Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.682
Filtrar
1.
BMC Psychiatry ; 24(1): 412, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38834952

RESUMO

BACKGROUND: The effect of childhood trauma on Internet gaming disorder remains unclear. In this study, we examined this association in Chinese students and explored the possible associated roles of psychological resilience and depression. METHODS: In total, 8,579 students from Hunan Province, China, provided information regarding their sociodemographic factors, history of childhood trauma, any symptoms of depression, psychological resilience, and characteristics of Internet gaming disorder for this cross-sectional study. The impact of childhood trauma on Internet gaming disorder, as well as the extent to which it was mediated by depression and moderated by psychological resilience was evaluated. RESULTS: The influence of childhood trauma on Internet gaming disorder was partially mediated by depression (B = 0.07, 95% CI [0.04, 0.05], p < 0.001), with psychological resilience acting as a mitigating factor (B = -0.002, 95% CI [13.74, 21.72], p < 0.001). Psychological resilience also moderated the association between childhood trauma and depression (B = - 0.003, 95% CI [22.17, 28.10], p < 0.001). Our moderated mediation model elucidated psychosocial mechanisms, revealing the underlying link between childhood trauma and Internet gaming disorder. It also demonstrated the partial mediating role of depression and modulating role of psychological resilience among Chinese students. CONCLUSIONS: Education and interventions, along with effective social support, should be provided to enhance students' psychological resilience and prevent childhood trauma and depression.


Assuntos
Experiências Adversas da Infância , Depressão , Transtorno de Adição à Internet , Análise de Mediação , Resiliência Psicológica , Humanos , Masculino , Transtorno de Adição à Internet/psicologia , Feminino , China , Estudos Transversais , Depressão/psicologia , Experiências Adversas da Infância/psicologia , Adulto Jovem , Adolescente , Adulto , Jogos de Vídeo/psicologia , Estudantes/psicologia
2.
Environ Sci Technol ; 2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38825773

RESUMO

The pronounced lethality of N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine quinone (6PPD-quinone or 6PPDQ) toward specific salmonids, while sparing other fish species, has received considerable attention. However, the underlying cause of this species-specific toxicity remains unresolved. This study explored 6PPDQ toxicokinetics and intestinal microbiota composition in adult zebrafish during a 14-day exposure to environmentally realistic concentrations, followed by a 7-day recovery phase. Predominant accumulation occurred in the brain, intestine, and eyes, with the lowest levels in the liver. Six metabolites were found to undergo hydroxylation, with two additionally undergoing O-sulfonation. Semiquantitative analyses revealed that the predominant metabolite featured a hydroxy group situated on the phenyl ring adjacent to the quinone. This was further validated by assessing enzyme activity and determining in silico binding interactions. Notably, the binding affinity between 6PPDQ and zebrafish phase I and II enzymes exceeded that with the corresponding coho salmon enzymes by 1.04-1.53 times, suggesting a higher potential for 6PPDQ detoxification in tolerant species. Whole-genome sequencing revealed significant increases in the genera Nocardioides and Rhodococcus after exposure to 6PPDQ. Functional annotation and pathway enrichment analyses predicted that these two genera would be responsible for the biodegradation and metabolism of xenobiotics. These findings offer crucial data for comprehending 6PPDQ-induced species-specific toxicity.

3.
Environ Sci Technol ; 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38822815

RESUMO

Lithium (Li) is an important resource that drives sustainable mobility and renewable energy. Its demand is projected to continue to increase in the coming decades. However, the risk of Li pollution has also emerged as a global concern. Here, we investigated the pollution characteristics, sources, exposure levels, and associated health risks of Li in the Jinjiang River basin, the largest area for Li2CO3 production in China. Our results revealed the dominant role of Li extraction activities in the pollution of the river, with over 95% of dissolved Li in downstream river water being emitted from this source. Moreover, the Li concentration in aquatic plants (i.e., water hyacinth) and animals (i.e., fish) significantly increased from upstream to downstream areas, indicating a significant risk to local aquatic ecosystems. More importantly, our study found that local residents were suffering potential chronic noncarcinogenic health risks primarily from consuming contaminated water and vegetables. We also investigated the pollution characteristics of associated elements present in Li ores (e.g., Rb, Cs, Ni, and F-). By uncovering the remarkable impact of Li extraction activities on the Li content in ecosystems for the first time, our study emphasizes the importance of evaluating Li pollution from Li-related industrial activities, including mining, extraction, and recovery.

