Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Small ; : e2403492, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38923702

RESUMO

Atomic substructure engineering provides new opportunities for the designing newly and efficient catalysts with diverse atom ensembles, trimmed electron bands, and way-out coordination environments, creating unique contributing to concertedly catalyze water oxidation, which is of great significance for proton exchange membrane water electrolysis (PEMWE). Herein, nest-scheme RuIrLa nanocrystals with dense coherent interfaces as built-in substructures are firstly fabricated by using commercial ZnO particles as acid-removable templates, through a La-stabilized coherent epitaxial growth of nanoparticles (NPs). The obtained nests exhibit a low overpotential of 198 mV at 10 mA cm-2, and the RuIrLa||Pt/C module equipped in PEMWE operates stably at a cell voltage potential of 1.69 V at 100 mA cm-2 in 0.5 M H2SO4 for 55 h, which is far beyond the current IrO2||Pt/C. Within the nests, the position at the interface shows high tensile/compressive strain, significantly reducing the OER activation energy. More importantly, the La termination-stabilized coherent interfaces within the nests creates a unique self-healing process for the outstanding long-term stability. This work provides a promising substructure engineering to develop efficient catalysts with abundant substructures, such as coherent interfaces, dislocations, or grain boundaries, thereby realizing concerted improvement of activity and durability toward water oxidation.

2.
Small ; : e2402168, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38757427

RESUMO

A metal-free nanocarbon with an eggshell structure is synthesized from chitosan (CS) and natural spherical graphite (NSG) as a cathode electrocatalyst for clean zinc-air batteries and fuel cells. It is developed using CS-derived carbons as an eggshell, covering NSG cores. The synthesis involves the in situ growth of CS on NSG, followed by ammonia-assisted pyrolysis for carbonization. The resulting catalyst displays a curved structure and completely coated NSG, showing superior oxygen reduction reaction (ORR) performance. In 1 M NaOH, the ORR half-wave potential reached 0.93 V, surpassing the commercial Pt/C catalyst by 50 mV. Furthermore, a zinc-air battery featuring the catalyst achieves a peak power density of 167 mW cm-2 with excellent stability, outperforming the Pt/C. The improved performance of the eggshell carbons can be attributed to the distorted energy band of the active sites in the form of N-C moieties. More importantly, the curved thin eggshells induce built-in electric fields that can promote electron redistribution to generate atomic charge waves around the N-C moieties on the carbon shells. As a result, the high positively charged and stable C+ sites adjacent to N atoms optimize the adsorption strength of oxygen molecules, thereby facilitating performance.

3.
Small ; : e2400095, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38529761

RESUMO

Rare earth microalloying nanocrystals have gotten widespread attention due to their unprecedented performances with customization-defected nanostructures, divided energy bands, and ensembled surface chemistry, regarded as a class of ideal electrocatalysts for oxygen evolution reaction (OER). Herein, a lanthanide microalloying strategy is proposed to fabricate strain wave-featured LaRuIr nanocrystals with oxide skin through a rapid crystal nucleation, using thermally assisted sodium borohydride reduction in aqueous solution at 60 °C. The atomic strain waves with alternating compressive and tensile strains, resulting from La-stabilized edge dislocations in form of Cottrell atmospheres. In 0.5 m H2SO4, the LaRuIr displays an overpotential of 184 mV at 10 mA cm-2, running at a steadily cell voltage for 60 h at 50 mA cm-2, eightfold enhancement of IrO2||Pt/C assemble in PEMWE. The coupled compressive and tensile profiles boost the OER kinetics via faster AEM and LOM pathways. Moreover, the tensile facilitates surface structure stabilization through dynamic refilling of lattice oxygen vacancies by the adsorbed oxyanions on La, Ru, and Ir sites, eventually achieving a long-term stability. This work contributes to developing advanced catalysts with unique strain to realize simultaneous improvement of activity and durability by breaking the so-called seesaw relationship between them during OER for water splitting.

4.
Small ; : e2400754, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38385815

RESUMO

Metal-doped ruthenium oxides with low prices have gained widespread attention due to their editable compositions, distorted structures, and diverse morphologies for electrocatalysis. However, the mainstream challenge lies in breaking the so-called seesaw relationship between activity and stability during acidic oxygen evolution reaction (OER). Herein, strain wave-featured Mn-RuO2 nanowires (NWs) with asymmetric Ru-O-Mn bonds are first fabricated by thermally driven rapid solid phase conversion from RuMn alloy nanoparticles (NPs) at moderate temperature (450 °C). In 0.5 M H2 SO4 , the resultant NWs display a surprisingly ultralow overpotential of 168 mV at 10 mA cm-2 and run at a stable cell voltage (1.67 V) for 150 h at 50 mA cm-2 in PEMWE, far exceeding IrO2 ||Pt/C assemble. The simultaneous enhancement of both activity and stability stems from the presence of dense strain waves composed of alternating compressive and tensile ones in the distorted NWs, which collaboratively activate the Ru-O-Mn sites for faster OER. More importantly, the atomic strain waves trigger dynamic Ru-O-Mn regeneration via the refilling of oxygen vacancies by oxyanions adsorbed on adjacent Mn and Ru sites, achieving long-term stability. This work opens a door to designing non-precious metal-assisted ruthenium oxides with unique strains for practical application in commercial PEMWE.

5.
Small ; 19(45): e2302895, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37467290

RESUMO

Refractory metals (W, Nb, or Mo) microalloying Pt-based alloys with unprecedented performance may serve as advanced electrocatalysts for proton exchange membrane fuel cells (PEMFCs). These alloys are endowed with unique stabilizing substructures or lattice defects through the microalloying effect. Herein, trace W microalloying PtCuCo medium entropy alloys (W-PtCuCo) are reported via a stepwise synthesis strategy, starting with home-made Cu nanowires as sacrificial templates by anhydrous solid-phase milling route, and then followed by galvanic replacement-assisted solvothermal in ethylene glycol (EG). In PEMFC tests, the obtained W-PtCuCo exhibits an ultrahigh peak power density and mass power density (relative to cathode) reaching 2.09 W cm-2 and 20.9 W mgPt -1 , respectively. During the accelerated degradation test (ADT), the mass activity just lost only 3% after 30 k cycles, much better than the above benchmark catalyst. The microalloying-dependent performances shall be attributed to the presence of abundant stepped surfaces, twisted edges, and other lattice defects terminated by W via substructure reconstruction that indeed alters the electronic structure and strain level of the alloys. This work first provides an atomic-level insight into the microalloying-dependent electrocatalytic performance of Pt-based alloys, which is of great significance for developing next-generation efficient catalysts for PEMFC.

6.
ACS Appl Mater Interfaces ; 15(1): 953-962, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36576782

RESUMO

As efficient nonprecious metal catalysts for oxygen reduction reaction (ORR), Fe-N-C materials are one of the most promising alternatives to Pt-based catalysts for fuel cells and metal-air batteries. However, the intrinsically low density of key active sites like FeN4 moieties hampers their commercial applications. Herein, we provide a smart strategy to construct a candied haws-like Fe-N-C catalyst (CH-FeNC) with broadened carbon interplanar spacing (>4 Å), starting with trehalose as a structure-built brick coupled with a zinc-zeolite imidazole framework (ZIF-8) and polyaniline (PANI) and then followed by copyrolysis carbonization of them. The obtained CH-FeNC exhibits half-wave potentials of 0.92 and 0.90 V (vs RHE) before and after 10,000 cycles in 0.1 M KOH, which are superior to the 0.90 and 0.85 V obtained by commercial Pt/C for ORR. The power density of a homemade zinc-air battery equipped with the catalyst is up to 131 mW cm-2, greater than that of Pt/C (124 mW cm-2). The extended X-ray absorption fine structure (EXAFS) results and density functional theory (DFT) theoretical calculations reveal that there exists enriched zigzag or armchair edge-hosted FeN4 active sites, located at the abundant interface between carbon components in this composite. Furthermore, the unique broadened carbon interlayer spacing plays a key role in deciding the ORR rate in alkaline but not in acidic environments because there exists a fifth ligand of active Fe in the form of FeN4 centers coupled with SO42- and ClO4- from acids.

7.
ACS Appl Mater Interfaces ; 14(33): 37727-37737, 2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-35943902

RESUMO

Few-atom metal clusters feature an extremely large surface area and abundant active sites, which are particularly important for electrocatalysis. Herein, we report a monoatomic cobalt tailoring strategy to boost the performance of platinum clusters (ca. <1 nm) via hetero-charge-trapping chemistry by ultraviolet light reducing Pt-based anions anchored on target Co cations. The created Co1Ptx clusters exhibit a mass activity of 2.27 A mgPt-1, which is about 1621% higher than that obtained by state-of-the-art Pt/C (2 nm) for the oxygen reduction reaction (ORR). This can be attributed to the butterfly effect of electron donor from monoatomic cobalt in the platinum clusters. Moreover, the improved stability results from the Co located at the bottom position of the Pt host, possessing high resistance to Co leaching. Therefore, this offers a general strategy to optimize the high performance of platinum group metal (PGM) clusters for electrocatalysis.

8.
ACS Appl Mater Interfaces ; 14(27): 30889-30900, 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35761177

RESUMO

Plant-derived nonprecious metal catalysts are considered one of the promising candidates of platinum for oxygen reduction reaction (ORR). In this work, the typical microscopic morphology of fresh green crop yam is first detected by cryoscanning electronic microscopy. Using the green and widely sourced yam with spherical starch in nature as a precursor, well-defined spherical carbons are prepared via hypersaline-assisted hydrothermal carbonization and NH3activation, featuring a high heteroatom doping level and a hierarchical porous structure. Experimental results and density functional theory (DFT) calculations reveal that diverse off-plane Fe-Nx-Cy ensembles on the spherical carbons trigger the high performance that exceeds state-of-art Pt/C and most reported carbon catalysts toward ORR in a KOH solution. The increased charge density and the bond length of Fe coordinated in the sites should be responsible for the significantly improved property. The easily editing of off-plane active sites from the simple carbon morphology may shed light on optimizing nonprecious carbons as next-generation catalysts for ORR.

9.
ACS Appl Mater Interfaces ; 14(27): 30692-30703, 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35767898

RESUMO

Strained platinum-based materials with high performance have been regarded as the most promising electrocatalysts for proton exchange membrane fuel cells (PEMFCs) recently. Herein, self-strained platinum clusters with finite size (about 1 nm) are prepared by a combining liquid- and solid-phase UV irradiation cycle strategy. It started with a fresh H2PtCl6 solution irradiated by UV light and then mixed with a graphitized carbon, followed by the dried mixture being subjected to UV light to generate monodispersed Pt clusters on the carbon surface. The obtained platinum clusters feature narrower size distribution and higher loading on carbon, exhibiting significantly improved activity and durability, much higher than that of the-state-of-art commercial Pt/C for the oxygen reduction reaction. More importantly, the self-strained Pt clusters display a surprising CO tolerance, which can be attributed to the unique adaptive lattice compressive strain that triggers an electron enrichment phenomenon for the Pt clusters. Therefore, this stepwise UV irradiation method solves the long-standing problem of both wide size distribution and low loading of metal clusters fabricated by one-step photochemical reduction, providing a potential route for the synthesis of other metal clusters with strained structures.

10.
Proc Natl Acad Sci U S A ; 118(51)2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34911756

RESUMO

Reconstructing the history of biological productivity and atmospheric oxygen partial pressure (pO2) is a fundamental goal of geobiology. Recently, the mass-independent fractionation of oxygen isotopes (O-MIF) has been used as a tool for estimating pO2 and productivity during the Proterozoic. O-MIF, reported as Δ'17O, is produced during the formation of ozone and destroyed by isotopic exchange with water by biological and chemical processes. Atmospheric O-MIF can be preserved in the geologic record when pyrite (FeS2) is oxidized during weathering, and the sulfur is redeposited as sulfate. Here, sedimentary sulfates from the ∼1.4-Ga Sibley Formation are reanalyzed using a detailed one-dimensional photochemical model that includes physical constraints on air-sea gas exchange. Previous analyses of these data concluded that pO2 at that time was <1% PAL (times the present atmospheric level). Our model shows that the upper limit on pO2 is essentially unconstrained by these data. Indeed, pO2 levels below 0.8% PAL are possible only if atmospheric methane was more abundant than today (so that pCO2 could have been lower) or if the Sibley O-MIF data were diluted by reprocessing before the sulfates were deposited. Our model also shows that, contrary to previous assertions, marine productivity cannot be reliably constrained by the O-MIF data because the exchange of molecular oxygen (O2) between the atmosphere and surface ocean is controlled more by air-sea gas transfer rates than by biological productivity. Improved estimates of pCO2 and/or improved proxies for Δ'17O of atmospheric O2 would allow tighter constraints to be placed on mid-Proterozoic pO2.


Assuntos
Atmosfera/química , Ecossistema , Sedimentos Geológicos/química , Isótopos de Oxigênio/análise , Planeta Terra , Fenômenos Ecológicos e Ambientais , Ozônio/química
11.
ACS Appl Mater Interfaces ; 13(38): 45406-45415, 2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34542999

RESUMO

Integrating crystal orientation as well as structural and compositional advantages into one catalyst might be a promising strategy for high-performance Pt-based catalysts for proton-exchange membrane fuel cells. Herein, by introducing W(CO)6 as a structure-oriented template, Pt-based alloys with a well-defined crystal orientation along the (111) facet were obtained. The oxygen reduction reaction mass and specific activities of the crystal-facet-tuned alloys reach a new level. Moreover, the outstanding durability stems from the combination of their exposed crystal facets and incorporated W. The density functional theory calculation results reveal that the formation of the preferred (111) alloys can be attributed to the lower free energy of (111) facets and the weaker adsorption of CO released by W(CO)6. This proposed synthesis strategy of using transition-metal carbonyl compounds as additives to synthesize alloys with strong crystal orientation may open a door to the design of various alloy catalysts with ultrahigh activity.

12.
ACS Appl Mater Interfaces ; 13(7): 8395-8404, 2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33570902

RESUMO

The unaffordable costs of the automotive proton exchange membrane fuel cell (PEMFC), remaining a roadblock for commercial applications as an alternative to combustion engine vehicles, can be overcome partially by remarkably increasing the utilization of irreplaceable platinum (Pt). Herein, atomically precise Pt with scalable atoms ranging from 1 to 43 atoms, stabilized by a homemade carbon from white radish without any ligands, is prepared by a repeated UV irradiation method that is industrially scalable. Compared with the isolated Pt1 in the form of Pt-N4, octahedral Pt6, and icosahedron Pt13, the ordered Pt43 cluster (∼0.75 nm) with higher metal coordination number displays much higher oxygen reduction reaction performance with a mass activity, which is about 1036% higher than that obtained by state-of-the-art Pt/C, an increase by a factor of ∼3.3 as compared with the DOE 2020 target (0.44 A mgPt-1). The utilization rate of Pt atoms reaches up to 94.7%, much higher than that of Pt (2 nm, 56%), capable of further reducing the amount of platinum that is required for PEMFCs. Moreover, the cluster exhibits an outstanding stability due to the improved Pt vacancy formation energy raised by stronger atom interaction in the close-packed cluster. The cluster exhibits a unique finite size effect from self-tuned energy band and strain levels. A clear strain effect on the d-band center is first presented for pure Pt without distortion from ligands like a second metal. Therefore, the assembly of subnanometer Pt with atom alteration opens up new horizons in designing efficient platinum group metal (PGM) catalysts by reducing the size to subnanometer scale.

13.
Chemistry ; 27(20): 6247-6253, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33496039

RESUMO

Metal-free carbons have been regarded as one of the promising materials alternatives to precious-metal catalysts for oxygen reduction reaction (ORR) due to their high activity and stability. In this paper, well-defined N-doped hollow carbons (NHCs) are firstly synthesized by using an ammonia-based hydrothermal synthesis that is environmentally friendly and suitable for mass production in industry and a commercial black carbon as raw material. Moreover, the shell thickness of the NHCs can be easily tuned by this hydrothermal strategy. Zn-air battery test results reveal shell thickness-dependent activity and durability for ORR over the NHCs, which exceeds that obtained by commercial Pt/C (20 wt %). The enhanced battery performance can be attributed to the curvature-activated N-C moieties on the hollow carbon surface, which served as the main active sites for ORR as evidenced by DFT calculations. The proposed approach may open a way for designing curved hollow carbons with high graphitization degree and dopant nitrogen level for metal-air batteries or fuel cells.

14.
Chemistry ; 26(55): 12606-12614, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32568431

RESUMO

The construction of nano-scale hybrid materials with a smart interfacial structure, established by using rare earth oxides and carbon as building blocks, is essential for the development of economical and efficient catalysts for oxygen reduction reactions (ORRs). In this work, hexagonal La2 O3 nanocrystals on a nitrogen-doped porous carbon (NPC) derived from crop radish, served as building bricks, are prepared by chemical precipitation and then calcination at elevated temperatures. The obtained La2 O3 /NPC hybrid exhibits a very high ORR activity with a half-wave potential of 0.90 V, exceeding that of commercial Pt/C (0.83 V). Both DFT theoretical and experimental results have verified that the significantly enhanced catalytic performance is ascribed to the formation of the C-O-La covalent bonds between carbon and La2 O3 . Through the covalent bonds, electrons can transfer from the carbon to La2 O3 and occupy the unfilled eg orbital of the La2 O3 phase. This results in the accelerated adsorption of active oxygen and the facilitated desorption of the surface hydroxides (OHad - ), thereby promoting the ORR over the catalyst.

15.
Nanotechnology ; 31(19): 195401, 2020 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-31962303

RESUMO

Metal-free carbon materials are regarded as a promising catalyst for the oxygen reduction reaction (ORR), owing to their high activity in an alkaline environment. In this paper, using industrial carbon black-supported Co3O4 hybrid as a raw material, typical hollow carbon nanoparticles were synthesized by solid-phase annealing the hybrid at an elevated temperature, followed by HCl etching to remove the cobalt oxide. The specific surface area of the hollow carbon is significantly increased and the total nitrogen content of the carbon is 4.13 at%, providing massive active sites for ORR. In alkaline solution, compared with the commercial Pt/C, the nitrogen-doped hollow carbon nanoparticles display a superior ORR electrocatalytic activity with a half-wave potential of 0.88 V versus the reversible hydrogen electrode. Furthermore, the catalyst exhibits an excellent stability and high discharge power density in the Zn-air battery. This study provides a simple and feasible strategy of solid-phase synthesis for the production of high performance metal-free hollow carbon materials.

16.
ACS Appl Mater Interfaces ; 11(41): 37559-37566, 2019 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-31547655

RESUMO

In this work, platinum single-atom enhanced mushroom-based carbon (Pt1/MC) materials have been facilely synthesized and served as novel electrode materials in lithium-ion batteries (LIBs). The as-synthesized Pt1/MC active material shows a uniform dispersion of isolated Pt atoms on an MC support with high specific surface area and large total pore volume. As a negative electrode material for LIBs, the Pt1/MC exhibits excellent electrochemical properties, which retains a capacity of 846 mA h g-1 after 800 cycles at 2 A g-1 and 349 mA h g-1 (near to the theoretical capacity of graphite) after 6000 cycles at a high current density of 5 A g-1. The remarkable high capacity and excellent cycling stability can be attributed to their porous nanostructures and atomic-Pt-enhanced lithium-ion storage. Atomic Pt can compound with Li+ ions to form a platinum-lithium alloy during the discharge and charge process. Density functional theory (DFT) calculations are performed to verify that the PtLi5 alloy is the most stable intermedium on the MC substrate, which further enhances the lithiation and delithiation kinetics. This novel perspective is helpful to explore next-generation negative electrode materials with high capacities and good stabilities for LIBs.

17.
Nanotechnology ; 30(32): 325403, 2019 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-30965308

RESUMO

Carbon-based non-precious metal catalysts have been regarded as the most promising alternatives to the state-of-art Pt/C catalyst for the oxygen reduction reaction (ORR). However, there are still some unresolved challenges such as agglomeration of nanoparticles, complex preparation process and low production efficiency, which severely hamper the large-scale production of non-precious metal catalysts. Herein, a novel carbon-based non-precious metal catalyst, i.e. iron carbide nanoparticles embedded on carbon nanofibers (Fe2C/CNFs), prepared via the direct pyrolysis of carbon- and iron-containing Janus fibrous precursors obtained by electrospinning. The Fe2C/CNF catalyst shows uniform dispersion and narrow size distribution of Fe2C nanoparticles embedded on the CNFs. The obtained catalyst exhibits positive onset potential (0.87 V versus RHE), large kinetic current density (1.9 mA cm-2), and nearly follows the effective four-electron route, suggesting an outstanding electrocatalytic activity for the ORR in 0.1 M of KOH solution. Besides, its stability is better than that of the commercial Pt/C catalyst, due to the strong binding force between Fe2C particles and CNFs. This strategy opens new avenues for the design and efficient production of promising electrocatalysts for the ORR.

18.
ACS Appl Mater Interfaces ; 11(18): 16452-16460, 2019 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-30964256

RESUMO

Controllable pyrolysis of collapsible metal-organic frameworks (MOFs) into carbon-based nanostructures without obvious collapse and aggregation is of importance for the fabrication of well catalytic active and durable carbon-based catalysts for the oxygen reduction reaction (ORR). Herein, we fabricate morphology-controlled carbon-based nanostructures derived from the Co-based zeolitic imidazolate framework (ZIF-67) that epitaxially grows on layered lanthanum oxycarbonate (La2O2CO3) as a structure-oriented template, followed by pyrolysis at 800 °C. These synthesized carbon-based nanostructures show a well-defined dodecahedron morphology and vertical array on the template surface. In 0.1 M KOH solution, the ORR activity and durability of the carbon-based nanostructures are not only much higher than those obtained by pyrolytic carbons derived from pure ZIF-67 but also exceed commercial Pt/C (20 wt %, Pt). The significantly improved ORR performance can be ascribed to the increased Co-N x level, high specific surface area, and graphitization of the pyrolytic carbon, caused by the introduction of the La2O2CO3 phase into the composite catalyst. Therefore, using La2O2CO3 as the template may be a smart synthetic strategy for MOF-derived nanocarbons with a controlled morphology and composition for energy storages and conversions.

19.
Nanoscale ; 10(19): 9038-9043, 2018 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-29717746

RESUMO

Structurally ordered intermetallic alloys with definite composition and distinct structure show great potential as electro-catalysts for the oxygen reduction reaction (ORR). However, their fabrication with small particle size remains a challenge since grain growth caused by high temperature annealing is unavoidable for the formation of the ordered phase. Here we propose an effective space-confined strategy to prepare an intermetallic alloy with small size (CoPt3/C-S) through annealing of the disordered Pt-Co alloy coated with polydopamine (PDA). The CoPt3/C-S intermetallic catalyst exhibits over 7-fold higher ORR activity and comparable stability compared to large intermetallic nanoparticles (CoPt3/C-L) prepared by direct heat-treatment without PDA. The superior ORR performance of the CoPt3/C-S catalyst can be attributed to the abundant active sites and unsaturated coordinated bonds caused by its special electronic structure, as proved by XPS and XAS tests. This work not only proposes a feasible synthesis route for small intermetallic nanoparticles but also provides a valid strategy to improve the ORR performance of ordered intermetallic catalysts.

20.
Chemistry ; 24(39): 9968-9975, 2018 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-29768685

RESUMO

The 3d transition metal and nitrogen co-doped carbon materials (TM-N-C) are considered as the most promising next-generation electrocatalysts, as alternatives to precious Pt, for the oxygen reduction reaction (ORR). Herein, we have fabricated a Cu-N-C catalyst through directly grafting copper-nitrogen complexes, composed by cuprous chloride and ammonia water, onto the surface of carbon black at 500 °C. In an alkaline environment, the synthesized catalyst exhibits excellent ORR catalytic activity, which is comparable to the state-of-the-art Pt/C catalyst, but far exceeding that obtained by the original carbon. Moreover, the catalyst displays much better stability than Pt/C. The enhanced ORR performance is proven to originate from the post-formation CuI -N2 and CuII -N4 sites at the carbon surface, as evidenced by X-ray photoelectron spectroscopy (XPS) and X-ray absorption spectroscopy (XAS). The possible ORR process catalyzed by these Cu-Nx species is discussed at the atomic level. This work provides a simple and fast synthesis strategy for efficient TM-N-C catalysts on a large scale for energy storage and conversion systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...