RESUMO
Cellular senescence, a permanent halt in cell division due to stress, spurs functional and structural changes, contributing to vascular aging characterized by endothelial dysfunction and vascular remodeling. This process raises the risk of ischemic stroke (IS) in older individuals, with its mechanisms still not completely understood despite ongoing research efforts. In this review, we have analyzed the impact of vascular aging on increasing susceptibility and exacerbating the pathology of IS. We have emphasized the detrimental effects of endothelial dysfunction and vascular remodeling influenced by oxidative stress and inflammatory response on vascular aging and IS. Our goal is to aid the understanding of vascular aging and IS pathogenesis, particularly benefiting older adults with high risk of IS.
Assuntos
Envelhecimento , AVC Isquêmico , Estresse Oxidativo , Humanos , AVC Isquêmico/fisiopatologia , AVC Isquêmico/etiologia , Envelhecimento/fisiologia , Envelhecimento/patologia , Remodelação Vascular/fisiologia , Endotélio Vascular/fisiopatologia , Endotélio Vascular/patologia , Fatores de Risco , Senescência Celular/fisiologia , AnimaisRESUMO
We have reported previously that 9-methoxycamptothecin (MCPT) showed significant antitumor activity in vitro. Here, agarose gel electrophoresis experiments were performed to evaluate MCPT's unwinding ability toward plasmid DNA and inhibitory activities against topoisomerases (Topo) I and II. Binding properties of MCPT to calf thymus DNA (CT-DNA) were evaluated by UV-vis, melting temperature, fluorescence, circular dichroism methodologies and molecular docking technique. Results showed that MCPT at 100 µM inhibited Topo I activity, but had no effect on Topo II. Studies on the binding properties indicated that minor groove binding was the most probable binding mode of MCPT to DNA. The abilities of MCPT to act as Topo I inhibitor and minor groove binding agent may be related to its strong antitumor activity.