Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros













Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 349: 123885, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38570159

RESUMO

An efficient perovskite-based heterogeneous catalyst is highly desired to activate peroxymonosulfate (PMS) for removing organic pollutants in water. A high surface area PMS-activator was fabricated by loading LaCoO3 on SBA-15 to degrade atrazine (ATR) in water. The LaCoO3/SBA-15 depicted better textural properties and higher catalytic activity than LaCoO3. In 6.0 min, atrazine (ATZ) degradation in the selected LaCoO3/SBA-15/PMS system, LaCoO3, adsorption by LaCoO3/SBA-15, sole PMS processes reached approximately 100%, 55.15%, 12.80%, and 16.65 % respectively. Furthermore, 0.04 mg L-1 Co was leached from LaCoO3/SBA-15 during PMS activation by LaCoO3/SBA-15. The LaCoO3/SBA-15 showed stable catalytic activity after reuse. The use of radical scavengers and electron paramagnetic resonance spectroscopy (EPR) demonstrated that ROS such as 1O2, O2•-, •OH, and SO4•- were generated by PMS activated by LaCoO3/SBA-15 owing to redox reactions [Co2+/Co3+, and O2-/O2]. EPR, XPS, ATR-FTIR, EIS, LSV, and chronoamperometric measurements were used to explain the catalytic mechanism for PMS activation. Excellent atrazine degradation was due to high surface area, porous nature, diffusion-friendly structure, and ROS. Our investigation proposes that perovskites with different A and B metals and modified perovskites can be loaded on high surface area materials to activate PMS into ROS.


Assuntos
Atrazina , Peróxidos , Dióxido de Silício , Poluentes Químicos da Água , Atrazina/química , Poluentes Químicos da Água/química , Dióxido de Silício/química , Catálise , Peróxidos/química , Purificação da Água/métodos , Adsorção , Titânio/química , Óxidos/química , Cobalto/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA