RESUMO
Major depressive disorder (MDD) is a severe mental illness with a complex etiology. Currently, many medications employed in clinical treatment exhibit limitations such as delayed onset of action and a high incidence of adverse reactions. Therefore, there is a pressing need to develop antidepressants that exhibit enhanced efficacy and safety. The N-methyl-D-aspartate receptor (NMDAR), a distinctive glutamate-gated ion channel receptor, has been implicated in the onset and progression of depressive disorder, as evidenced by both preclinical and clinical research. The NMDAR antagonist, ketamine, exhibits rapid and sustained antidepressant effects, holding promise as a novel therapeutic approach for depressive disorder. However, its psychotomimetic impact and potential for addiction have restricted its widespread clinical application. Notably, over the past decade, studies have suggested that enhancing NMDAR functionality can produce antidepressant effects with improved safety, especially with the emergence of NMDAR-positive allosteric modulators (PAMs). We view this as a potential novel strategy for treating depression, forming the basis for the narrative review that follows.
RESUMO
Target identification, employing chemical proteomics, constitutes a continuous challenging endeavor in the drug development of natural products (NPs). Understanding their targets is crucial for deciphering their mechanisms and developing potential probes or drugs. Identifications fall into two main categories: labeled and label-free techniques. Labeled methods use the molecules tagged with markers such as biotin or fluorescent labels to easily detect interactions with target proteins. Thorough structure-activity relationships are essential before labeling to avoid changes in the biological activity or binding specificity. In contrast, label-free technologies identify target proteins without modifying natural products, relying on changes in the stability, thermal properties, or precipitation in the presence or absence of these products. Each approach has its advantages and disadvantages, offering a comprehensive understanding of the mechanisms and therapeutic potential of the NPs. Here, we summarize target identification techniques for natural molecules, highlight case studies of notable NPs, and explore future applications and directions.
Assuntos
Produtos Biológicos , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Humanos , Proteômica/métodos , Relação Estrutura-Atividade , Corantes Fluorescentes/química , Proteínas/química , Proteínas/metabolismo , Descoberta de DrogasRESUMO
TMP269, a class IIA histone deacetylase inhibitor with selectivity, that has a protective effect on the central nervous system, yet its specific mechanism of action remains ambiguous. Although major depressive disorder (MDD) is highly prevalent, its pathophysiology is poorly understood. Recent evidence suggests that histone deacetylase 5 plays a key role in the pathological process of depression and the fact that preclinical studies have shown HDAC5 to be a potential antidepressant target, the search for natural drugs or small molecule compounds that can target HDAC5 may be a potential therapeutic strategy for the treatment of depression. In addition, we examined the role of the Brain-derived neurotrophic factor (BDNF), an important neurotrophic factor for neuronal survival and growth, as a potential downstream target of HDAC5. We found downward revision of HDAC5 levels in the hippocampus ameliorated depressive-like behavior in LH (Learned helplessness) mice. Furthermore, injection of HDAC5 overexpressing adenoviral vectors in the hippocampal dentate gyrus of wild-type mice produced a somewhat depressive-like phenotype. Pharmacological, immunofluorescence and biochemical experiments showed that TMP269 could produce antidepressant effects by inhibiting mouse hippocampal HDAC5 and thus modulating its downstream BDNF. Over all, TMP269 mitigated LH-induced depressive-like behaviors and abnormalities in synapse formation and neurogenesis within the hippocampus. These findings suggest potential beneficial effects of TMP269 on depression.
Assuntos
Antidepressivos , Depressão , Camundongos Endogâmicos C57BL , Estresse Psicológico , Animais , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Camundongos , Masculino , Depressão/tratamento farmacológico , Depressão/metabolismo , Estresse Psicológico/tratamento farmacológico , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Histona Desacetilases/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Comportamento Animal/efeitos dos fármacosRESUMO
Depression is a prevalent and debilitating psychiatric illness. However, the antidepressant drugs currently prescribed are only effective in a limited group of patients. Histone modifications mediated by histone acetylation are considered to play an important role in the pathogenesis and treatment of depression. Recent studies have revealed that histone deacetylase inhibitors may be involved in the pathogenesis of depression and the underlying mechanism of the antidepressant therapeutic action. Here, we first conducted virtual screening of histone deacetylase-5 (HDAC5) inhibitors against HDAC5, a target closely related to depression, and identified compound T2943, further verifying its inhibitory effect on enzyme activities in vitro. After stereotaxic injection of T2943 into the hippocampus of mice, the antidepressant effect of T2943 was evaluated using behavioral experiments. We also used different proteomic and molecular biology analyses to determine and confirm that T2943 promoted histone 3 lysine 14 acetylation (H3K14ac) by inhibiting HDAC5 activity. Following the overexpression of adenoviral HDAC5 in the hippocampus of mice and subsequent behavioral analyses, we confirmed that T2943 exerts antidepressant effects by inhibiting HDAC5 activity. Our findings highlight the efficacy of targeting HDAC5 to treat depression and demonstrate the potential of using T2943 as an antidepressant.
Assuntos
Histonas , Proteômica , Humanos , Antidepressivos/farmacologia , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismoRESUMO
As a major coastal economic province in the east of China, it is of great significance to clarify the temporal and spatial patterns of regional development in Shandong Province in recent years to support regional high-quality development. Nightlight remote sensing data can reveal the spatio-temporal patterns of social and economic activities on a fine pixel scale. We based the nighttime light patterns at three spatial scales in three geographical regions on monthly nighttime light remote sensing data and social statistics. Different cities and different counties in Shandong Province in the last 10 years were studied by using the methods of trend analysis, stability analysis and correlation analysis. The results show that: (1) The nighttime light pattern was generally consistent with the spatial pattern of construction land. The nighttime light intensity of most urban, built-up areas showed an increasing trend, while the old urban areas of Qingdao and Yantai showed a weakening trend. (2) At the geographical unit scale, the total nighttime light in south-central Shandong was significantly higher than that in eastern and northwest Shandong, while the nighttime light growth rate in northwest Shandong was significantly highest. At the urban scale, Liaocheng had the highest nighttime light growth rate. At the county scale, the nighttime light growth rate of counties with a better economy was lower, while that of counties with a backward economy was higher. (3) The nighttime light growth was significantly correlated with Gross Domestic Product (GDP) and population growth, indicating that regional economic development and population growth were the main causes of nighttime light change.