4.
Angew Chem Int Ed Engl ; : e202406602, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38837577

RESUMO

Although self-assembly has emerged as an effective tool for fabricating biomaterials, achieving precise control over the morphologies and functionalities of the resultant assemblies remains an ongoing challenge. Inspired by the copper peptide naturally present in human plasma, in this study, we designed a synthetic precursor, FcGH. FcGH can self-assemble via two distinct pathways: spontaneous and Cu2+-induced. These two assembly pathways enabled the formation of assemblies with tunable morphologies by adjusting the amount of added Cu2+. We found that the nanoparticles formed by Cu2+-induced self-assembly exhibited a significantly higher cellular uptake efficiency than the wormlike fibers formed spontaneously. Moreover, this Cu2+-induced assembly process occurred spontaneously at a 1:1 molar ratio of Cu2+ to FcGH, avoiding the excessive use of Cu²âº and a tedious preparation procedure. By co-assembling with FcGH-conjugated 10-hydroxycamptothecin (HCPT), Cu2+-induced supramolecular nanodrugs elicited multiple cell death modalities in cancer cells with elevated immunogenicity, enhancing the therapeutic effect compared to free HCPT. This study highlights Cu2+-induced self-assembly as an efficient tool for directing the assembly of nanodrugs and for synergistic tumor therapy.

5.
Meat Sci ; 215: 109554, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38838569

RESUMO

This study investigated the effect of ultrasound (US) combined with pre- and post-addition of κ-carrageenan (KC) on the gelling properties, structural characteristics and rheological behavior of myofibrillar proteins (MP) under low-salt conditions. The results showed that US combined with either pre- or post-addition of KC rendered higher gel strength and water holding capacity (WHC) of MP gels than those treated with US alone and added with KC alone (P < 0.05). US combined with pre-addition of KC facilitated the binding between MP and KC, which enhanced the gel strength and WHC of the mixed MP gels and significantly improved the rheological behavior of MP. This was also confirmed by the highest surface hydrophobicity, disulfide bonds and ß-sheet content of the MP gels with US combined with pre-addition of KC. Moreover, microstructural results reflected a denser structure for the pre-addition of KC in combination with US. However, US combined with post-addition of KC resulted in limited MP unfolding and relatively weak hydrophobic interactions in the composite gels, which were less effective in improving the gel properties of the MP gels. This study provides potential strategies for enhancing the gelling properties of low-salt meat products via application of US and KC.

6.
Reprod Biol ; 24(3): 100896, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38833837

RESUMO

Activation of the maternal immune system leads to a downstream cascade of proinflammatory events that culminate in the activation of spontaneous uterine contractions, which is associated with preterm birth. Ras-related C3 botulinum toxin substrate 1 (Rac1) is a crucial protein related to cell contraction and inflammation. The main purpose of this study was to explore the role and function of Rac1's regulation of inflammation through in- vivo and in-vitro experiments. Rac1 inhibitor was used in animal model of preterm birth and cells isolated from the uterine tissues of pregnant mice on gestational day 16 were transfected with adenovirus to knockdown or overexpress Rac1 and treated with the Calcium-calmodulin-dependent protein kinase II (CaMKII) inhibitor KN93. The expression of Rac1, uterine contraction-associated proteins (CAPs) (COX-2 and Connexin43), and inflammatory cytokines, were assessed by Western blotting and RTPCR. LPS upregulated Rac1, COX-2 and Connexin43 expression in uterine smooth muscle cells (USMCs). The expression of inflammatory cytokines, COX-2, and Connexin43 was significantly decreased in shRac1-transfected cells compared with cells stimulated with LPS only. Rac1 overexpression led to an increase in the expression of inflammatory cytokines, COX-2, and Connexin43. Furthermore, after Rac1 overexpression, KN93 reduced the expression of uterine contraction-associated proteins and inflammatory cytokines. It is thought that the effect of Rac1 on inflammatory cytokine and contraction-associated protein expression in USMCs is mediated by CaMKII. Rac1 can modulate the expression of contraction-associated proteins and inflammatory cytokines through the CaMKII pathway. Rac1 could be an effective therapeutic target for improving the outcome of preterm birth.

7.
Arch Esp Urol ; 77(4): 391-396, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38840282

RESUMO

OBJECTIVE: Urinary tract infection (UTI) is a common postoperative complication, so exploring its risk factors is helpful to provide a basis for clinical prevention. This study aims to analyse the risk factors for UTI after lumbar interbody fusion (LIF). METHODS: A single-centre retrospective study was conducted on the clinical data of 358 patients treated with LIF from April 2020 to April 2023. In accordance with the results of postoperative urine culture, the patients were divided into UTI group (n = 19, those with UTI after LIF) and control group (n = 332, those without UTI after LIF). Binary logistic regression analysis was carried out through collecting the medical records of the two groups to probe into the risk factors for UTI after LIF. RESULTS: After seven patients were excluded, the remaining 351 patients were included in the analysis. In this study, 19 patients (5.41%) developed postoperative UTI, whereas 332 patients (94.59%) had no UTI. Regression analysis results showed drinking (odds ratio (OR) = 16.193, 95% confidence interval (CI): 1.017-257.860) and high preoperative C-reactive protein (CRP) level (OR = 3.237, 95% CI: 1.213-8.636) as risk factors for UTI after LIF. A high professional title of main surgeon (OR = 0.095, 95% CI: 0.010-0.932) and preoperative red blood cell (RBC) count (OR = 0.001, 95% CI: 0.000-0.198) were protective factors for UTI after LIF (p < 0.05). CONCLUSIONS: This study advocated strengthening the prevention and treatment of UTI in patients who had drinking history, high preoperative CRP level and low preoperative RBC count, and received LIF based on the study results. Attention should be paid to the training of physicians with low professional title.


Assuntos
Vértebras Lombares , Complicações Pós-Operatórias , Fusão Vertebral , Infecções Urinárias , Humanos , Fusão Vertebral/efeitos adversos , Infecções Urinárias/etiologia , Infecções Urinárias/epidemiologia , Masculino , Fatores de Risco , Estudos Retrospectivos , Feminino , Pessoa de Meia-Idade , Complicações Pós-Operatórias/etiologia , Complicações Pós-Operatórias/epidemiologia , Vértebras Lombares/cirurgia , Idoso , Medição de Risco
8.
Circulation ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38841852

RESUMO

BACKGROUND: Dilated cardiomyopathy is characterized by left ventricular dilation and continuous systolic dysfunction. Mitochondrial impairment is critical in dilated cardiomyopathy; however, the underlying mechanisms remain unclear. Here, we explored the cardioprotective role of a heart-enriched long noncoding RNA, the dilated cardiomyopathy repressive transcript (DCRT), in maintaining mitochondrial function. METHODS: The DCRT knockout (DCRT-/-) mice and DCRT knockout cells were developed using CRISPR-Cas9 technology. Cardiac-specific DCRT transgenic mice were generated using α-myosin heavy chain promoter. Chromatin coimmunoprecipitation, RNA immunoprecipitation, Western blot, and isoform sequencing were performed to investigate the underlying mechanisms. RESULTS: We found that the long noncoding RNA DCRT was highly enriched in the normal heart tissues and that its expression was significantly downregulated in the myocardium of patients with dilated cardiomyopathy. DCRT-/- mice spontaneously developed cardiac dysfunction and enlargement with mitochondrial impairment. DCRT transgene or overexpression with the recombinant adeno-associated virus system in mice attenuated cardiac dysfunction induced by transverse aortic constriction treatment. Mechanistically, DCRT inhibited the third exon skipping of NDUFS2 (NADH dehydrogenase ubiquinone iron-sulfur protein 2) by directly binding to PTBP1 (polypyrimidine tract binding protein 1) in the nucleus of cardiomyocytes. Skipping of the third exon of NDUFS2 induced mitochondrial dysfunction by competitively inhibiting mitochondrial complex I activity and binding to PRDX5 (peroxiredoxin 5) and suppressing its antioxidant activity. Furthermore, coenzyme Q10 partially alleviated mitochondrial dysfunction in cardiomyocytes caused by DCRT reduction. CONCLUSIONS: Our study revealed that the loss of DCRT contributed to PTBP1-mediated exon skipping of NDUFS2, thereby inducing cardiac mitochondrial dysfunction during dilated cardiomyopathy development, which could be partially treated with coenzyme Q10 supplementation.

