Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
Nat Commun ; 15(1): 5670, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38971872

RESUMO

Targeted immunomodulation for reactivating innate cells, especially macrophages, holds great promise to complement current adaptive immunotherapy. Nevertheless, there is still a lack of high-performance therapeutics for blocking macrophage phagocytosis checkpoint inhibitors in solid tumors. Herein, a peptide-antibody combo-supramolecular in situ assembled CD47 and CD24 bi-target inhibitor (PAC-SABI) is described, which undergoes biomimetic surface propagation on cancer cell membranes through ligand-receptor binding and enzyme-triggered reactions. By simultaneously blocking CD47 and CD24 signaling, PAC-SABI enhances the phagocytic ability of macrophages in vitro and in vivo, promoting anti-tumor responses in breast and pancreatic cancer mouse models. Moreover, building on the foundation of PAC-SABI-induced macrophage repolarization and increased CD8+ T cell tumor infiltration, sequential anti-PD-1 therapy further suppresses 4T1 tumor progression, prolonging survival rate. The in vivo construction of PAC-SABI-based nano-architectonics provides an efficient platform for bridging innate and adaptive immunity to maximize therapeutic potency.


Assuntos
Antígeno CD24 , Antígeno CD47 , Macrófagos , Peptídeos , Fagocitose , Transdução de Sinais , Antígeno CD47/metabolismo , Antígeno CD47/imunologia , Animais , Macrófagos/imunologia , Macrófagos/efeitos dos fármacos , Camundongos , Fagocitose/efeitos dos fármacos , Antígeno CD24/metabolismo , Antígeno CD24/imunologia , Feminino , Humanos , Linhagem Celular Tumoral , Peptídeos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Camundongos Endogâmicos BALB C , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Imunoterapia/métodos , Neoplasias da Mama/imunologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Anticorpos/imunologia , Anticorpos/farmacologia , Receptor de Morte Celular Programada 1/metabolismo , Receptor de Morte Celular Programada 1/imunologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores
2.
Neurobiol Dis ; 199: 106586, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38950712

RESUMO

OBJECTIVE: The glymphatic system serves as a perivascular pathway that aids in clearing liquid and solute waste from the brain, thereby enhancing neurological function. Disorders in glymphatic drainage contribute to the development of vasogenic edema following cerebral ischemia, although the molecular mechanisms involved remain poorly understood. This study aims to determine whether a deficiency in dystrophin 71 (DP71) leads to aquaporin-4 (AQP4) depolarization, contributing to glymphatic dysfunction in cerebral ischemia and resulting in brain edema. METHODS: A mice model of middle cerebral artery occlusion and reperfusion was used. A fluorescence tracer was injected into the cortex and evaluated glymphatic clearance. To investigate the role of DP71 in maintaining AQP4 polarization, an adeno-associated virus with the astrocyte promoter was used to overexpress Dp71. The expression and distribution of DP71 and AQP4 were analyzed using immunoblotting, immunofluorescence, and co-immunoprecipitation techniques. The behavior ability of mice was evaluated by open field test. Open-access transcriptome sequencing data were used to analyze the functional changes of astrocytes after cerebral ischemia. MG132 was used to inhibit the ubiquitin-proteasome system. The ubiquitination of DP71 was detected by immunoblotting and co-immunoprecipitation. RESULTS: During the vasogenic edema stage following cerebral ischemia, a decline in the efflux of interstitial fluid tracer was observed. DP71 and AQP4 were co-localized and interacted with each other in the perivascular astrocyte endfeet. After cerebral ischemia, there was a notable reduction in DP71 protein expression, accompanied by AQP4 depolarization and proliferation of reactive astrocytes. Increased DP71 expression restored glymphatic drainage and reduced brain edema. AQP4 depolarization, reactive astrocyte proliferation, and the behavior of mice were improved. After cerebral ischemia, DP71 was degraded by ubiquitination, and MG132 inhibited the decrease of DP71 protein level. CONCLUSION: AQP4 depolarization after cerebral ischemia leads to glymphatic clearance disorder and aggravates cerebral edema. DP71 plays a pivotal role in regulating AQP4 polarization and consequently influences glymphatic function. Changes in DP71 expression are associated with the ubiquitin-proteasome system. This study offers a novel perspective on the pathogenesis of brain edema following cerebral ischemia.


Assuntos
Aquaporina 4 , Edema Encefálico , Isquemia Encefálica , Distrofina , Sistema Glinfático , Animais , Aquaporina 4/metabolismo , Aquaporina 4/genética , Camundongos , Sistema Glinfático/metabolismo , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Edema Encefálico/metabolismo , Distrofina/metabolismo , Distrofina/deficiência , Masculino , Astrócitos/metabolismo , Camundongos Endogâmicos C57BL , Infarto da Artéria Cerebral Média/metabolismo
3.
ACS Appl Mater Interfaces ; 16(28): 36804-36810, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38970471

RESUMO

Osteoarthritis (OA), a prevalent degenerative joint disease, significantly affects the well-being of afflicted individuals and compromises the standard functionality of human joints. The emerging biomarker, Cartilage acidic protein 1 (CRTAC1), intricately associates with OA initiation and serves as a prognostic indicator for the trajectory toward joint replacement. However, existing diagnostic methods for CRTAC1 are hampered by the limited abundance, thus restricting the precision and specificity. Herein, a novel approach utilizing a single-walled carbon nanotube field-effect transistor (SWCNTs FET) biosensor is reported for the direct label-free detection of CRTAC1. High-purity semiconducting carbon nanotube films, functionalized with antibodies of CRTAC1, provide excellent electrical and sensing properties. The SWCNTs FET biosensor exhibits high sensitivity, notable reproducibility, and a wide linear detection range (1 fg/mL to 100 ng/mL) for CRTAC1 with a theoretical limit of detection (LOD) of 0.2 fg/mL. Moreover, the SWCNTs FET biosensor is capable of directly detecting human serum samples, showing excellent sensing performance in differentiating clinical samples from OA patients and healthy populations. Comparative analysis with traditional enzyme-linked immunosorbent assay (ELISA) reveals that the proposed biosensor demonstrates faster detection speeds, higher sensitivity/accuracy, and lower errors, indicating high potential for the early OA diagnosis. Furthermore, the SWCNTs FET biosensor has good scalability for the combined diagnosis and measurement of multiple disease markers, thereby significantly expanding the application of SWCNTs FETs in biosensing and clinical diagnostics.


Assuntos
Técnicas Biossensoriais , Nanotubos de Carbono , Osteoartrite , Transistores Eletrônicos , Nanotubos de Carbono/química , Técnicas Biossensoriais/instrumentação , Humanos , Osteoartrite/diagnóstico , Osteoartrite/sangue , Limite de Detecção , Biomarcadores/sangue , Biomarcadores/análise
4.
Exp Neurol ; 380: 114882, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39002923

RESUMO

Stem cell-derived exosomes have gained attention in regenerative medicine for their role in encouraging nerve regeneration and potential use in treating neurological diseases. These nanosized extracellular vesicles act as carriers of bioactive molecules, facilitating intercellular communication and enhancing the regenerative process in neural tissues. This comprehensive study explores the methods by which exosomes produced from various stem cells contribute to nerve healing, with a particular emphasis on their role in angiogenesis, inflammation, and cellular signaling pathways. By examining cutting-edge developments and exploring the potential of exosomes in delivering disease-specific miRNAs and proteins, we highlight their versatility in tailoring personalized therapeutic strategies. The findings presented here highlight the potential of stem cell-produced exosomes for use in neurological diseases therapy, establishing the door for future research into exosome-based neurotherapies.


Assuntos
Exossomos , Regeneração Nervosa , Células-Tronco , Exossomos/transplante , Exossomos/metabolismo , Humanos , Regeneração Nervosa/fisiologia , Animais , Células-Tronco/fisiologia , Doenças do Sistema Nervoso/terapia
5.
J Hazard Mater ; 475: 134913, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38880048

RESUMO

Photoinitiators (PIs) are chemical additives that generate active substances, such as free radicals to initiate photopolymerization. Traditionally, polymerization has been considered a green technique that seldomly generates contaminants. However, many researches have confirmed toxicity effects of PIs, such as carcinogenicity, cytotoxicity, endocrine disrupting effects. Surprisingly, we found high levels of PIs in indoor dust. Our analysis revealed comparable levels of PIs in dust from printing shops (geometric mean, GM: 1.33 ×103 ng/g) and control environments (GM: 874 ng/g), underscoring the widespread presence of PIs across various settings. Alarmingly, in dust samples from nail salons, PIs were detected at total concentrations ranging from 610 to 1.04 × 107 ng/g (GM: 1.87 ×105 ng/g), significantly exceeding those in the control environments (GM: 1.43 ×103 ng/g). Nail salon workers' occupational exposure to PIs through dust ingestion was estimated at 4.86 ng/kg body weight/day. Additionally, an in vitro simulated digestion test suggested that between 10 % and 42 % of PIs present in ingested dust could become bioaccessible to humans. This is the first study to report on PIs in the specific environments of nail salons and printing shops. This study highlights the urgent need for public awareness regarding the potential health risks posed by PIs to occupational workers, marking an important step towards our understanding of environmental pollution caused by PIs.


Assuntos
Poeira , Exposição Ocupacional , Poeira/análise , Exposição Ocupacional/análise , Humanos , Medição de Risco , Poluição do Ar em Ambientes Fechados/análise , Indústria da Beleza , Poluentes Ocupacionais do Ar/análise , Poluentes Ocupacionais do Ar/toxicidade
6.
Artigo em Inglês | MEDLINE | ID: mdl-38861438

RESUMO

Early diagnosis of Alzheimer's disease (AD) is crucial for its prevention, and hippocampal atrophy is a significant lesion for early diagnosis. The current DL-based AD diagnosis methods only focus on either AD classification or hippocampus segmentation independently, neglecting the correlation between the two tasks and lacking pathological interpretability. To address this issue, we propose a Reliable Hippo-guided Learning model for Alzheimer's Disease diagnosis (RLAD), which employs multi-task learning for AD classification as a main task supplemented by hippocampus segmentation. More specifically, our model consists of 1) a hybrid shared features encoder that encodes local and global information in MRI to enhance the model's ability to learn discriminative features; 2) Task Specific Decoders to accomplish AD classification and hippocampus segmentation; and 3) Task Coordination module to correlate the two tasks and guide the classification task to focus on the hippocampus area. Our proposed RLAD model is evaluated on MRI scans of 1631 subjects from three independent datasets, including ADNI-1, ADNI-2, and HarP. Our extensive experimental results demonstrate that the proposed model significantly improves the performance of AD classification and hippocampus segmentation with strong generalization capabilities. Our implementation and model are available at https://github.com/LeoLjl/Explainable-Alzheimer-s-Disease-Diagnosis.

7.
Adv Mater ; 36(33): e2405399, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38896104

RESUMO

The recovery of precious metals (PMs) from secondary resources has garnered significant attention due to environmental and economic considerations. Covalent organic frameworks (COFs) have emerged as promising adsorbents for this purpose, owing to their tunable pore size, facile functionalization, exceptional chemical stability, and large specific surface area. This review provides an overview of the latest research progress in utilizing COFs to recover PMs. Firstly, the design and synthesis strategies of chemically stable COF-based materials, including pristine COFs, functionalized COFs, and COF-based composites, are delineated. Furthermore, the application of COFs in the recovery of gold, silver, and platinum group elements is delved into, emphasizing their high adsorption capacity and selectivity as well as recycling ability. Additionally, various interaction mechanisms between COFs and PM ions are analyzed. Finally, the current challenges faced by COFs in the field of PM recovery are discussed, and potential directions for future development are proposed, including enhancing the recyclability and reusability of COF materials and realizing the high recovery of PMs from actual acidic wastewater. With the targeted development of COF-based materials, the recovery of PMs can be realized more economically and efficiently in the future.

8.
Plant Physiol Biochem ; 212: 108707, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38763002

RESUMO

Apple (Malus domestica Borkh.) is a widely cultivated fruit crop worldwide but often suffers from abiotic stresses such as salt and cold. Gibberellic acid (GA) plays a pivotal in controlling plant development, environmental adaptability, and secondary metabolism. The GA2-oxidase (GA2ox) is responsible for the deactivation of bioactive GA. In this study, seventeen GA2-oxidase genes were identified in the apple genome, and these members could be clustered into four clades based on phylogenetic relationships and conserved domain structures. MdGA2ox7 exhibited robust expression across various tissues, responded to cold and salt treatments, and was triggered in apple fruit peels via light-induced anthocyanin accumulation. Subcellular localization prediction and experiments confirmed that MdGA2ox7 was located in the cytoplasm. Overexpression of MdGA2ox7 in Arabidopsis caused a lower level of active GA and led to GA-deficient phenotypes, such as dwarfism and delayed flowering. MdGA2ox7 alleviated cold and salt stress damage in both Arabidopsis and apple in concert with melatonin (MT). Additionally, MdGA2ox7 enhanced anthocyanin biosynthesis in apple calli and activated genes involved in anthocyanin synthesis. These findings provide new insights into the functions of apple GA2ox in regulating development, stress tolerance, and secondary metabolism.


Assuntos
Antocianinas , Regulação da Expressão Gênica de Plantas , Malus , Proteínas de Plantas , Malus/genética , Malus/metabolismo , Antocianinas/metabolismo , Antocianinas/biossíntese , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Estresse Fisiológico , Arabidopsis/genética , Arabidopsis/metabolismo , Giberelinas/metabolismo , Filogenia , Plantas Geneticamente Modificadas , Melatonina/metabolismo
9.
J Agric Food Chem ; 72(20): 11561-11576, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38739709

RESUMO

The aim of this study is to validate the activity of hazelnut (Corylus avellana L.)-derived immunoactive peptides inhibiting the main protease (Mpro) of SARS-CoV-2 and further unveil their interaction mechanism using in vitro assays, molecular dynamics (MD) simulations, and binding free energy calculations. In general, the enzymatic hydrolysis components, especially molecular weight < 3 kDa, possess good immune activity as measured by the proliferation ability of mouse splenic lymphocytes and phagocytic activity of mouse peritoneal macrophages. Over 866 unique peptide sequences were isolated, purified, and then identified by nanohigh-performance liquid chromatography/tandem mass spectrometry (NANO-HPLC-MS/MS) from hazelnut protein hydrolysates, but Trp-Trp-Asn-Leu-Asn (WWNLN) and Trp-Ala-Val-Leu-Lys (WAVLK) in particular are found to increase the cell viability and phagocytic capacity of RAW264.7 macrophages as well as promote the secretion of the cytokines nitric oxide (NO), tumor necrosis factor-α (TNF-α), and interleukin-1ß (IL-1ß). Fluorescence resonance energy transfer assay elucidated that WWNLN and WAVLK exhibit excellent inhibitory potency against Mpro, with IC50 values of 6.695 and 16.750 µM, respectively. Classical all-atom MD simulations show that hydrogen bonds play a pivotal role in stabilizing the complex conformation and protein-peptide interaction. Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) calculation indicates that WWNLN has a lower binding free energy with Mpro than WAVLK. Furthermore, adsorption, distribution, metabolism, excretion, and toxicity (ADMET) predictions illustrate favorable drug-likeness and pharmacokinetic properties of WWNLN compared to WAVLK. This study provides a new understanding of the immunomodulatory activity of hazelnut hydrolysates and sheds light on peptide inhibitors targeting Mpro.


Assuntos
Corylus , Peptídeos , Animais , Camundongos , Proteases 3C de Coronavírus/química , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/metabolismo , Corylus/química , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Simulação de Dinâmica Molecular , Peptídeos/química , Peptídeos/farmacologia , Proteínas de Plantas/química , Proteínas de Plantas/farmacologia , Proteínas de Plantas/imunologia , Inibidores de Proteases/farmacologia , Inibidores de Proteases/química , Células RAW 264.7 , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/imunologia , SARS-CoV-2/química , Células Vero
10.
J Mol Model ; 30(6): 188, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38801625

RESUMO

BACKGROUND: Sirtuins (SIRTs) are NAD+-dependent deacetylases that play various roles in numerous pathophysiological processes, holding promise as therapeutic targets worthy of further investigation. Among them, the SIRT2 subtype is closely associated with tumorigenesis and malignancies. Dysregulation of SIRT2 activation can regulate the expression levels of related genes in cancer cells, leading to tumor occurrence and metastasis. METHODS: In this study, we used computer simulations to screen for novel SIRT2 inhibitors from the FDA database, based on which 10 compounds with high docking scores and good interactions were selected for in vitro anti-pancreatic cancer metastasis testing and enzyme binding inhibition experiments. The results showed that fluvastatin sodium may possess inhibitory activity against SIRT2. Subsequently, fluvastatin sodium was subjected to molecular docking experiments with various SIRT isoforms, and the combined results from Western blotting experiments indicated its potential as a SIRT2 inhibitor. Next, molecular docking, molecular dynamics (MD) simulations, and binding free energy calculations were performed, revealing the binding mode of fluvastatin sodium at the SIRT2 active site, further validating the stability and interaction of the ligand-protein complex under physiological conditions. RESULTS: Overall, this study provides a systematic virtual screening workflow for the discovery of SIRT2 activity inhibitors, identifies the potential inhibitory effect of fluvastatin sodium as a lead compound on SIRT2, and opens up a new direction for developing highly active and selectively targeted SIRT2 inhibitors.


Assuntos
Fluvastatina , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Sirtuína 2 , Fluvastatina/farmacologia , Fluvastatina/química , Sirtuína 2/antagonistas & inibidores , Sirtuína 2/química , Sirtuína 2/metabolismo , Humanos , Ligação Proteica , Domínio Catalítico , Simulação por Computador
11.
Int J Biol Macromol ; 268(Pt 2): 131901, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38677685

RESUMO

Food-derived peptides with low molecular weight, high bioavailability, and good absorptivity have been exploited as angiotensin-converting enzyme (ACE) inhibitors. In the present study, in-vitro inhibition kinetics of peanut peptides, in silico screening, validation of ACE inhibitory activity, molecular dynamics (MD) simulations, and HUVEC cells were performed to systematically identify the inhibitory mechanism of ACE interacting with peanut peptides. The results indicate that FPHPP, FPHY, and FPHFD peptides have good thermal, pH, and digestive stability. MD trajectories elucidate the dynamic correlation between peptides and ACE and verify the specific binding interaction. Noteworthily, FPHPP is the best inhibitor with a strongest binding affinity and significantly increases NO, SOD production, and AT2R expression, and decreases ROS, MDA, ET-1 levels, ACE, and AT1R accumulation in Ang II-injury HUVEC cells.


Assuntos
Inibidores da Enzima Conversora de Angiotensina , Arachis , Células Endoteliais da Veia Umbilical Humana , Peptídeos , Peptidil Dipeptidase A , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Inibidores da Enzima Conversora de Angiotensina/química , Inibidores da Enzima Conversora de Angiotensina/metabolismo , Humanos , Peptidil Dipeptidase A/metabolismo , Peptidil Dipeptidase A/química , Arachis/química , Peptídeos/química , Peptídeos/metabolismo , Peptídeos/farmacologia , Simulação de Dinâmica Molecular , Simulação por Computador , Cinética , Ligação Proteica
12.
Small ; 20(31): e2311755, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38676347

RESUMO

Numerous defects exist at the buried interface between the perovskite and adjacent electron transport layers in perovskite solar cells, resulting in severe non-radiative recombination and excessive open-circuit voltage (VOC) loss. Herein, a dual defect passivation strategy utilizing guanidine sulfate (GUA2SO4) as an interface modifier is first reported. On the one hand, the SO4 2- preferentially interacts with Pb-related defects, generating water-insoluble lead oxysalts complexes. Additionally, GUA+ diffuses into the perovskite and induces the formation of low-dimensional perovskite. These reactions effectively suppress trap states at the buried interface and perovskite boundaries in printable mesoscopic perovskite solar cells (p-MPSCs), thus increasing the carrier lifetime. Meanwhile, GUA2SO4 optimizes the interface energy band alignment, thus accelerating the charge extraction and transfer at the buried interface. This synergistic effect of trap passivation and interface energy band alignment modulation is strongly demonstrated by an increase in average VOC of 70 mV and the power conversion efficiency improvement from 17.51% to 18.70%. This work provides a novel approach to efficiently improve the performance of p-MPSCs through dual-targeted defect passivation at the buried interface.

13.
Plants (Basel) ; 13(7)2024 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-38611470

RESUMO

Red crown rot (RCR) disease caused by Calonectria ilicicola negatively impacts soybean yield and quality. Unfortunately, the knowledge of the genetic architecture of RCR resistance in soybeans is limited. In this study, 299 diverse soybean accessions were used to explore their genetic diversity and resistance to RCR, and to mine for candidate genes via emergence rate (ER), survival rate (SR), and disease severity (DS) by a multi-locus random-SNP-effect mixed linear model of GWAS. All accessions had brown necrotic lesions on the primary root, with five genotypes identified as resistant. Nine single-nucleotide polymorphism (SNP) markers were detected to underlie RCR response (ER, SR, and DS). Two SNPs colocalized with at least two traits to form a haplotype block which possessed nine genes. Based on their annotation and the qRT-PCR, three genes, namely Glyma.08G074600, Glyma.08G074700, and Glyma.12G043600, are suggested to modulate soybean resistance to RCR. The findings from this study could serve as the foundation for breeding RCR-tolerant soybean varieties, and the candidate genes could be validated to deepen our understanding of soybean response to RCR.

14.
Environ Int ; 186: 108613, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38555663

RESUMO

Synthetic antioxidants (AOs) are commonly used in everyday items and industrial products to inhibit oxidative deterioration. However, the presence of AOs in food packaging and packaged foods has not been thoroughly documented. Moreover, studies on human exposure to AOs through skin contact with packaging or ingesting packaged foods are limited. In this study, we analyzed twenty-three AOs-including synthetic phenolic antioxidants (SPAs) and organophosphite antioxidants (OPAs)-along with six transformation products in various food samples and their packaging materials. We found AOs in food products at concentrations ranging from 1.30 × 103 to 1.77 × 105 ng/g, which exceeded the levels in both outer packaging (6.05 × 102-3.07 × 104 ng/g) and inner packaging (2.27 × 102-1.09 × 105 ng/g). The most common AOs detected in foodstuffs were tris(2,4-di-tert-butylphenyl) phosphate (AO168O), butylated hydroxytoluene (BHT), and octadecyl-3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate (AO1076), together constituting 95.7 % of the total AOs found. Our preliminary exposure assessment revealed that dietary exposure-estimated at a median of 2.55 × 104 ng/kg body weight/day for children and 1.24 × 104 ng/kg body weight/day for adults-is a more significant exposure route than dermal contact with packaging. Notably, four AOs were identified in food for the first time, with BHT making up 76.8 % and 67.6 % of the total BHT intake for children and adults, respectively. These findings suggest that food consumption is a significant source of BHT exposure. The estimated daily intakes of AOs via consumption of foodstuffs were compared with the recommended acceptable daily intake to assess the risks. This systematic investigation into AOs contributes to understanding potential exposure and health risks associated with AOs in packaged foods. It emphasizes the need for further evaluation of human exposure to these substances.


Assuntos
Antioxidantes , Embalagem de Alimentos , Humanos , Antioxidantes/análise , Exposição Dietética/análise , Dieta , Exposição Ambiental/análise , Adulto , Contaminação de Alimentos/análise
15.
Mater Horiz ; 11(11): 2694-2700, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38501208

RESUMO

Transition metal dichalcogenides (TMDCs) represent a well-known material family with diverse structural phases and rich electronic properties; they are thus an ideal platform for studying the emergence and exotic phenomenon of superconductivity (SC). Herein, we propose the existence of tetragonal TMDCs with a distorted Lieb (dLieb) lattice structure and the stabilized transition metal disulfides (MS2), including dLieb-ZrS2, dLieb-NbS2, dLieb-MnS2, dLieb-FeS2, dLieb-ReS2, and dLieb-OsS2. Except for semiconducting dLieb-ZrS2 and magnetic dLieb-MnS2, the rest of metallic dLieb-MS2 was found to exhibit intrinsic SC with the transition temperature (TC) ranging from ∼5.4 to ∼13.0 K. The TC of dLieb-ReS2 and dLieb-OsS2 exceeded 10 K and was higher than that of the intrinsic SC in the known metallic TMDCs, which is attributed to the significant phonon-softening enhanced electron-phonon coupling strength. Different from the Ising spin-orbit coupling (SOC) effect in existing non-centrosymmetric TMDCs, the non-magnetic dLieb-MS2 monolayers exhibit the Dresselhaus SOC effect, which is featured by in-plane spin orientations and will give rise to the topological SC under proper conditions. In addition to enriching the structural phases of TMDCs, our work predicts a series of SC candidates with high intrinsic TC and topological non-triviality used for fault-tolerant quantum computation.

16.
Adv Mater ; 36(26): e2401319, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38531370

RESUMO

Tailoring multifunctional additives for performing interfacial modifications, improving crystallization, and passivating defects is instrumental for the fabrication of efficient and stable perovskite solar cells (PSCs). Here, a Schiff base derivative, (chloromethylene) dimethyliminium chloride (CDCl), is introduced as an additive to modify the interface between the mesoporous TiO2 electron transport layer and the MAPbI3 light absorber during the annealing process. CDCl chemically links to TiO2 and MAPbI3 through coordination and hydrogen bonding, respectively, and results in the construction of fast electron extraction channels. CDCl also optimizes the energy-level alignment of the TiO2/MAPbI3 heterojunction and improves the pore-filling and crystallization of MAPbI3 in the mesoscopic scaffold, which inhibits nonradiative recombination and eliminates open-circuit voltage losses. As a result, an impressive power conversion efficiency of 19.74%, which is the best one ever reported, is obtained for printable carbon-based hole-conductor-free PSCs based on MAPbI3.

17.
Front Pharmacol ; 15: 1342121, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38529184

RESUMO

Objective: Our previous studies substantiated that the biological activity of Schisandra chinensis lignans during the treatment of Alzheimer's disease (AD) was mediated by neurotransmitter levels, and 15 of its active components were identified. However, the pharmacokinetic and pharmacodynamic relationship of Schisandra chinensis lignans has been less studied. The objective of this study was to investigate the relationship between the pharmacokinetics and pharmacodynamics of Schisandra chinensis lignans in the treatment of AD, and to establish a pharmacokinetic-pharmacodynamic (PK-PD) model. Methods and Results: Herein, we established a microdialysis-ultra performance liquid chromatography-triple quadruple mass spectrometry (MD-LC-TQ-MS) technique that could simultaneously and continuously collect and quantitatively analyze the active compounds and neurotransmitters related to the therapeutic effects of Schisandra chinensis in awake AD rats. Eight lignans were detected in the hippocampus, and a PK-PD model was established. The fitted curves highlighted a temporal lag between the maximum drug concentration and the peak drug effect. Following treatment, the levels of four neurotransmitters tended to converge with those observed in the sham operation group. Conclusion: By establishing a comprehensive concentration-time-effect relationship for Schisandra chinensis lignans in AD treatment, our study provides novel insights into the in vivo effects of these lignans in AD rats.

18.
Science ; 383(6688): 1198-1204, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38484055

RESUMO

Printable mesoscopic perovskite solar cells (p-MPSCs) do not require the added hole-transport layer needed in traditional p-n junctions but have also exhibited lower power conversion efficiencies of about 19%. We performed device simulation and carrier dynamics analysis to design a p-MPSC with mesoporous layers of semiconducting titanium dioxide, insulating zirconium dioxide, and conducting carbon infiltrated with perovskite that enabled three-dimensional injection of photoexcited electrons into titanium dioxide for collection at a transparent conductor layer. Holes underwent long-distance diffusion toward the carbon back electrode, and this carrier separation reduced recombination at the back contact. Nonradiative recombination at the bulk titanium dioxide/perovskite interface was reduced by ammonium phosphate modification. The resulting p-MPSCs achieved a power conversion efficiency of 22.2% and maintained 97% of their initial efficiency after 750 hours of maximum power point tracking at 55 ± 5°C.

19.
Mil Med Res ; 11(1): 16, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38462603

RESUMO

BACKGROUND: Episodic memory loss is a prominent clinical manifestation of Alzheimer's disease (AD), which is closely related to tau pathology and hippocampal impairment. Due to the heterogeneity of brain neurons, the specific roles of different brain neurons in terms of their sensitivity to tau accumulation and their contribution to AD-like social memory loss remain unclear. Therefore, further investigation is necessary. METHODS: We investigated the effects of AD-like tau pathology by Tandem mass tag proteomic and phosphoproteomic analysis, social behavioural tests, hippocampal electrophysiology, immunofluorescence staining and in vivo optical fibre recording of GCaMP6f and iGABASnFR. Additionally, we utilized optogenetics and administered ursolic acid (UA) via oral gavage to examine the effects of these agents on social memory in mice. RESULTS: The results of proteomic and phosphoproteomic analyses revealed the characteristics of ventral hippocampal CA1 (vCA1) under both physiological conditions and AD-like tau pathology. As tau progressively accumulated, vCA1, especially its excitatory and parvalbumin (PV) neurons, were fully filled with mislocated and phosphorylated tau (p-Tau). This finding was not observed for dorsal hippocampal CA1 (dCA1). The overexpression of human tau (hTau) in excitatory and PV neurons mimicked AD-like tau accumulation, significantly inhibited neuronal excitability and suppressed distinct discrimination-associated firings of these neurons within vCA1. Photoactivating excitatory and PV neurons in vCA1 at specific rhythms and time windows efficiently ameliorated tau-impaired social memory. Notably, 1 month of UA administration efficiently decreased tau accumulation via autophagy in a transcription factor EB (TFEB)-dependent manner and restored the vCA1 microcircuit to ameliorate tau-impaired social memory. CONCLUSION: This study elucidated distinct protein and phosphoprotein networks between dCA1 and vCA1 and highlighted the susceptibility of the vCA1 microcircuit to AD-like tau accumulation. Notably, our novel findings regarding the efficacy of UA in reducing tau load and targeting the vCA1 microcircuit may provide a promising strategy for treating AD in the future.


Assuntos
Doença de Alzheimer , Humanos , Masculino , Camundongos , Animais , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Camundongos Transgênicos , Proteômica , Hipocampo/metabolismo , Hipocampo/patologia , Transtornos da Memória/metabolismo
20.
Life (Basel) ; 14(3)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38541729

RESUMO

The aim of this study was to investigate the effects of dietary l-glutamine (Gln) supplementation on the morphology and function of the intestine and the growth of muscle in piglets. In this study, sixteen 21-day-old piglets were randomly divided into two groups: the Control group (fed a basal diet) and the Gln group (fed a basal diet supplemented with 0.81% Gln). Blood, gut, and muscle samples were collected from all piglets on Day 20 of the trial. Compared with the Control group, the supplementation of Gln increased (p < 0.05) the villus height, villus width, villus surface area, and villus height/crypt depth ratio of the small intestine. Furthermore, the supplementation of Gln increased (p < 0.05) total protein, total protein/DNA, and RNA/DNA in both the jejunum and ileum. It also increased (p < 0.05) the concentrations of carnosine and citrulline in the jejunal mucosa, as well as citrulline and cysteine concentrations in the ileum. Conversely, Gln supplementation decreased (p < 0.05) Gln concentrations in both the jejunum and ileum, along with ß-aminoisobutyric acid and 1-Methylhistidine concentrations, specifically in the ileum. Subsequent research revealed that Gln supplementation increased (p < 0.05) the mRNA levels for glutathione-S-transferase omega 2 and interferon-ß in the duodenum. In addition, Gln supplementation led to an increase (p < 0.05) in the number of Lactobacillus genus in the colon, but a decrease (p < 0.05) in the level of HSP70 in the jejunum and the activity of diamine oxidase in plasma. Also, Gln supplementation reduced (p < 0.05) the mRNA levels of glutathione-S-transferase omega 2 and interferon stimulated genes, such as MX1, OAS1, IFIT1, IFIT2, IFIT3, and IFIT5 in both the jejunum and ileum, and the numbers of Clostridium coccoides, Enterococcus genus, and Enterobacterium family in the colon. Moreover, Gln supplementation enhanced (p < 0.05) the concentrations of total protein, RNA/DNA, and total protein/DNA ratio in the longissimus dorsi muscle, the concentrations of citrulline, ornithine, arginine, and hydroxyproline, and the mRNA level of peptide transporter 1, while reducing the contents of hydrogen peroxide and malondialdehyde and the mRNA level of glutathione-S-transferase omega 2 in the longissimus dorsi muscle. In conclusion, dietary Gln supplementation can improve the intestinal function of piglets and promote the growth of the longissimus dorsi muscle.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...