Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 15: 1414860, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39055363

RESUMO

Sustaining crop production and food security are threatened by a burgeoning world population and adverse environmental conditions. Traditional breeding methods for vegetable crops are time-consuming, laborious, and untargeted, often taking several years to develop new and improved varieties. The challenges faced by a long breeding cycle need to be overcome. The speed breeding (SB) approach is broadly employed in crop breeding, which greatly shortens breeding cycles and facilities plant growth to obtain new, better-adapted crop varieties as quickly as possible. Potential opportunities are offered by SB in plant factories, where optimal photoperiod, light quality, light intensity, temperature, CO2 concentration, and nutrients are precisely manipulated to enhance the growth of horticultural vegetable crops, holding promise to surmount the long-standing problem of lengthy crop breeding cycles. Additionally, integrated with other breeding technologies, such as genome editing, genomic selection, and high-throughput genotyping, SB in plant factories has emerged as a smart and promising platform to hasten generation turnover and enhance the efficiency of breeding in vegetable crops. This review considers the pivotal opportunities and challenges of SB in plant factories, aiming to accelerate plant generation turnover and improve vegetable crops with precision and efficiency.

2.
Int J Mol Sci ; 24(10)2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37240046

RESUMO

The purple tomato variety 'Indigo Rose' (InR) is favored due to its bright appearance, abundant anthocyanins and outstanding antioxidant capacity. SlHY5 is associated with anthocyanin biosynthesis in 'Indigo Rose' plants. However, residual anthocyanins still present in Slhy5 seedlings and fruit peel indicated there was an anthocyanin induction pathway that is independent of HY5 in plants. The molecular mechanism of anthocyanins formation in 'Indigo Rose' and Slhy5 mutants is unclear. In this study, we performed omics analysis to clarify the regulatory network underlying anthocyanin biosynthesis in seedling and fruit peel of 'Indigo Rose' and Slhy5 mutant. Results showed that the total amount of anthocyanins in both seedling and fruit of InR was significantly higher than those in the Slhy5 mutant, and most genes associated with anthocyanin biosynthesis exhibited higher expression levels in InR, suggesting that SlHY5 play pivotal roles in flavonoid biosynthesis both in tomato seedlings and fruit. Yeast two-hybrid (Y2H) results revealed that SlBBX24 physically interacts with SlAN2-like and SlAN2, while SlWRKY44 could interact with SlAN11 protein. Unexpectedly, both SlPIF1 and SlPIF3 were found to interact with SlBBX24, SlAN1 and SlJAF13 by yeast two-hybrid assay. Suppression of SlBBX24 by virus-induced gene silencing (VIGS) retarded the purple coloration of the fruit peel, indicating an important role of SlBBX24 in the regulation of anthocyanin accumulation. These results deepen the understanding of purple color formation in tomato seedlings and fruits in an HY5-dependent or independent manner via excavating the genes involved in anthocyanin biosynthesis based on omics analysis.


Assuntos
Solanum lycopersicum , Solanum lycopersicum/genética , Antocianinas/metabolismo , Plântula/genética , Plântula/metabolismo , Frutas/genética , Frutas/metabolismo , Índigo Carmim/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
3.
Int J Mol Sci ; 23(12)2022 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-35743261

RESUMO

Different intensities of UV-A (6, 12, 18 µmol·m-2s-1) were applied in a plant factory to evaluate the combined influences of supplemental UV-A and red and blue light (Red:Blue = 1:1 at PPFD of 250 µmol·m-2 s-1) on the biomass, antioxidant activity and phytochemical accumulation of kale. Supplemental UV-A treatments (T1: 6 µmol·m-2 s-1, T2: 12 µmol·m-2 s-1 and T3: 18 µmol·m-2 s-1) resulted in higher moisture content, higher pigment content, and greater leaf area of kale while T2 reached its highest point. T2 treatment positively enhanced the antioxidant capacity, increased the contents of soluble protein, soluble sugar and reduced the nitrate content. T1 treatment markedly increased the content of aliphatic glucosinolate (GSL), whereas T2 treatment highly increased the contents of indolic GSL and total GSL. Genes related to GSL biosynthesis were down-regulated in CK and T3 treatments, while a majority of them were greatly up-regulated by T1 and T2. Hence, supplemental 12 µmol·m-2 s-1 UV-A might be a promising strategy to enhance the growth and quality of kale in a plant factory.


Assuntos
Brassica , Brassica/genética , Glucosinolatos , Luz , Folhas de Planta/metabolismo
4.
Molecules ; 27(3)2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35164148

RESUMO

We explored the effects of different light intensities and photoperiods on the growth, nutritional quality and antioxidant properties of two Brassicaceae microgreens (cabbage Brassica oleracea L. and Chinese kale Brassica alboglabra Bailey). There were two experiments: (1) four photosynthetic photon flux densities (PPFD) of 30, 50, 70 or 90 µmoL·m-2·s-1 with red:blue:green = 1:1:1 light-emitting diodes (LEDs); (2) five photoperiods of 12, 14, 16, 18 or 20 h·d-1. With the increase of light intensity, the hypocotyl length of cabbage and Chinese kale microgreens shortened. PPFD of 90 µmol·m-2·s-1 was beneficial to improve the nutritional quality of cabbage microgreens, which had higher contents of chlorophyll, carotenoids, soluble sugar, soluble protein and vitamin C, as well as increased antioxidant capacity. The optimal PPFD for Chinese kale microgreens was 70 µmol·m-2·s-1. Increasing light intensity could increase the antioxidant capacity of cabbage and Chinese kale microgreens, while not significantly affecting glucosinolate (GS) content. The dry and fresh weight of cabbage and Chinese kale microgreens were maximized with a 14-h·d-1 photoperiod. The chlorophyll, carotenoid and soluble protein content in cabbage and Chinese kale microgreens were highest for a 16-h·d-1 photoperiod. The lowest total GS content was found in cabbage microgreens under a 12-h·d-1 photoperiod and in Chinese kale microgreens under 16-h·d-1 photoperiod. In conclusion, the photoperiod of 14~16 h·d-1, and 90 µmol·m-2·s-1 and 70 µmol·m-2·s-1 PPFD for cabbage and Chinese kale microgreens, respectively, were optimal for cultivation.


Assuntos
Brassica/crescimento & desenvolvimento , Brassica/fisiologia , Carotenoides/metabolismo , Clorofila/metabolismo , Luz , Fotoperíodo , Fotossíntese , Proteínas de Plantas/metabolismo , Açúcares/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...