9.
Curr Med Sci ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38842774

RESUMO

OBJECTIVE: Intestinal fibrosis is a refractory complication of inflammatory bowel disease (IBD). Tumor necrosis factor ligand-related molecule-1A (TL1A) is important for IBD-related intestinal fibrosis in a dextran sodium sulfate (DSS)-induced experimental colitis model. This study aimed to explore the effects of TL1A on human colonic fibroblasts. METHODS: A trinitrobenzene sulfonic acid (TNBS)-induced experimental colitis model of LCK-CD2-TL1A-GFP transgenic (Tg) or wild-type (WT) mice was established to determine the effect and mechanism of TL1A on intestinal fibrosis. The human colonic fibroblast CCD-18Co cell line was treated concurrently with TL1A and human peripheral blood mononuclear cell (PBMC) supernatant. The proliferation and activation of CCD-18Co cells were detected by BrdU assays, flow cytometry, immunocytochemistry and Western blotting. Collagen metabolism was tested by Western blotting and real-time quantitative polymerase chain reaction (RT-qPCR). RESULTS: The level of collagen metabolism in the TNBS+ethyl alcohol (EtOH)/Tg group was greater than that in the TNBS+EtOH/WT group. Transforming growth factor-ß1 (TGF-ß1) and p-Smad3 in the TNBS+EtOH/Tg group were upregulated as compared with those in the TNBS+EtOH/WT group. The proliferation of CCD-18Co cells was promoted by the addition of human PBMC supernatant supplemented with 20 ng/mL TL1A, and the addition of human PBMC supernatant and TL1A increased CCD-18Co proliferation by 24.4% at 24 h. TL1A promoted cell activation and increased the levels of COL1A2, COL3A1, and TIMP-1 in CCD-18Co cells. Treatment of CCD-18Co cells with TL1A increased the expression of TGF-ß1 and p-Smad3. CONCLUSION: TL1A promotes TGF-ß1-mediated intestinal fibroblast activation, proliferation, and collagen deposition and is likely related to an increase in the TGF-ß1/Smad3 signaling pathway.

10.
Hellenic J Cardiol ; 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38844023

RESUMO

BACKGROUND: We aimed to examine bi-ventricular remodeling and function following Ebstein's anomaly (EbA) surgical correction using echocardiographic techniques, particularly the relations between the bi-ventricular changes and the EbA types. METHODS: From April 2015 to August 2022, 110 patients with EbA were included in this retrospective study based on the Carpentier classification. Echocardiography assessments during the preoperative, early, and mid-term postoperative periods were performed. RESULTS: The 54 patients with types A and B EbA were included in group 1, whereas the 56 with types C and D were in group 2. Seventy-eight patients underwent surgical correction of EbA. The median age at operation was 8.8 years. During the mid-term follow-up, only 9.1% of the patients had moderate or severe tricuspid regurgitation. Right ventricular (RV) systolic function worsened in group 2 at discharge (fractional area change: 27.6±11.2 versus 35.4±11.5 [baseline], P<0.05; global longitudinal strain: -10.8±4.4 versus -17.9±4.7 [baseline], P=0.0001). RV function slowly recovered at a mean of 12-month follow-up. Regarding left ventricular (LV) and RV systolic function, no statistical difference was found between before and after surgery in group 1. CONCLUSIONS: A high success rate of surgical correction of EbA with an encouraging durability of the valve was noted. Bi-ventricular systolic function was maintained fairly in most patients with types A and B postoperatively. A late increase in RV systolic function after an initial reduction and unchanged LV systolic function were observed in the patients with types C and D postoperatively.

11.
Front Nutr ; 11: 1371691, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38835960

RESUMO

Chondroitin sulfate (CS) is a sulfated linear polysaccharide with different functional activities, including antioxidant, anti-inflammatory, lipid-lowering, and immune regulation. As natural sulfated polysaccharides have high molecular weight, high apparent viscosity, low water solubility, complex structure, and high negative charge, they have difficulty binding to receptors within cells across tissue barriers, resulting in low bioavailability and unclear structure-activity relationships. In this study, an H2O2-Vc oxidative degradation system was employed to perform environmentally friendly and controllable degradation of CS extracted from the nasal cartilage of Shaanxi Yellow cattle. Two low-molecular-weight chondroitin sulfates (LMWCSs), CS-1 (14.8 kDa) and CS-2 (50.9 kDa), that exhibit strong in vitro free radical scavenging ability were obtained, and their structures were characterized. Mice intraperitoneally administered lipopolysaccharide (LPS) were used to explore the cognitive intervention effects of LMWCS. Supplementing CS-1 and CS-2 significantly downregulated the levels of the serum inflammatory factors, TNF-α and IL-1ß, promoted the expression of GSH in the brain, and inhibited the production of the lipid peroxidation product, malondialdehyde (MDA), ultimately inhibiting LPS-induced cognitive impairment in mice. Surprisingly, compared to the LPS model group, the abundances of Streptococcus, Eisenbergiella, Vampirovibrio, Coprococcus, Enterococcus and Lachnoanaerobaculum were significantly increased in the intestines of mice in the CS-1 and CS-2 group, whereas those of Parabacteroides and Mycoplasma were significantly decreased. Altogether, this study provides a theoretical basis for the comprehensive utilization of agricultural and animal resources and the application of brain nutrition, anti-inflammatory, and LMWCS health products.

12.
Acta Pharm Sin B ; 14(6): 2520-2536, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38828143

RESUMO

Type I interferon (IFN) inhibits a wide spectrum of viruses through stimulating the expression of antiviral proteins. As an IFN-induced protein, myxovirus resistance B (MXB) protein was reported to inhibit multiple highly pathogenic human viruses. It remains to be determined whether MXB employs a common mechanism to restrict different viruses. Here, we find that IFN alters the subcellular localization of hundreds of host proteins, and this IFN effect is partially lost upon MXB depletion. The results of our mechanistic study reveal that MXB recognizes vimentin (VIM) and recruits protein kinase B (AKT) to phosphorylate VIM at amino acid S38, which leads to reorganization of the VIM network and impairment of intracellular trafficking of virus protein complexes, hence causing a restriction of virus infection. These results highlight a new function of MXB in modulating VIM-mediated trafficking, which may lead towards a novel broad-spectrum antiviral strategy to control a large group of viruses that depend on VIM for successful replication.

13.
Medicine (Baltimore) ; 103(23): e38339, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38847666

RESUMO

In this study, we developed a method for determining cotinine and 3-hydroxycotinine in human serum and established a methodology for an in-depth study of tobacco exposure and health. After the proteins in the human serum samples were precipitated with acetonitrile, they were separated on a ZORBAX SB-Phenyl column with a mobile phase of methanol encompassing 0.3% formic acid-water encompassing 0.15% formic acid. The measurement was performed on an API5500 triple quadrupole mass spectrometer in the multiple reaction monitoring mode. Cotinine, 3-hydroxycotinine, and cotinine-d3 isotope internal standards were held for 2.56 minutes, 1.58 minutes, and 2.56 minutes, respectively. In serum, the linear range was 0.05 to 500 ng·mL-1 for cotinine and 0.50 to 1250 ng·mL-1 for 3-hydroxycotinine. The lower limit of quantification (LLOQ) was 0.05 ng·mL-1 and 0.5 ng·mL-1 for cotinine and 3-hydroxycotinine, respectively. The intra-day and inter-day relative standard deviations were <11%, and the relative errors were within ±â€…7%. Moreover, the mean extraction recoveries of cotinine and 3-hydroxycotinine were 98.54% and 100.24%, respectively. This method is suitable for the rapid determination of cotinine and 3-hydroxycotinine in human serum because of its rapidity, sensitivity, strong specificity, and high reproducibility. The detection of cotinine levels in human serum allows for the identification of the cutoff value, providing a basis for differentiation between smoking and nonsmoking populations.


