dual-stimuli-induced molecular machines with functions of two-mode mechanical motions and controllable pure organic RTP switches.

12.
Heliyon ; 9(11): e21869, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38034600

RESUMO

Ethnopharmacological relevance: Ulcerative colitis (UC) is a chronic relapsing intestinal disease with complex pathogenesis. The increasing morbidity and mortality of UC become a global public health threat. Baitouweng decoction (BD), a formulated prescription of Traditional Chinese Medicine, has been applied to cure UC for many centuries. However, the therapeutic efficacy and working mechanisms of this medicine are not well studied. Aim of study: In this study we determined whether Pulsatillae radix, one of four ingredients in BD, had a therapeutic effect on colitis. And explore the underlying mechanism of Pulsatilla chinensis (Bunge) Regel radix in the improvement of DSS-induced colitis in mice model. Methods: The active compounds of Pulsatilla chinensis was identified by UPLC. The composition of the mice's cecum microbiota was determined by 16S rRNA sequencing. And gene expression profile of colon was detected by transcriptome. Results: The results showed that Pulsatillae radix significantly improved the clinical symptom, prevented the shorten of colon length, and decreased the diseased activity index (DAI) in an 3 % DSS-induced ulcerative colitis mouse model. We found that Pulsatillae radix reversed the dysbiosis of gut microbiota as evidenced by increase in the relative abundance of Bacteroidetes, Deferribacteres, and Proteobacteria phyla and decrease in Firmicutes, as well as by decrease in the genera levels of Bacteroides, Parabacteroides, Prevotella, Mucispirillum, Coprococcus, Oscillospira, and Escherichia. The results of transcriptome showed Pulsatillae radix administration led to 128 genes up-regulation, and 122 genes down-regulation, up-regulate NOD-like receptor signaling pathway, down-regulate Cytokine-cytokine receptor interaction, and TNF and IL-17 signaling pathways. Conclusion: in this study, we demonstrate Pulsatillae radix alleviates DSS-induced colitis probably via modulating gut microbiota and inflammatory signaling pathway in DSS-induced colitis mouse model.

13.
Aquat Toxicol ; 263: 106711, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37783050

RESUMO

The COVID-19 pandemic has further intensified plastic pollution due to the escalated use of single-use gloves and masks, consequently leading to the widespread presence of microplastics (MPs) and nanoplastics (NPs) in major rivers and lakes worldwide. Macrobrachium rosenbergii has become an important experimental subject due to its ecological role and environmental sensitivity. In this study, we sought to comprehend the ramifications of NPs on the widely-distributed freshwater prawn, M rosenbergii, by conducting a detailed analysis of its responses to NPs after both 96 h and 30 days of exposure. The transcriptome analysis revealed 918 differentially expressed unigenes (DEGs) after 30 days of NPs exposure (356 upregulated, 562 downregulated) and 2376 DEGs after 96 h of NPs exposure (1541 upregulated, 835 downregulated). The results of DEGs expression indicated that acute NPs exposure enhanced carbohydrate transport and metabolism, fostering chitin and extracellular matrix processes. In contrast, chronic NPs exposure induced nucleolar stress in M. rosenbergii, impeding ribosome development and mRNA maturation while showing no significant changes in glucose metabolism. Our findings underscore the M. rosenbergii distinct coping mechanisms during acute and chronic NPs exposure, elucidating its vital adaptive strategies. These results contribute to our understanding of the ecological implications of NPs pollution and its impact on aquatic animals.


Assuntos
COVID-19 , Nanopartículas , Palaemonidae , Poluentes Químicos da Água , Animais , Humanos , Palaemonidae/genética , Poliestirenos/toxicidade , Pandemias , Plásticos , Poluentes Químicos da Água/toxicidade , Nanopartículas/toxicidade , Lagos
14.
JACS Au ; 3(9): 2550-2556, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37772187

RESUMO

Chirality transfer and regulation, accompanied by morphology transformation, arouse widespread interest for application in materials and biological science. Here, a photocontrolled supramolecular chiral switch is fabricated from chiral diphenylalanine (l-Phe-l-Phe, FF) modified with naphthalene (2), achiral dithienylethene (DTE) photoswitch (1), and cucurbit[8]uril (CB[8]). Chirality transfer from the chiral FF moiety of 2 to a charge-transfer (CT) heterodimer consisting of achiral guest 1 and achiral naphthalene (NP) in 2 has been unprecedented achieved via the encapsulation of CB[8]. On the contrary, chirality transfer from chiral FF to NP cannot be conducted in only guest 2. Crucially, induced circular dichroism of the heterodimer can be further modulated by distinct light, attributing to reversible photoisomerization of the DTE. Meanwhile, topological nanostructures are changed from one-dimensional (1D) nanofibers to two-dimensional (2D) nanosheets in the orderly assembling process of the heterodimer, which further achieved reversible interconversion between 2D nanosheets and 1D nanorods with tunable-induced chirality stimulated by diverse light.

15.
Front Physiol ; 14: 1201914, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37275236

RESUMO

The bacterium Aeromonas veronii is a co-pathogenic species that can negatively impact the health of both humans and aquatic animals. In this study, we used single-cell transcriptome analysis (scRNA-seq) to investigate the effects of infection with A. veronii on head kidney cells and the regulation of gene expression in the dark sleeper (Odontobutis potamophila). scRNA-seq was used to assess the effects of infection with A. veronii in O. potamophila B cells, endothelial cells, macrophages, and granulocytes, and differential enrichment analysis of gene expression in B cells and granulocytes was performed. The analyses revealed a significant increase in neutrophils and decrease in eosinophils in granulocytes infected with A. veronii. Activation of neutrophils enhanced ribosome biogenesis by up-regulating the expression of RPS12 and RPL12 to fight against invading pathogens. Crucial pro-inflammatory mediators IL1B, IGHV1-4, and the major histocompatibility class II genes MHC2A and MHC2DAB, which are involved in virulence processes, were upregulated, suggesting that A. veronii activates an immune response that presents antigens and activates immunoglobulin receptors in B cells. These cellular immune responses triggered by infection with A. veronii enriched the available scRNA-seq data for teleosts, and these results are important for understanding the evolution of cellular immune defense and functional differentiation of head kidney cells.

16.
ACS Omega ; 8(20): 17609-17619, 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37251128

RESUMO

Quercetin is a flavonoid widely found in food and traditional herbs. In this study, we evaluated the anti-aging effects of quercetin on Simocephalus vetulus (S. vetulus) by assessing lifespan and growth parameters and analyzed the differentially expressed proteins and crucial pathways associated with quercetin activity using proteomics. The results demonstrated that, at a concentration of 1 mg/L, quercetin significantly prolonged the average and maximal lifespans of S. vetulus and increased the net reproduction rate slightly. The proteomics-based analysis revealed 156 differently expressed proteins, with 84 being significantly upregulated and 72 significantly downregulated. The protein functions were identified as being associated with glycometabolism, energy metabolism, and sphingolipid metabolism pathways, and the key enzyme activity and related gene expression, such that of AMPK, supported the importance of these pathways in the anti-aging activity of quercetin. In addition, quercetin was found to regulate the anti-aging-related proteins Lamin A and Klotho directly. Our results increased the understanding of quercetin's anti-aging effects.

17.
J Ethnopharmacol ; 313: 116481, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37072090

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The combined prescription of two classical decoctions (Ma-Xing-Shi-Gan decoction with Xiao-Chai-Hu decoction), named as San-Yang-He-Zhi (SYHZ) decoction, has been widely used for the treatment of influenza virus (IFV) infections for decades. AIM OF THE STUDY: This study aimed to evaluate the anti-influenza effect of SYHZ decoction and explore the underlying mechanism. MATERIALS AND METHODS: The ingredients of SYHZ decoction were analyzed by mass spectrometry. An animal model of IFV infection was established by challenging C57BL/6J mice with PR8 virus. Three groups of mice were infected with lethal or non-lethal doses of IFV, then followed by oral administration of phosphate-buffered saline (PBS), or SYHZ, or oseltamir; blank control mice (without IFV infection) were treated with PBS. Survival rate, Lung index, colon length, body weight loss and IFV viral load were measured 7 days post infection; histology and electron-microscopy examinations of lung tissue were performed; cytokine and chemokine levels in lung and serum were measured; and the intestinal metagenome, the cecum metabolome, and the lung transcriptome were analyzed. RESULTS: SYHZ treatment significantly improved survival rate compared with PBS (40% vs 0%); improved lung index, colon length, and body weight loss; and alleviated lung histological damage and viral load. SYHZ-treated mice had significantly lower levels of IL-1ß, TNF-α, IL-6, CCL2, CXCL10 in lung and serum, and increased levels of multiple bioactive components in cecum. Pro-inflammatory cytokines, Toll- and NOD-like receptors, pro-apoptosis molecules, and lung-injury-related proteins were downregulated in SYHZ mice, whereas surfactant protein and mucin were upregulated. The NOD-like receptor pathway, Toll-like receptor pathway, and NF-κB pathway were downregulated by SYHZ treatment. CONCLUSIONS: SYHZ decoction alleviated IFV infection in a mouse model. Multiple bioactive ingredients of SYHZ may inhibit replication of IFV and suppress excessive immune response.


Assuntos
Medicamentos de Ervas Chinesas , Infecções por Orthomyxoviridae , Orthomyxoviridae , Camundongos , Animais , Camundongos Endogâmicos C57BL , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Pulmão , Citocinas/metabolismo , Orthomyxoviridae/metabolismo , Replicação Viral , Redução de Peso
19.
Microbiol Resour Announc ; 12(4): e0093322, 2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-36995222

RESUMO

Aeromonas hydrophila is one of the most important pathogenic bacteria for aquaculture animals, such as fish and crustaceans. In this study, we isolated a pathogenic bacterial strain, named Y-SC01, from dark sleeper (Odontobutis potamophila) with rotten gills; the strain was identified as A. hydrophila by physiological and biochemical tests. Furthermore, we sequenced its genome and assembled a chromosome of 4.72 Mb with a GC content of 58.55%, and we report major findings based on the genomic analysis.

20.
Microbiol Spectr ; 11(1): e0251722, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36625637

RESUMO

Hyperlipidemia is a risk factor and key indicator for cardiovascular diseases, and the gut microbiota is highly associated with hyperlipidemia. Bacteroides vulgatus is a prevalent mutualist across human populations and confers multiple health benefits such as immunoregulation, antiobesity, and coronary artery disease intervention. However, its role in antihyperlipidemia has not been systematically characterized. This study sought to identify the effect of B. vulgatus Bv46 on hyperlipidemia. Hyperlipidemic rats were modeled by feeding them a high-fat diet for 6 weeks. The effect of B. vulgatus Bv46 supplementation was evaluated by measuring anthropometric parameters, lipid and inflammation markers, and the liver pathology. Multi-omics was used to explore the underlying mechanisms. The ability of B. vulgatus Bv46 to produce bile salt hydrolase was confirmed by gene annotation and in vitro experiments. Oral administration of B. vulgatus Bv46 in hyperlipidemic rats significantly reduced the body weight gain, food efficiency, and liver index, improved the serum lipid profile, lowered the levels of serum inflammatory cytokines, promoted the loss of fecal bile acids (BAs), and extended the fecal pool of short-chain fatty acids (SCFAs), especially propionate and butyrate. B. vulgatus Bv46 induced compositional shifts of the gut microbial community of hyperlipidemic rats, characterized by a lower ratio of Firmicutes to Bacteroidetes with an increase of genera Bacteroides and Parabacteroides. After intervention, serum metabolite profiling exhibited an adaptation in amino acids and glycerophospholipid metabolism. Transcriptomics further detected altered biological processes, including primary bile acid biosynthesis and fatty acid metabolic process. Taken together, the findings suggest that B. vulgatus Bv46 could be a promising candidate for interventions against hyperlipidemia. IMPORTANCE As a core microbe of the human gut ecosystem, Bacteroides vulgatus has been linked to multiple aspects of metabolic disorders in a collection of associative studies, which, while indicative, warrants more direct experimental evidence to verify. In this study, we experimentally demonstrated that oral administration of B. vulgatus Bv46 ameliorated the serum lipid profile and systemic inflammation of high-fat diet-induced hyperlipidemic rats in a microbiome-regulated manner, which appears to be associated with changes of bile acid metabolism, short-chain fatty acid biosynthesis, and serum metabolomic profile. This finding supports the causal contribution of B. vulgatus in host metabolism and helps to form the basis of novel therapies for the treatment of hyperlipidemia.


Assuntos
Microbioma Gastrointestinal , Hiperlipidemias , Ratos , Humanos , Animais , Ecossistema , Bacteroides/metabolismo , Ácidos Graxos Voláteis/metabolismo , Inflamação , Metabolismo dos Lipídeos , Ácidos e Sais Biliares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA