Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.783
Filtrar
1.
Neural Regen Res ; 20(1): 6-20, 2025 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38767472

RESUMO

The endoplasmic reticulum, a key cellular organelle, regulates a wide variety of cellular activities. Endoplasmic reticulum autophagy, one of the quality control systems of the endoplasmic reticulum, plays a pivotal role in maintaining endoplasmic reticulum homeostasis by controlling endoplasmic reticulum turnover, remodeling, and proteostasis. In this review, we briefly describe the endoplasmic reticulum quality control system, and subsequently focus on the role of endoplasmic reticulum autophagy, emphasizing the spatial and temporal mechanisms underlying the regulation of endoplasmic reticulum autophagy according to cellular requirements. We also summarize the evidence relating to how defective or abnormal endoplasmic reticulum autophagy contributes to the pathogenesis of neurodegenerative diseases. In summary, this review highlights the mechanisms associated with the regulation of endoplasmic reticulum autophagy and how they influence the pathophysiology of degenerative nerve disorders. This review would help researchers to understand the roles and regulatory mechanisms of endoplasmic reticulum-phagy in neurodegenerative disorders.

2.
Nat Commun ; 15(1): 7777, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39237555

RESUMO

Hydrogels, provided that they integrate strength and toughness at desired high content of water, promise in load-bearing tissues such as articular cartilage, ligaments, tendons. Many developed strategies impart hydrogels with some mechanical properties akin to natural tissues, but compromise water content. Herein, a strategy deprotonation-complexation-reprotonation is proposed to prepare polyvinyl alcohol hydrogels with water content as high as ~80% and favorable mechanical properties, including tensile strength of 7.4 MPa, elongation of around 1350%, and fracture toughness of 12.4 kJ m-2. The key to water holding yet improved mechanical properties lies in controllable nucleation for refinement of crystalline morphology. With nearly constant water content, mechanical properties of as-prepared hydrogels are successfully tailored by tuning crystal nuclei density via deprotonation degree and their distribution uniformity via complexation temperature. This work provides a nucleation concept to design robust hydrogels with desired water content, holding implications for practical application in tissue engineering.

3.
Zhongguo Zhong Yao Za Zhi ; 49(15): 4139-4147, 2024 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-39307746

RESUMO

This study aims to explore the effect and mechanism of a mitochondrion-targeted derivative of ergosterol peroxide(Mito-EP) on breast cancer. The methyl thiazolyl tetrazolium(MTT) assay was employed to examine the proliferation of MDA-MB-231 cells treated with different concentrations(0, 0.075, 0.15, 0.3, 0.6, 1.2, and 2.4 µmol·L~(-1)) of Mito-EP. Cells were grouped for treatment with water(blank control), low, medium, and high concentrations(0.15, 0.3, and 0.6 µmol·L~(-1)) of Mito-EP, and ergosterol peroxide(EP)(0.6 µmol·L~(-1)). After the cells were treated for 48 h, flow cytometry was employed to examine the apoptosis rate, reactive oxygen species(ROS) level, mitochondrial membrane potential, and cell cycle distribution, and the apoptosis, ROS, and mitochondrial membrane potential were observed by laser confocal microscopy. A mouse model bearing subcutaneous xenograft tumor was established by injecting 4T1 cell suspension and used to study the inhibitory effect of Mito-EP on breast cancer. Western blot was employed to determine the protein levels of B-cell lymphoma 2(Bcl-2), Bcl-2-associated X protein(Bax), cytochrome C(Cyt C), cleaved caspase-7, and cleaved caspase-9 in cells and the tumor tissue. The results showed that Mito-EP reduced the proliferation rate of MDA-MB-231 cells in a concentration-dependent manner. Compared with the blank control group, EP(0.6 µmol·L~(-1)) caused slight changes in the apoptosis rate, ROS level, and mitochondrial membrane potential. However, Mito-EP increased the apoptosis rate, elevated the ROS level, decreased mitochondrial membrane potential, up-regulated the protein levels of Bax, Cyt C, cleaved caspase-7, and cleaved caspase-9, and down-regulated the protein level of Bcl-2(all P<0.05). Moreover, Mito-EP reduced the tumor volume and weight. In summary, Mito-EP may promote apoptosis in breast cancer cells by activating the mitochondrial apoptosis pathway.


Assuntos
Apoptose , Neoplasias da Mama , Ergosterol , Mitocôndrias , Espécies Reativas de Oxigênio , Humanos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Feminino , Animais , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Apoptose/efeitos dos fármacos , Camundongos , Linhagem Celular Tumoral , Espécies Reativas de Oxigênio/metabolismo , Ergosterol/análogos & derivados , Ergosterol/farmacologia , Proliferação de Células/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Antineoplásicos/farmacologia , Antineoplásicos/química , Camundongos Nus , Ciclo Celular/efeitos dos fármacos
4.
Exp Cell Res ; 442(2): 114262, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39303837

RESUMO

The cytoophidium is a novel type of membraneless organelle, first observed in the ovaries of Drosophila using fluorescence microscopy. In vitro, purified Drosophila melanogaster CTPS (dmCTPS) can form metabolic filaments under the presence of either substrates or products, and their structures that have been analyzed using cryo-electron microscopy (cryo-EM). These dmCTPS filaments are considered the fundamental units of cytoophidia. However, due to the resolution gap between light and electron microscopy, the precise assembly pattern of cytoophidia remains unclear. In this study, we find that dmCTPS filaments can spontaneously assemble in vitro, forming network structures that reach micron-scale dimensions. Using cryo-electron tomography (cryo-ET), we reconstruct the network structures formed by dmCTPS filaments under substrate or product binding conditions and elucidate their assembly process. The dmCTPS filaments initially form structural bundles, which then further assemble into larger networks. By identifying, tracking, and statistically analyzing the filaments, we observed distinct characteristics of the structural bundles formed under different conditions. This study provides the first systematic analysis of dmCTPS filament networks, offering new insights into the relationship between cytoophidia and metabolic filaments.

5.
Biosens Bioelectron ; 267: 116774, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39284262

RESUMO

Abnormal lipid metabolism in glial cells is a key pathological feature of epilepsy. The identification of lipid droplets (LDs) is essential for investigating lipid metabolism, disease progression, and potential therapeutic interventions. Two-photon imaging technology enables real-time visualization of the spatial distribution and temporal dynamics of LDs in epilepsy models. In this study, we developed a novel two-photon excited dual-responsive near-infrared fluorescent probe, CabA, based on viscosity and polarity, to monitor dynamic changes in LDs. The fluorescence of CabA at 670 nm exhibits a significant increase in response to low polarity and high viscosity due to the twisted intramolecular charge transfer and intramolecular charge transfer mechanisms. The LDs-targeting capability of CabA at the cellular level and the process of LDs generation between neurons and astrocytes during the pathological advancement of epilepsy have been validated. In situ synchronous imaging experiments in epileptic and normal mice using CabA revealed abnormal LDs accumulation in the brain during seizures. Two-photon fluorescence imaging further demonstrated LDs accumulation in the brains of epileptic mice at a penetration depth of 100 µm. This study offers a valuable tool for enhancing the understanding of LDs in physiological and pathological processes, potentially aiding in the early diagnosis of epilepsy.

6.
Artigo em Inglês | MEDLINE | ID: mdl-39321391

RESUMO

By leveraging principles from metal grain refinement, we introduce a transformative technique for fabricating poly(vinyl alcohol) (PVA) hydrogels via supercooling-coupled wet annealing, significantly enhancing their mechanical robustness and isotropy while maintaining their exceptionally high water content. Our methodology involves the dissolving PVA in water at elevated temperatures, mirroring the homogeneity achieved with a molten metal, in order to ensure a uniform distribution of polymer chains. This uniformity facilitates a rapid cooling phase that generates ultrafine ice crystals, setting the stage for a crucial solvent exchange with ethylene glycol (EG). The EG-mediated supercooling technique ensures the polymer homogeneity and structure integrity and induces the PVA chains to aggregate and form high-density hydrogen bonds, leading to a uniformly distributed, interconnected PVA network with high crystallinity. The process is further strengthened by EG-enabled wet annealing, which promotes the formation of densely packed crystalline domains within the polymer network. This rigorous process yields PVA hydrogels with superior mechanical properties, including a tensile strength of 13.65 MPa and a fracture toughness of 35.39 MJ m-3, alongside remarkable water content nearing 80%. These advances not only surpass the capabilities of conventional hydrogels but also broaden their application potential, highlighting the innovative integration of supercooling principles in polymer science.

7.
ACS Sens ; 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39321551

RESUMO

Disease diagnosis of Helicobacter pylori (Hp) through human exhaled breath analysis has attracted considerable attention. However, conventional methods, such as carbon 13 (13C) breath test and infrared spectrometers, are facing the challenge of achieving portability and reliability synchronously. Herein, we report a portable and hand-held Hp analyzer using a bimetallic PtRu@SnO2-based gas sensor for the prediagnosis of Hp infection, which is based on detecting ammonia (NH3) as a potential biomarker in exhaled breath. Owing to the surface functionalization through highly catalytically active bimetallic PtRu nanoparticles (NPs) prepared by a photochemical reduction strategy, the PtRu@SnO2-based sensor exhibits high sensitivity and selectivity toward trace-level (200 ppb) NH3 even at high-humidity surroundings (80% RH). Consequently, the designed portable and hand-held Hp analyzer makes the accurate determination of NH3 at 800 ppb in exhaled breath. The tuning of energy band structure and electrical characteristics and the catalytic modulation of NH3 oxidation by PtRu NPs are proposed to be the reasons behind the enhanced NH3 gas-sensing performance, as confirmed by in situ analysis using an online MKS MultiGas 2030 FTIR gas analyzer. This work paves the way for the prediagnosis of Hp infection using a metal oxide gas sensor.

8.
J Environ Manage ; 370: 122519, 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39332291

RESUMO

The stimulating impact of crop residue return on greenhouse gas (GHG) emissions from paddy fields have been widely accepted, while the influence of site environmental and human factors on the simulating degree remains unclear. Here, we performed a meta-analysis to assess the GHG emissions affected by residue return, and its mitigation potential combined with key factors in paddy fields. Drawing upon 1047 observation sets of CH4 and N2O emissions from 155 peer-reviewed publications we found that residue return to paddy fields caused an average increase of 73% CH4 emissions and 14% in N2O emissions. Utilizing meta-analytical models, we identified pH as the most significant driver modulating GHG emissions, followed by soil organic matter (SOC) and total nitrogen. In alkaline soils, combining straw return with intermittent irrigation (285.2%) or mid-season drainage (118.9%) significantly reduced CH4 emissions compared to continuous flooding (1201.9%). Additionally, pairing straw return with higher nitrogen inputs (above 150 kg N ha-1) improved soil N2O uptake by -11.5%. In acid and neutral soils, straw carbonization achieved soil CH4 negative emissions (from -2.9% to -39.3%), but the long-term effects remained unclear. Reduced drainage frequency mitigates N2O emissions but may increase CH4 emissions. To efficiently mitigate GHG emissions, we proposed low-carbon schemes for acid or neutral soils based on specific SOC content: For soils with SOC content <10 g kg-1, prioritize nitrogen input control with rates not exceeding 174 kg N ha-1. For soils with SOC content >10 g kg-1, prioritize adjusting the type of straw. Our study underscores the significance of site-specific factors in modulating GHG emissions. Efficient GHG mitigation can be achieved by combining residue return with other agronomic measures tailored to different soil conditions.

9.
Bioengineering (Basel) ; 11(9)2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39329635

RESUMO

Anoikis is a distinct type of programmed cell death and a unique mechanism for tumor progress. However, its exact function in gastric cancer (GC) remains unknown. This study aims to investigate the function of anoikis-related lncRNA (ar-lncRNA) in the prognosis of GC and its immunological infiltration. The ar-lncRNAs were derived from RNA sequencing data and associated clinical information obtained from The Cancer Genome Atlas. Pearson correlation analysis, differential screening, LASSO and Cox regression were utilized to identify the typical ar-lncRNAs with prognostic significance, and the corresponding risk model was constructed, respectively. Comprehensive methods were employed to assess the clinical characteristics of the prediction model, ensuring the accuracy of the prediction results. Further analysis was conducted on the relationship between immune microenvironment and risk features, and sensitivity predictions were made about anticancer medicines. A risk model was built according to seven selected ar-lncRNAs. The model was validated and the calibration plots were highly consistent in validating nomogram predictions. Further analyses revealed the great accuracy of the model and its ability to serve as a stand-alone GC prognostic factor. We subsequently disclosed that high-risk groups display significant enrichment in pathways related to tumors and the immune system. Additionally, in tumor immunoassays, notable variations in immune infiltrates and checkpoints were noted between different risk groups. This study proposes, for the first time, that prognostic signatures of ar-lncRNA can be established in GC. These signatures accurately predict the prognosis of GC and offer potential biomarkers, suggesting new avenues for basic research, prognosis prediction and personalized diagnosis and treatment of GC.

10.
Int J Mol Sci ; 25(18)2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39337544

RESUMO

The cytoophidium, composed mainly of CTP synthase (CTPS), is a newly discovered dynamic filamentous structure in various organisms such as archaea, bacteria, and humans. These filamentous structures represent a fascinating example of intracellular compartmentation and dynamic regulation of metabolic enzymes. Currently, cytoophidia have been proven to be tightly regulated and highly dynamic, responding rapidly to developmental and metabolic cues and playing a critical role in maintaining cellular homeostasis. In this review, we would like to discuss in detail the characteristics, mechanisms, functions, and potential applications of this conservative but promising organelle.


Assuntos
Carbono-Nitrogênio Ligases , Humanos , Carbono-Nitrogênio Ligases/metabolismo , Bactérias/metabolismo , Bactérias/crescimento & desenvolvimento , Archaea/metabolismo , Organelas/metabolismo , Animais
11.
Int J Mol Sci ; 25(18)2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39337578

RESUMO

The de novo synthesis of cytidine 5'-triphosphate (CTP) is catalyzed by the enzyme CTP synthase (CTPS), which is known to form cytoophidia across all three domains of life. In this study, we use the budding yeast Saccharomyces cerevisiae and the fission yeast Schizosaccharomyces pombe as model organisms to compare cytoophidium assembly under external environmental and intracellular CTPS alterations. We observe that under low and high temperature conditions, cytoophidia in fission yeast gradually disassemble, while cytoophidia in budding yeast remain unaffected. The effect of pH changes on cytoophidia maintenance in the two yeast species is different. When cultured in the yeast-saturated cultured medium, cytoophidia in fission yeast disassemble, while cytoophidia in budding yeast gradually form. Overexpression of CTPS results in the presence and maintenance of cytoophidia in both yeast species from the log phase to the stationary phase. In summary, our results demonstrate differential cytoophidium assembly between Saccharomyces cerevisiae and Schizosaccharomyces pombe, the two most studied yeast species.


Assuntos
Carbono-Nitrogênio Ligases , Saccharomyces cerevisiae , Schizosaccharomyces , Schizosaccharomyces/metabolismo , Schizosaccharomyces/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Carbono-Nitrogênio Ligases/metabolismo , Carbono-Nitrogênio Ligases/genética , Citidina Trifosfato/metabolismo , Concentração de Íons de Hidrogênio , Temperatura , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Schizosaccharomyces pombe/genética
12.
Mol Biomed ; 5(1): 36, 2024 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-39227479

RESUMO

Bladder cancer (BCa) stands out as a highly prevalent malignant tumor affecting the urinary system. The Sex determining region Y-box protein family is recognized for its crucial role in BCa progression. However, the effect of Sex determining region Y-box 7 (SOX7) on BCa progression has not been fully elucidated. Herein, RNA-sequencing, western blot (WB), immunohistochemistry (IHC), immunofluorescence (IF) and tissue microarray were utilized to assess SOX7 expression in vitro and in vivo. Additionally, SOX7 expression, prognosis, and SOX7 + cytoglobin (CYGB) score were analyzed using R software. In vitro and vivo experiments were performed with BCa cell lines to validate the effect of SOX7 knockdown and overexpression on the malignant progression of BCa. The results showed that SOX7 exhibits low expression in BCa. It functions in diverse capacities, inhibiting the proliferative, migratory, and invasive capabilities of BCa. In addition, the experimental database demonstrated that SOX7 binds to the promoter of DNA methyltransferase 3 beta (DNMT3B), leading to the transcriptional inhibition of DNMT3B. This subsequently results in a reduced methylation of CYGB promoter, ultimately inhibiting the tumor progression of BCa. SOX7 + CYGB scores were significantly linked to patient prognosis. In conclusion, SOX7 inhibits the malignant progression of BCa via the DNMT3B/CYGB axis. Additionally, the SOX7 + CYGB score is capable of predicting the prognostic outcomes of BCa patients. Therefore, SOX7 and CYGB may play an important role in the progression of bladder cancer, and they can be used as prognostic markers of bladder cancer patients.


Assuntos
DNA (Citosina-5-)-Metiltransferases , DNA Metiltransferase 3B , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Neoplasias da Bexiga Urinária , Humanos , Neoplasias da Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/metabolismo , Linhagem Celular Tumoral , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Animais , Feminino , Camundongos , Masculino , Proliferação de Células , Fatores de Transcrição SOXF/genética , Fatores de Transcrição SOXF/metabolismo , Prognóstico , Regiões Promotoras Genéticas/genética , Metilação de DNA , Camundongos Nus , Movimento Celular
13.
ACS Nano ; 18(37): 25765-25777, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39231281

RESUMO

Three-dimensionally printed (3DP) hydrogel-based vascular constructs have been investigated in response to the impaired function of blood vessels or organs by replicating exactly the 3D structural geometry to approach their function. However, they are still challenged by their intrinsic brittleness, which could not sustain the suture piercing and enable the long-term structural and functional stability during the direct contact with blood. Here, we reported the high-fidelity digital light processing (DLP) 3D printing of hydrogel-based vascular constructs from poly(vinyl alcohol)-based inks, followed by mechanical strengthening through engineering the nanocrystalline domains and subsequent surface modification. The as-prepared high-precision hydrogel vascular constructs were imparted with highly desirable mechanical robustness, suture tolerance, swelling resistance, antithrombosis, and long-term patency. Notably, the hydrogel-based bionic vein grafts, with precise valve structures, exhibited excellent control over the unidirectional flow and successfully fulfilled the biological functionalities and patency during a 4-week implantation within the deep veins of beagles, thus corroborating the promising potential for treating chronic venous insufficiency.


Assuntos
Hidrogéis , Impressão Tridimensional , Hidrogéis/química , Animais , Cães , Nanopartículas/química , Engenharia Tecidual , Álcool de Polivinil/química , Humanos , Alicerces Teciduais/química , Prótese Vascular
14.
Org Lett ; 26(36): 7632-7637, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39235108

RESUMO

Penicillium daleae L3SO is a fungus isolated from the rhizospheric soil of the chloroplast-deficient plant Monotropa uniflora. A chemical study on the rice fermentation of this fungus led to the isolation and identification of two cage-like polyketides, penidaleodiolide A (1) and its biosynthetic-related congener penidaleodiolide B (2). The structures of 1 and 2 were determined by a combination of extensive spectroscopic analysis, biosynthetic consideration, chemical derivatization, and computational methods. Compound 1 harbors an unusual tricyclo[4.3.04,9]nonane scaffold, unprecedented in polyketide natural products. The hypothetical biosynthetic pathways for 1 and 2 were postulated and were supported by CRISPR/Cas9 genome editing results. Penidaleodiolide A (1) showed a significant inhibitory effect on the action potentials of murine hippocampal basket neurons and decreased the frequency of spontaneous excitatory postsynaptic currents in a concentration-dependent manner (the inhibition ratios were 0.30 ± 0.02 for 1 µM, 0.37 ± 0.03 for 10 µM, and 0.50 ± 0.07 for 20 µM) while being devoid of cytotoxicity against the nerve cells.


Assuntos
Penicillium , Policetídeos , Policetídeos/química , Policetídeos/farmacologia , Policetídeos/isolamento & purificação , Penicillium/química , Penicillium/metabolismo , Animais , Camundongos , Estrutura Molecular , Transmissão Sináptica/efeitos dos fármacos , Microbiologia do Solo , Neurônios/efeitos dos fármacos , Hipocampo/metabolismo
15.
Ying Yong Sheng Tai Xue Bao ; 35(7): 1951-1958, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39233425

RESUMO

Rodent-infested bald spots are crucial indicators of rodent infestation in grasslands. Leveraging Unmanned Aerial Vehicle (UAV) remote sensing technology for discerning detrimental bald spots among plateau pikas has significant implications for assessing associated ecological hazards. Based on UAV-visible light imagery, we classified and recognized the characteristics of plateau pika habitats with five supervised classification algorithms, i.e., minimum distance classification (MinD), maximum likelihood classification (ML), support vector machine classification (SVM), Mahalanobis distance classification (MD), and neural network classification (NN) . The accuracy of the five methods was evaluated using a confusion matrix. Results showed that NN and SVM exhibited superior performance than other methods in identifying and classifying features indicative of plateau pika habitats. The mapping accuracy of NN for grassland and bald spots was 98.1% and 98.5%, respectively, with corresponding user accuracy was 98.8% and 97.7%. The overall model accuracy was 98.3%, with a Kappa coefficient of 0.97, reflecting minimal misclassification and omission errors. Through practical verification, NN exhibited good stability. In conclusion, the neural network method was suitable for identifying rodent-damaged bald spots within alpine meadows.


Assuntos
Algoritmos , Ecossistema , Pradaria , Tecnologia de Sensoriamento Remoto , Roedores , Dispositivos Aéreos não Tripulados , Animais , Tecnologia de Sensoriamento Remoto/métodos , Lagomorpha , Redes Neurais de Computação , Monitoramento Ambiental/métodos , Máquina de Vetores de Suporte , China
16.
Angew Chem Int Ed Engl ; : e202412080, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39234632

RESUMO

Proton exchange membrane (PEM) electrolysis holds great promise for green hydrogen production, but suffering from high loading of platinum-group metals (PGM) for large-scale deployment. Anchoring PGM-based materials on supports can not only improve the atomic utilization of active sites but also enhance the intrinsic activity. However, in practical PEM electrolysis, it is still challenging to mediate hydrogen adsorption/desorption pathways with high coverage of hydrogen intermediates over catalyst surface. Here, operando generated stable palladium (Pd) hydride nanoclusters anchored on tungsten carbide (WCx) supports were constructed for hydrogen evolution in PEM electrolysis. Under PEM operando conditions, hydrogen intercalation induces formation of Pd hydrides (PdHx) featuring weakened hydrogen binding energy (HBE), thus triggering reverse hydrogen spillover from WCx (strong HBE) supports to PdHx sites, which have been evidenced by operando characterizations, electrochemical results and theoretical studies. This PdHx-WCx material can be directly utilized as cathode electrocatalysts in PEM electrolysis with ultralow Pd loading of 0.022 mg cm-2, delivering the current density of 1 A cm-2 at the cell voltage of ~1.66 V and continuously running for 200 hours without obvious degradation. This innovative strategy via tuning the operando characteristics to mediate reverse hydrogen spillover provide new insights for designing high-performance supported PGM-based electrocatalysts.

17.
Neural Regen Res ; 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39248177

RESUMO

Adipose-derived stem cell, one type of mesenchymal stem cells, is a promising approach in treating ischemia-reperfusion injury caused by occlusion of the middle cerebral artery. However, its application has been limited by the complexities of the ischemic microenvironment. Hydrogel scaffolds, which are composed of hyaluronic acid and chitosan, exhibit excellent biocompatibility and biodegradability, making them promising candidates as cell carriers. Vascular endothelial growth factor is a crucial regulatory factor for stem cells. Both hyaluronic acid and chitosan have the potential to make the microenvironment more hospitable to transplanted stem cells, thereby enhancing the therapeutic effect of mesenchymal stem cell transplantation in the context of stroke. Here, we found that vascular endothelial growth factor significantly improved the activity and paracrine function of adipose-derived stem cells. Subsequently, we developed a chitosan-hyaluronic acid hydrogel scaffold that incorporated vascular endothelial growth factor and first injected the scaffold into an animal model of cerebral ischemia-reperfusion injury. When loaded with adipose-derived stem cells, this vascular endothelial growth factor-loaded scaffold markedly reduced neuronal apoptosis caused by oxygen-glucose deprivation/reoxygenation and substantially restored mitochondrial membrane potential and axon morphology. Further in vivo experiments revealed that this vascular endothelial growth factor-loaded hydrogel scaffold facilitated the transplantation of adipose-derived stem cells, leading to a reduction in infarct volume and neuronal apoptosis in a rat model of stroke induced by transient middle cerebral artery occlusion. It also helped maintain mitochondrial integrity and axonal morphology, greatly improving rat motor function and angiogenesis. Therefore, utilizing a hydrogel scaffold loaded with vascular endothelial growth factor as a stem cell delivery system can mitigate the adverse effects of ischemic microenvironment on transplanted stem cells and enhance the therapeutic effect of stem cells in the context of stroke.

18.
Phys Med Biol ; 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39317237

RESUMO

Subcutaneous microbubble administration in connection with contrast enhanced ultrasound (CEUS) imaging is showing promise as a noninvasive and sensitive way to detect tumor draining sentinel lymph nodes (SLNs) in patients with breast cancer. Moreover, there is potential to harness the results from these approaches to directly estimate cancer burden, since some microbubble formulas, such as the Sonazoid used in this study, are rapidly phagocytosed by macrophages, and the macrophage concentration in a lymph node is inversely related to the cancer burden. This work presents a mathematical model that can approximate a rate constant governing macrophage uptake of Sonazoid, ki, given dynamic CEUS Sonazoid imaging data. Twelve healthy women were injected with 1.0 ml of Sonazoid in an upper-outer quadrant of one of their breasts and SLNs were imaged in each patient immediately after injection, and then at 0.25, 0.5, 1, 2, 4, 6, and 24 h after injection. The mathematical model developed was fit to the dynamic CEUS data from each subject resulting in a mean ± sd of 0.006 ± 0.005 h-1 and 0.4 ± 0.1 h-1 for relative lymphatic flow (EFl) and ki, respectively. Furthermore, the roughly 25% sd of the ki measurement was similar to the sd that would be expected from realistic noise simulations for a stable 0.4 h-1 value of ki, suggesting that macrophage concentration is highly consistent among cancer-free SLNs. These results, along with the significantly smaller variance in ki measurement observed compared to relative lymphatic flow suggest that ki may be a more precise and promising approach of estimating macrophage abundance, and inversely cancer burden, for future efforts to establish a noninvasive CEUS SLN biopsy. .

19.
Acta Histochem ; 126(5-7): 152189, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39197328

RESUMO

Our previous study has shown that exosomes derived from human umbilical cord mesenchymal stem cells (hUCMSCs-exo) alleviated burn-induced acute lung injury (ALI). In this study, we explored a novel mechanism by which hUCMSCs-exo contributed to the inhibition of burn-induced ALI. The ALI rat model with severe burn was established for the in vivo experiments, and rats PMVECs were stimulated with the serum from burn-induced ALI rats for the in vitro experiments. The pathological changes of lung tissues were evaluated by HE staining; the cell viability was measured using CCK-8; the iron level and Fe2+ concentration were assessed using Iron Assay Kit and Fe2+ fluorescence detection probe; the mRNA expression of SLC7A11 and GPX4 were measured by qRT-PCR; the protein levels of SLC7A11, GPX4, Nrf2 and HO-1 were detected by western blot. Both the in vivo and in vitro experiments revealed that ferroptosis was significantly induced in burn-induced ALI, which as verified by increased iron level and Fe2+ concentration, and decreased SLC7A11 and GPX4 mRNA and protein levels. Furthermore, both hUCMSCs-exo and Fer-1 (the inhibitor of ferroptosis) alleviated lung inflammation and up-regulated protein levels of Nrf2 and HO-1 in the lung tissues of burn-induced ALI rats. These results suggested that hUCMSCs-exo exhibited a protective role against burn-induced ALI by inhibiting ferroptosis, partly owing to the activation of Nrf2/HO-1 pathway, thus providing a novel therapeutic strategy for burn-induced ALI.


Assuntos
Lesão Pulmonar Aguda , Queimaduras , Exossomos , Ferroptose , Células-Tronco Mesenquimais , Ratos Sprague-Dawley , Cordão Umbilical , Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/metabolismo , Animais , Exossomos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Humanos , Queimaduras/complicações , Queimaduras/metabolismo , Ratos , Cordão Umbilical/citologia , Masculino , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Sistema y+ de Transporte de Aminoácidos/metabolismo , Sistema y+ de Transporte de Aminoácidos/genética , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Ferro/metabolismo
20.
Cell Death Dis ; 15(8): 591, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39143050

RESUMO

Neurons rely heavily on high mitochondrial metabolism to provide sufficient energy for proper development. However, it remains unclear how neurons maintain high oxidative phosphorylation (OXPHOS) during development. Mitophagy plays a pivotal role in maintaining mitochondrial quality and quantity. We herein describe that G protein-coupled receptor 50 (GPR50) is a novel mitophagy receptor, which harbors the LC3-interacting region (LIR) and is required in mitophagy under stress conditions. Although it does not localize in mitochondria under normal culturing conditions, GPR50 is recruited to the depolarized mitochondrial membrane upon mitophagy stress, which marks the mitochondrial portion and recruits the assembling autophagosomes, eventually facilitating the mitochondrial fragments to be engulfed by the autophagosomes. Mutations Δ502-505 and T532A attenuate GPR50-mediated mitophagy by disrupting the binding of GPR50 to LC3 and the mitochondrial recruitment of GPR50. Deficiency of GPR50 causes the accumulation of damaged mitochondria and disrupts OXPHOS, resulting in insufficient ATP production and excessive ROS generation, eventually impairing neuronal development. GPR50-deficient mice exhibit impaired social recognition, which is rescued by prenatal treatment with mitoQ, a mitochondrially antioxidant. The present study identifies GPR50 as a novel mitophagy receptor that is required to maintain mitochondrial OXPHOS in developing neurons.


Assuntos
Mitocôndrias , Mitofagia , Neurônios , Receptores Acoplados a Proteínas G , Animais , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Neurônios/metabolismo , Mitocôndrias/metabolismo , Camundongos , Humanos , Fosforilação Oxidativa , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Espécies Reativas de Oxigênio/metabolismo , Camundongos Knockout , Neurogênese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...