Assuntos
Cotinina , Espectrometria de Massas em Tandem , Humanos , Cotinina/sangue , Cotinina/análogos & derivados , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida/métodos , Reprodutibilidade dos Testes , Limite de Detecção
14.
Hortic Res ; 11(5): uhae066, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38725461

RESUMO

CaWRKY40 coordinately activates pepper immunity against Ralstonia solanacearum infection (RSI) and high temperature stress (HTS), forms positive feedback loops with other positive regulators and is promoted by CaWRKY27b/CaWRKY28 through physical interactions; however, whether and how it is regulated by negative regulators to function appropriately remain unclear. Herein, we provide evidence that CaWRKY40 is repressed by a SALT TOLERANCE HOMOLOG2 in pepper (CaSTH2). Our data from gene silencing and transient overexpression in pepper and epoptic overexpression in Nicotiana benthamiana plants showed that CaSTH2 acted as negative regulator in immunity against RSI and thermotolerance. Our data from BiFC, CoIP, pull down, and MST indicate that CaSTH2 interacted with CaWRKY40, by which CaWRKY40 was prevented from activating immunity or thermotolerance-related genes. It was also found that CaSTH2 repressed CaWRKY40 at least partially through blocking interaction of CaWRKY40 with CaWRKY27b/CaWRKY28, but not through directly repressing binding of CaWRKY40 to its target genes. The results of study provide new insight into the mechanisms underlying the coordination of pepper immunity and thermotolerance.

15.
Adv Sci (Weinh) ; : e2401327, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38725147

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a progressive and ultimately fatal interstitial lung disease, with limited therapeutic options available. Impaired autophagy resulting from aberrant TRB3/p62 protein-protein interactions (PPIs) contributes to the progression of IPF. Restoration of autophagy by modulating the TRB3/p62 PPIs has rarely been reported for the treatment of IPF. Herein, peptide nanofibers are developed that specifically bind to TRB3 protein and explored their potential as a therapeutic approach for IPF. By conjugating with the self-assembling fragment (Ac-GFFY), a TRB3-binding peptide motif A2 allows for the formation of nanofibers with a stable α-helix secondary structure. The resulting peptide (Ac-GFFY-A2) nanofibers exhibit specific high-affinity binding to TRB3 protein in saline buffer and better capacity of cellular uptake to A2 peptide. Furthermore, the TRB3-targeting peptide nanofibers efficiently interfere with the aberrant TRB3/p62 PPIs in activated fibroblasts and fibrotic lung tissue of mice, thereby restoring autophagy dysfunction. The TRB3-targeting peptide nanofibers inhibit myofibroblast differentiation, collagen production, and fibroblast migration in vitro is demonstrated, as well as bleomycin-induced pulmonary fibrosis in vivo. This study provides a supramolecular method to modulate PPIs and highlights a promising strategy for treating IPF diseases by restoring autophagy.

16.
Int J Clin Pharm ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38727779

RESUMO

BACKGROUND: Establishing effective pharmacovigilance systems globally is challenging due to the need for comprehensive epidemiological data on pharmacovigilance-related events, particularly in countries at different stages of development. AIM: This study aimed to determine magnitude and drivers of change in the global and regional burden of pharmacovigilance-related events from 1990 to 2019, analyzing variations between age groups and sex, providing data support for policymakers to adjust their pharmacovigilance policies. METHOD: Pharmacovigilance-related events were defined as Adverse Effects of Medical Treatment (AEMT) and Drug Use Disorders (DUD) in the Global Burden of Diseases, Injuries, and Risk Factors Study 2019. Time trend analysis utilized joinpoint regression, age-period-cohort model, and decomposition method. Disease burden was measured in incidence, deaths, and disability-adjusted life years (DALYs). RESULTS: The global burden of pharmacovigilance-related events remained high, driven predominantly by population growth. Children and older adults were identified as particularly susceptible groups. Across various regions and periods of the socio-demographic index (SDI), the risk of death from AEMT showed a decreasing trend. In contrast, the incidence of AEMT and both the incidence and death rates from DUD showed a stable or worsening trend. Significant regional disparities in the burden of these diseases were noted between different SDI levels. CONCLUSION: The study underscores the critical need for robust pharmacovigilance systems worldwide. The observed trends in the burden of pharmacovigilance-related events offer a clear direction for countries to refine and strengthen their pharmacovigilance policies and practices.

17.
J Exp Clin Cancer Res ; 43(1): 139, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38725030

RESUMO

BACKGROUND: LncRNAs regulate tumorigenesis and development in a variety of cancers. We substantiate for the first time that LINC00606 is considerably expressed in glioblastoma (GBM) patient specimens and is linked with adverse prognosis. This suggests that LINC00606 may have the potential to regulate glioma genesis and progression, and that the biological functions and molecular mechanisms of LINC00606 in GBM remain largely unknown. METHODS: The expression of LINC00606 and ATP11B in glioma and normal brain tissues was evaluated by qPCR, and the biological functions of the LINC00606/miR-486-3p/TCF12/ATP11B axis in GBM were verified through a series of in vitro and in vivo experiments. The molecular mechanism of LINC00606 was elucidated by immunoblotting, FISH, RNA pulldown, CHIP-qPCR, and a dual-luciferase reporter assay. RESULTS: We demonstrated that LINC00606 promotes glioma cell proliferation, clonal expansion and migration, while reducing apoptosis levels. Mechanistically, on the one hand, LINC00606 can sponge miR-486-3p; the target gene TCF12 of miR-486-3p affects the transcriptional initiation of LINC00606, PTEN and KLLN. On the other hand, it can also regulate the PI3K/AKT signaling pathway to mediate glioma cell proliferation, migration and apoptosis by binding to ATP11B protein. CONCLUSIONS: Overall, the LINC00606/miR-486-3p/TCF12/ATP11B axis is involved in the regulation of GBM progression and plays a role in tumor regulation at transcriptional and post-transcriptional levels primarily through LINC00606 sponging miR-486-3p and targeted binding to ATP11B. Therefore, our research on the regulatory network LINC00606 could be a novel therapeutic strategy for the treatment of GBM.


Assuntos
Glioblastoma , MicroRNAs , RNA Longo não Codificante , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Animais , Camundongos , Progressão da Doença , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Masculino , Feminino , Regulação Neoplásica da Expressão Gênica , Movimento Celular , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/genética , Camundongos Nus , Apoptose
18.
Curr Med Imaging ; 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38693744

RESUMO

INTRODUCTION: Angiomatoid fibrous histiocytoma (AFH) is a borderline tumor usually affecting the the children or young adults. 18F-Fluorodexoyglucose (FDG) positron emission tomography/computed tomography (PET/CT) investigations of pulmonary AFH are rare, and there are currently no reports of intense FDG uptake in AFH. CASE REPORT: We report an AFH that occurred in the lung of a 57-year-old woman. She presented with paroxysmal cough and occasional bloodshot sputum. 18FFDG PET/CT revealed a right parahilar nodule with intense FDG-avidity, middle lobe atelectasis, and several bilateral axillary lymph nodes with mild hypermetabolic activity. This patient underwent a right middle lobe lobectomy via video-assisted thoracoscopy. Histopathologically, the diagnosis was pulmonary AFH. She had an uneventful postoperative course, and the bilateral axillary lymph nodes regressed during postoperative follow-up. CONCLUSIONS: The clinical presentation and image findings of patients with primary pulmonary AFH may be potential diagnosis pitfalls. The diagnosis of lymph nodes or distant metastases should be approached with caution. To avoid misdiagnosis, biopsy with histological examination and immunohistochemichal staining should be performed as early as possible.

19.
Environ Health Perspect ; 132(5): 57001, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38701112

RESUMO

BACKGROUND: Disruptions in vascular formation attributable to chemical insults is a pivotal risk factor or potential etiology of developmental defects and various disease settings. Among the thousands of chemicals threatening human health, the highly concerning groups prevalent in the environment and detected in biological monitoring in the general population ought to be prioritized because of their high exposure risks. However, the impacts of a large number of environmental chemicals on vasculature are far from understood. The angioarchitecture complexity and technical limitations make it challenging to analyze the entire vasculature efficiently and identify subtle changes through a high-throughput in vivo assay. OBJECTIVES: We aimed to develop an automated morphometric approach for the vascular profile and assess the vascular morphology of health-concerning environmental chemicals. METHODS: High-resolution images of the entire vasculature in Tg(fli1a:eGFP) zebrafish were collected using a high-content imaging platform. We established a deep learning-based quantitative framework, ECA-ResXUnet, combined with MATLAB to segment the vascular networks and extract features. Vessel scores based on the rates of morphological changes were calculated to rank vascular toxicity. Potential biomarkers were identified by vessel-endothelium-gene-disease integrative analysis. RESULTS: Whole-trunk blood vessels and the cerebral vasculature in larvae exposed to 150 representative chemicals were automatically segmented as comparable to human-level accuracy, with sensitivity and specificity of 95.56% and 95.81%, respectively. Chemical treatments led to heterogeneous vascular patterns manifested by 31 architecture indexes, and the common cardinal vein (CCV) was the most affected vessel. The antipsychotic medicine haloperidol, flame retardant 2,2-bis(chloromethyl)trimethylenebis[bis(2-chloroethyl) phosphate], and tert-butylphenyl diphenyl phosphate ranked as the top three in vessel scores. Pesticides accounted for the largest group, with a vessel score of ≥1, characterized by a remarkable inhibition of subintestinal venous plexus and delayed development of CCV. Multiple-concentration evaluation of nine per- and polyfluoroalkyl substances (PFAS) indicated a low-concentration effect on vascular impairment and a positive association between carbon chain length and benchmark concentration. Target vessel-directed single-cell RNA sequencing of fli1a+ cells from larvae treated with λ-cyhalothrin, perfluorohexanesulfonic acid, or benzylbutyl phthalate, along with vessel-endothelium-gene-disease integrative analysis, uncovered potential associations with vascular disorders and identified biomarker candidates. DISCUSSION: This study provides a novel paradigm for phenotype-driven screenings of vascular-disrupting chemicals by converging morphological and transcriptomic profiles at a high-resolution level, serving as a powerful tool for large-scale toxicity tests. Our approach and the high-quality morphometric data facilitate the precise evaluation of vascular effects caused by environmental chemicals. https://doi.org/10.1289/EHP13214.


Assuntos
Peixe-Zebra , Animais , Poluentes Ambientais/toxicidade , Vasos Sanguíneos/efeitos dos fármacos
20.
New Microbiol ; 47(1): 98-102, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38700889

RESUMO

The objective of this study was to investigate the risk factors and diagnosis measure of COVID-19-associated pulmonary aspergillosis (CAPA). This study included 201 COVID-19 patients from December 1, 2022, to January 31, 2023; 7 (3.5%) were diagnosed with CAPA. The main risk factors were age, MV, ICU admission and COPD, and the presence of comorbidities such as ARDS and hypoproteinemia in COVID-19 patients, more susceptible to Aspergillus infection. In addition to specimen culture in the lower respiratory tract, the 1,3-ß-D-glucan antigen test can serve as an important screening indicator for early CAPA diagnosis in non-granulocytopenia patients.


Assuntos
COVID-19 , Coinfecção , Aspergilose Pulmonar , SARS-CoV-2 , Humanos , COVID-19/complicações , Coinfecção/microbiologia , Masculino , Pessoa de Meia-Idade , Feminino , Aspergilose Pulmonar/complicações , Aspergilose Pulmonar/epidemiologia , Idoso , Fatores de Risco , Adulto , Estudos Retrospectivos , Comorbidade , Idoso de 80 Anos ou mais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA