Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.727
Filtrar
1.
Phys Chem Chem Phys ; 26(28): 19217-19227, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38957117

RESUMO

An inverse sandwich structure has been computationally predicted for uranium boride and extended to the series of actinide elements (An) from Th to Cm. The electronic structure and chemical bonding of these novel compounds have been analyzed using density functional theory and multireference wave-function based methods. We report the trends in electronic structure and bonding for An2B8, and found that (d-π)π and (d-p)δ are the most important factors in the stability of An2B8. The (f-p)δ bond provides extra stabilization for Pa2B8 and U2B8, owing to the extensive interactions of An-B8-An, resulting in a short distance for the Pa-Pa and U-U bonds.

2.
J Agric Food Chem ; 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39021280

RESUMO

Synthetic aromatic esters, widely employed in agriculture, food, and chemical industries, have become emerging environmental pollutants due to their strong hydrophobicity and poor bioavailability. This study attempted to address this issue by extracellularly expressing the promiscuous aminopeptidase (Aps) from Pseudomonas aeruginosa GF31 in B. subtilis, achieving an impressive enzyme activity of 13.7 U/mg. Notably, we have demonstrated, for the first time, the Aps-mediated degradation of diverse aromatic esters, including but not limited to pyrethroids, phthalates, and parabens. A biochemical characterization of Aps reveals its esterase properties and a broader spectrum of substrate profiles. The degradation rates of p-nitrobenzene esters (p-NB) with different side chain structures vary under the action of Aps, showing a preference for substrates with relatively longer alkyl side chains. The structure-dependent degradability aligns well with the binding energies between Aps and p-NB. Molecular docking and enzyme-substrate interaction elucidate that hydrogen bonding, hydrophobic interactions, and π-π stacking collectively stabilize the enzyme-substrate conformation, promoting substrate hydrolysis. These findings provide new insights into the enzymatic degradation of aromatic ester pollutants, laying a foundation for the further development and modification of promiscuous enzymes.

3.
Front Nutr ; 11: 1429242, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39006102

RESUMO

Introduction: Sarcopenia, an age-related disease, has become a major public health concern, threatening muscle health and daily functioning in older adults around the world. Changes in the gut microbiota can affect skeletal muscle metabolism, but the exact association is unclear. The richness of gut microbiota refers to the number of different species in a sample, while diversity not only considers the number of species but also the evenness of their abundances. Alpha diversity is a comprehensive metric that measures both the number of different species (richness) and the evenness of their abundances, thereby providing a thorough understanding of the species composition and structure of a community. Methods: This meta-analysis explored the differences in intestinal microbiota diversity and richness between populations with sarcopenia and non-sarcopenia based on 16 s rRNA gene sequencing and identified new targets for the prevention and treatment of sarcopenia. PubMed, Embase, Web of Science, and Google Scholar databases were searched for cross-sectional studies on the differences in gut microbiota between sarcopenia and non-sarcopenia published from 1995 to September 2023 scale and funnel plot analysis assessed the risk of bias, and performed a meta-analysis with State v.15. 1. Results: A total of 17 randomized controlled studies were included, involving 4,307 participants aged 43 to 87 years. The alpha diversity of intestinal flora in the sarcopenia group was significantly reduced compared to the non-sarcopenia group: At the richness level, the proportion of Actinobacteria and Fusobacteria decreased, although there was no significant change in other phyla. At the genus level, the abundance of f-Ruminococcaceae; g-Faecalibacterium, g-Prevotella, Lachnoclostridium, and other genera decreased, whereas the abundance of g-Bacteroides, Parabacteroides, and Shigella increased. Discussion: This study showed that the richness of the gut microbiota decreased with age in patients with sarcopenia. Furthermore, the relative abundance of different microbiota changed related to age, comorbidity, participation in protein metabolism, and other factors. This study provides new ideas for targeting the gut microbiota for the prevention and treatment of sarcopenia. Systematic Review Registration: https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=475887, CRD475887.

4.
BMC Cardiovasc Disord ; 24(1): 354, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38992615

RESUMO

BACKGROUND: Hyperlipidemia damages vascular wall and serves as a foundation for diseases such as atherosclerosis, hypertension and stiffness. The NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome is implicated in vascular dysfunction associated with hyperlipidemia-induced vascular injury. Sodium tanshinone IIA sulfonate (STS), a well-established cardiovascular protective drug with recognized anti-inflammatory, antioxidant, and vasodilatory properties, is yet to be thoroughly investigated for its impact on vascular relaxant imbalance induced by hyperlipidemia. METHODS: In this study, we treated ApoE-knockout (ApoE-/-) mouse with STS and assessed the activation of the NLRP3 inflammasome, expression of MMP2/9, integrity of elastic fibers, and vascular constriction and relaxation. RESULTS: Our findings reveal that STS intervention effectively preserves elastic fibers, significantly restores aortic relaxation function in ApoE-/- mice, and reduces their excessive constriction. Furthermore, STS inhibits the phosphorylation of spleen tyrosine kinase (SYK), suppresses NLRP3 inflammasome activation, and reduces MMP2/9 expression. CONCLUSIONS: These results demonstrate that STS protects vascular relaxation against hyperlipidemia-induced damage through modulation of the SYK-NLRP3 inflammasome-MMP2/9 pathway. This research provides novel insights into the mechanisms underlying vascular relaxation impairment in a hyperlipidemic environment and uncovers a unique mechanism by which STS preserves vascular relaxation, offering valuable foundational research evidence for its clinical application in promoting vascular health.


Assuntos
Modelos Animais de Doenças , Inflamassomos , Metaloproteinase 2 da Matriz , Metaloproteinase 9 da Matriz , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Proteína 3 que Contém Domínio de Pirina da Família NLR , Fenantrenos , Transdução de Sinais , Quinase Syk , Vasodilatação , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inflamassomos/metabolismo , Quinase Syk/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Fenantrenos/farmacologia , Masculino , Metaloproteinase 9 da Matriz/metabolismo , Vasodilatação/efeitos dos fármacos , Hiperlipidemias/tratamento farmacológico , Hiperlipidemias/fisiopatologia , Vasodilatadores/farmacologia , Fosforilação , Camundongos , Aorta/efeitos dos fármacos , Aorta/fisiopatologia , Aorta/metabolismo , Aorta/enzimologia , Apolipoproteínas E
6.
Cell Rep ; 43(7): 114477, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38985676

RESUMO

Despite the success of programmed cell death 1 (PD-1)/programmed death ligand 1 (PD-L1) inhibition in tumor therapy, many patients do not benefit. This failure may be attributed to the intrinsic functions of PD-L1. We perform a genome-wide CRISPR synthetic lethality screen to systematically explore the intrinsic functions of PD-L1 in head and neck squamous cell carcinoma (HNSCC) cells, identifying ferroptosis-related genes as essential for the viability of PD-L1-deficient cells. Genetic and pharmacological induction of ferroptosis accelerates cell death in PD-L1 knockout cells, which are also more susceptible to immunogenic ferroptosis. Mechanistically, nuclear PD-L1 transcriptionally activates SOD2 to maintain redox homeostasis. Lower reactive oxygen species (ROS) and ferroptosis are observed in patients with HNSCC who have higher PD-L1 expression. Our study illustrates that PD-L1 confers ferroptosis resistance in HNSCC cells by activating the SOD2-mediated antioxidant pathway, suggesting that targeting the intrinsic functions of PD-L1 could enhance therapeutic efficacy.

7.
Plant Cell Physiol ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38988201

RESUMO

Classic genome-wide association studies (GWAS) look for associations between individual SNPs and phenotypes of interest. With the rapid progress of high-throughput genotyping and phenotyping technologies, GWAS have become increasingly powerful for detecting genetic determinants and their molecular mechanisms underpinning natural phenotypic variation. However, GWAS frequently yield results with neither expected nor promising loci, nor any significant associations. This is often because associations between SNPs and a single phenotype are confounded, for example with the environment, other traits, or complex genetic structures. Such confounding can mask true genotype-phenotype associations, or inflate spurious associations. To address these problems, numerous methods have been developed that go beyond the standard model. Such advanced GWAS models are flexible and can offer improved statistical power for understanding the genetics underlying complex traits. Despite this advantage, these models have not been widely adopted and implemented compared to the standard GWAS approach, partly because this literature is diverse and often technical. In this review, our aim is to provide an overview of the application and the benefits of various advanced GWAS models for handling complex traits and genetic structures, targeting plant biologists who wish to carry out GWAS more effectively.

10.
J Colloid Interface Sci ; 674: 925-937, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38959738

RESUMO

Proton exchange membranes with high ionic conductivity and good chemical stability are critical for achieving high power density and long lifespan of direct methanol cells (DMFCs). Herein, a zwitterionic molecule was grafted onto the surface of polyvinylidene fluoride (PVDF) nanofibers to obtain functionalized PVDF porous substrate (SBMA-PDA@PVDF). Then, sulfonated poly(ether ether ketone) (SPEEK) was filled into the pores of SBMA-PDA@PVDF, and further ionic cross-linked via H2SO4 to prepare the composite membrane (SBMA-PDA@PVDF/SPEEK). The basic groups on the zwitterionic interface could not only establish ionic cross-linking with SPEEK to increase chemical stability and reduce swelling, but also serve as the adsorption sites for subsequent H2SO4 cross-linking to significantly enhance proton conductivity. Super-high proton conductivity (165.34 mS cm-1, 80 °C) was achieved for the membrane, which was 2.12 times higher than that of the pure SPEEK. Moreover, the SBMA-PDA@PVDF/SPEEK membrane exhibited remarkably improved oxidative stability of 91.6 % mass retention after soaking in Fenton's agent for 12 h, while pure SPEEK completely decomposed. Satisfactorily, the DMFC assembled with SBMA-PDA@PVDF/SPEEK exhibited a peak power density of 99.01 mW cm-2, which was twice as much as that of commercial Nafion 212 (48.88 mW cm-2). After 235 h durability test, only 11 % voltage loss was observed.

11.
Artigo em Inglês | MEDLINE | ID: mdl-39031110

RESUMO

OBJECTIVE: To evaluate the prognostic factors and survival outcomes of patients with surgically treated high-grade neuroendocrine carcinoma of the cervix (NECC). METHODS: This multicenter, retrospective study involved 98 cervical cancer patients with stage IA2-IIA2 and IIIC1/2p high-grade NECC. We divided the patients into two groups based on histology: the pure and mixed groups. All clinicopathologic variables were retrospectively evaluated. Cox regression and Kaplan-Meier methods were used for analysis. RESULTS: In our study, 60 patients were in the pure group and 38 patients were in the mixed group. Cox multivariate analysis showed that mixed histology was a protective factor impacting overall survival (OS) (P = 0.026) and progression free survival (PFS) (P = 0.018) in surgically treated high-grade NECC. Conversely, survival outcomes were negatively impacted by ovarian preservation (OS: HR, 20.84; 95% CI: 5.02-86.57, P < 0.001), age >45 years (OS: HR, 4.50; 95% CI: 1.0-18.83, P = 0.039), tumor size >4 cm (OS: HR, 6.23; 95% CI: 2.34-16.61, P < 0.001), parity >3 (OS: HR, 4.50; 95% CI: 1.02-19.91, P = 0.048), and perineural invasion (OS: HR, 5.21; 95% CI: 1.20-22.53, P = 0.027). Kaplan-Meier survival curves revealed notable differences in histologic type (OS: P = 0.045; PFS: P = 0.024), chemotherapy (OS: P = 0.0056; PFS: P = 0.0041), ovarian preservation (OS: P = 0.00031; PFS: P = 0.0023), uterine invasion (OS: P < 0.0001; PFS: P < 0.0001), and depth of stromal invasion (OS: P = 0.043; PFS: P = 0.022). CONCLUSION: Patients with mixed histologic types who undergo surgery for high-grade NECC have a better prognosis. Meanwhile, ovarian preservation, tumor size >4 cm, parity >3, age >45 years and perineural invasion were poor prognostic predictors. Therefore, patients with high-risk factors should be considered in clinical practice.

12.
Nanoscale ; 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39028270

RESUMO

Metal coordination polymers are organometallic frameworks in which a metal and an organic ligand are linked via a dative bond. The material in question exhibits ultra-high porosity, large specific surface area, and abundant active sites, which can be customised in terms of morphology, size, and electronic structure through rational design. Graphdiyne, a novel two-dimensional carbon allotrope, boasts structural stability and enhanced electrical conductivity due to its hybridization of sp2 and sp carbons. A metal-organic framework of Co (MOF-67) was synthesized via hydrothermal synthesis. The introduction of polyvinyl pyrrolidone (PVP) served as a structural regulator and surfactant to obtain a more active metal coordination polymer (Co-MCPS). PVP, in its dual role, significantly amplified the catalytic performance of metal coordinate polymers, as demonstrated in a number of experiments. The incorporation of GDY onto the surfaces of MOF-67 and Co-MCPS induced an electron-rich isolation layer, which could effectively sequester oxidation sites, thereby enhancing the rate of charge carrier separation and hydrogen precipitation evolution efficiency.

13.
Angew Chem Int Ed Engl ; : e202411508, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39014940

RESUMO

The conversion of CO2 to C2 through photocatalysis poses significant challenges, and one of the biggest hurdles stems from the sluggishness of the multi-electron transfer process. Herein, taking metal-organic framework (PFC-98) as a model photocatalyst, we report a new strategy to facilitate charge separation. This strategy involves matching the energy levels of the lowest unoccupied node and linker orbitals of the MOF, thereby creating the lowest unoccupied crystal orbital (LUCO) delocalized over both the node and linker. This feature enables the direct excitation of electrons from photosensitive linker to the catalytic centers, achieving a direct charge transfer (DCT) pathway. For comparison, an isoreticular MOF (PFC-6) based on analogue components but with far apart frontier energy level was synthesized. The delocalized LUCO caused the presence of an internal charge-separated state (ICS), prolonging the excited state lifetime and further inhibiting the electron-hole recombination. The presence of an internal charge-separated state (ICS) prolongs the excited state lifetime and further inhibits the electron-hole recombination. Moreover, it also induced abundant electrons accumulating at the catalytic sites, enabling the multi-electron transfer process. As a result, the material featuring delocalized LUCO exhibits superior overall CO2 photocatalytic performance with high C2 production yield and selectivity.

14.
Front Aging Neurosci ; 16: 1418455, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39021706

RESUMO

Background: Cognitive function (CF) deterioration is a pressing concern in geriatric research. This study aimed to explore the relationship between physical activity (PA) and CF in older adults. Methods: This study adopted a dual approach, employing both observational and genetic approaches through data from the National Health and Nutrition Examination Survey (NHANES) 2011-2014 and Mendelian Randomization (MR) analysis. For the NHANES component, PA levels were evaluated using the Global Physical Activity Questionnaire, and CF was assessed via standardized tests. Multivariate regression, threshold effect analysis, smoothing curve fitting, and subgroup analyses were conducted to examine the association between PA and CF. In parallel, MR methods, using genetic variants as instrumental variables, assessed the causal impact of PA on CF and related conditions such as Alzheimer's disease and dementia. Results: Observational findings from NHANES demonstrated a positive correlation between PA and CF, notably among female participants. The detailed analysis identified specific thresholds of PA that correlate with cognitive enhancements. However, MR results did not support a significant causal relationship between PA and CF or dementia-related outcomes, indicating an absence of a direct genetic basis for the observational associations. Conclusion: Although observational data from NHANES suggest that PA is positively associated with CF in older adults, particularly among women, MR analysis did not confirm these findings as causally related. The discrepancy highlights the complexity of the PA-CF relationship and underscores the need for further research. These results emphasize the potential of PA as a modifiable risk factor for CF, though causal effects remain to be definitively established.

15.
Adv Mater ; : e2406026, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38923609

RESUMO

While the construction of a donor-acceptor (D-A) structure has gained great attention across various scientific disciplines, such structures are seldomly reported within the field of hydrogen-bonded organic frameworks (HOFs). Herein, a D-A based HOF is synthesized, where the adjacent D-A pairs are connected by hydrogen bonds instead of the conventionally employed covalent bonds. This structural feature imparts material with a reduced energy gap between excited state and triplet state, thereby facilitating the intersystem crossing (ISC) and boosting the generation rate of single oxygen (quantum yield = 0.98). Consequently, the resulting material shows high performance for antimicrobial photodynamic therapy (PDT). The impact of D-A moiety is evident when comparing this finding to a parallel study conducted on an isoreticular HOF without a D-A structure. The study presented here provides in-depth insights into the photophysical properties of D-A pair in a hydrogen-bonded network, opening a new avenue to the design of innovative materials for efficient PDT.

16.
J Clin Sleep Med ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38935059

RESUMO

STUDY OBJECTIVES: Postoperative respiratory adverse events (PRAE) occurred more frequently in children having adenotonsillectomy than the general surgical population, and can require escalation of care. This study aims to assess the usefulness of post-induction fentanyl-test to predict PRAE in children with obstructive sleep apnea (OSA) after adenotonsillectomy. METHODS: Two hundred and forty patients with OSA undergoing adenotonsillectomy were included in this study. The oxygen saturation during sleep was monitored the night before adenotonsillectomy. Fentanyl-test was conducted under spontaneous breath after anesthesia induction with sevoflurane. Fentanyl-induced reduction in respiratory rate (FRR) was defined as the percentage of reduction in respiratory rate after 1 mcg/kg fentanyl administration. PRAE in the post-anesthesia care unit (PACU) included both respiratory complications and medical interventions. Receiver operating characteristic (ROC) analysis was used to assess the usefulness of fentanyl-test in predicting PRAE. RESULTS: Of the 240 children undergoing elective adenotonsillectomy, 38 children (16%) experienced PRAE in PACU. The areas under ROC curve for FRR and Nadir SpO2 were 0.756 and 0.692, respectively. FRR greater than 53% best predicted PRAE in PACU, with a sensitivity of 68% and a specificity of 72%. Patients with FRR > 53% exhibited a significantly longer duration of desaturation requiring supplementary oxygen than those with FRR ≦ 53% (p < 0.001). CONCLUSIONS: We suggest that post-induction fentanyl-test is a feasible evaluation for children undergoing adenotonsillectomy to predict early PRAE, especially for those who have not undergone polysomnography. CLINICAL TRIAL REGISTRATION: Registry: ClinicalTrials.gov; Name: Effects of Individualized Opioid Analgesia Versus Conventional Opioid Analgesia After Adenotonsillectomy in Children; URL: https://clinicaltrials.gov/study/NCT04527393; Identifier: NCT04527393.

17.
Front Med (Lausanne) ; 11: 1389695, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38873211

RESUMO

Acute kidney injury (AKI) is a major complication following liver transplantation (LT), which utilizes grafts from donors after cardiac death (DCD). We developed a machine-learning-based model to predict AKI, using data from 894 LT recipients (January 2015-March 2021), split into training and testing sets. Five machine learning algorithms were employed to construct the prediction models using 17 clinical variables. The performance of the models was assessed by the area under the receiver operating characteristic curve (AUC), accuracy, F1-score, sensitivity and specificity. The best-performing model was further validated in an independent cohort of 195 LT recipients who received DCD grafts between April 2021 and December 2021. The Shapley additive explanations method was utilized to elucidate the predictions and identify the most crucial features. The gradient boosting machine (GBM) model demonstrated the highest AUC (0.76, 95% CI: 0.70-0.82), F1-score (0.73, 95% CI: 0.66-0.79) and sensitivity (0.74, 95% CI: 0.66-0.80) in the testing set and a comparable AUC (0.75, 95% CI: 0.67-0.81) in the validation set. The GBM model identified high preoperative indirect bilirubin, low intraoperative urine output, prolonged anesthesia duration, low preoperative platelet count and graft steatosis graded NASH Clinical Research Network 1 and above as the top five important features for predicting AKI following LT using DCD grafts. The GBM model is a reliable and interpretable tool for predicting AKI in recipients of LT using DCD grafts. This model can assist clinicians in identifying patients at high risk and providing timely interventions to prevent or mitigate AKI.

18.
J Stomatol Oral Maxillofac Surg ; : 101937, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38844022

RESUMO

BACKGROUND: Accumulating evidence has suggested that RNA binding protein (RBP) dysregulation plays an essential role during tumorigenesis. Here, we sought to explore the potential biological functions and clinical significance of RBP and develop diagnostic and prognostic signatures based on RBP in patients with head and neck squamous cell carcinoma (HNSCC). METHODS: The differently expressed RBPs between HNSCC samples and their normal counterparts were identified using the Limma package. The immunohistochemistry (IHC) images of several RBPs were collected from the Human Protein Atlas database. The diagnostic signature based on RBP was built by LASSO-logistic regression and random forest. The prognostic signature based on RBP was constructed by LASSO and stepwise Cox regression analysis in the training cohort and validated in the validation cohort. RESULTS: Eighty-four aberrantly expressed RBPs were obtained, comprising 41 up-regulated and 43 down-regulated RBPs. Seven RBP genes (CPEB3, PDCD4, ENDOU, PARP12, DNMT3B, IGF2BP1, EXO1) were identified as diagnostic-related hub genes. They were used to establish a diagnostic RBP signature risk score (DRBPS) model by the coefficients in least absolute shrinkage and selection operator (LASSO)-logistic regression analysis and showed high specificity and sensitivity in the training (area under the receiver operating characteristic curve (AUC) = 0.998), and in all validation cohorts (AUC > 0.95 for all). Similarly, seven RBP genes (MKRN3, ZC3H12D, EIF5A2, AFF3, SIDT1, RBM24, and NR0B1) were identified as prognosis-associated hub genes by LASSO and stepwise multiple Cox regression analyses and were used to construct the prognostic model named as PRBPS. The AUC of the time-dependent receiver operator characteristic curve of the prognostic model was 0.664 at 3 years and 0.635 at 5 years in the training cohort and 0.720, 0.777 in the validation cohort, showing a favorable predictive efficacy for prognosis in HNSCC. CONCLUSIONS: Our results demonstrate the value of consideration of RBP in the diagnosis and prognosis for HNSCC and provide a novel insight into understanding the potential role of dysregulated RBP in HNSCC.

19.
Prep Biochem Biotechnol ; : 1-8, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38856714

RESUMO

To enhance the stability and light resistance of the yellow compounds in citrus pomace, our study successfully isolated and purified five compounds using ultrasonic-assisted extraction and column chromatography. The identified compounds include methyl linoleate, (2-ethyl)hexyl phthalate, 1,3-distearoyl-2-oleoylglycerol, 6,6-ditetradecyl-6,7-dihydroxazepin-2(3H)-one, and n-octadeca-17-enoic acid. The monomers extracted from fresh pomace, compounds 1 and 2, exhibit structural similarities to flavonoids and carotenoids. In contrast, the polymers isolated from fermented pomace, compounds 3, 4, and 5, share structural units with the fresh pomace compounds, indicating the transformation to stable polymeric forms. This suggests that the microbial fermentation process not only enhances the value of citrus pomace, but also provides a promising pathway for the synthesis of natural antioxidant yellow pigments with far-reaching theoretical and practical significance.

20.
Sensors (Basel) ; 24(11)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38894132

RESUMO

Partial discharge (PD) is a localized discharge phenomenon in the insulator of electrical equipment resulting from the electric field strength exceeding the local dielectric breakdown electric field. Partial-discharge signal identification is an important means of assessing the insulation status of electrical equipment and critical to the safe operation of electrical equipment. The identification effect of traditional methods is not ideal because the PD signal collected is subject to strong noise interference. To overcome noise interference, quickly and accurately identify PD signals, and eliminate potential safety hazards, this study proposes a PD signal identification method based on multiscale feature fusion. The method improves identification efficiency through the multiscale feature fusion and feature aggregation of phase-resolved partial-discharge (PRPD) diagrams by using PMSNet. The whole network consists of three parts: a CNN backbone composed of a multiscale feature fusion pyramid, a down-sampling feature enhancement (DSFB) module for each layer of the pyramid to acquire features from different layers, a Transformer encoder module dominated by a spatial interaction-attention mechanism to enhance subspace feature interactions, a final categorized feature recognition method for the PRPD maps and a final classification feature generation module (F-Collect). PMSNet improves recognition accuracy by 10% compared with traditional high-frequency current detection methods and current pulse detection methods. On the PRPD dataset, the validation accuracy of PMSNet is above 80%, the validation loss is about 0.3%, and the training accuracy exceeds 85%. Experimental results show that the use of PMSNet can greatly improve the recognition accuracy and robustness of PD signals and has good practicality and application prospects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...