Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
1.
Sci Total Environ ; 946: 174465, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38964411

RESUMO

The interaction between water and coal is of great significance to the study of coal spontaneous combustion (CSC) in humid mine environments. Here, using an isotope tracing method to trace oxygen atoms in water, the role of water in the formation of CO, CO2, product water, and other substances during CSC was quantitatively studied through thermogravimetry coupled with mass spectrometry (TG-MS). In addition, Pearson correlation analysis was used to evaluate the relationships between the amounts of CO and CO2 generated during CSC and the different functional groups. The migration and transformation paths of oxygen atoms in water were analyzed. The results showed that water participated in the CSC reaction to produce CO, CO2, and product water in a dynamic, temperature-dependent process. CO and CO2 were formed through different reaction paths involving reactions between water and aldehyde and carboxyl groups. Further, carboxyl groups were also involved in the reaction with coal to form product water. The results from this study are helpful for understanding the influence of water in each stage of CSC, thereby aiding in its prevention and control.

2.
Small ; : e2402263, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38716785

RESUMO

Zirconium-based metal-organic frameworks (Zr-MOFs) have emerged as one of the most studied MOFs due to the unlimited numbers of organic linkers and the varying Zr-oxo clusters. However, the synthesis of carboxylic acids, especially multitopic carboxylic acids, is always a great challenge for the discovery of new Zr-MOFs. As an alternative approach, the in situ "one-pot" strategy can address this limitation, where the generation of organic linkers from the corresponding precursors and the sequential construction of MOFs are integrated into one solvothermal condition. Herein, inspired by benzimidazole-contained compounds synthesized via reaction of aldehyde and o-phenylenediamine, tri-, tetra-, penta- and hexa-topic carboxylic acids and a series of corresponding Zr-MOFs can be prepared via the in situ "one-pot" method under the same solvothermal conditions. This strategy can be utilized not only to prepare reported Zr-MOFs constructed using benzimidazole-contained linkers, but also to rationally design, construct and realize functionalities of zirconium-pentacarboxylate frameworks guided by reticular chemistry. More importantly, in situ "one-pot" method can facilitate the discovery of new Zr-MOFs, such as zirconium-hexacarboxylate frameworks. The present study demonstrates the promising potential of benzimidazole-inspired in situ "one-pot" approach in the crystal engineering of structure- and property-specific Zr-MOFs, especially with the guidance of reticular chemistry.

3.
Int J Biol Macromol ; 269(Pt 2): 131957, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38692544

RESUMO

In this study, graphene oxide (GO) was chemically modified utilizing concentrated nitric acid to produce a nitrated graphene oxide derivative (NGO) with enhanced oxidation level, improved dispersibility, and increased antibacterial activity. A double-layer composite hydrogel material (BC/PVA/NGO) with a core-shell structure was fabricated by utilizing bacterial cellulose (BC) and polyvinyl alcohol (PVA) binary composite hydrogel scaffold as the inner network template, and hydrophilic polymer (PVA) loaded with antibacterial material (NGO) as the outer network. The fabrication process involved physical crosslinking based on repeated freezing and thawing. The resulting BC/PVA/NGO hydrogel exhibited a porous structure, favorable mechanical properties, antibacterial efficacy, and biocompatibility. Subsequently, the performance of BC/PVA/NGO hydrogel in promoting wound healing was evaluated using a mouse skin injury model. The findings demonstrated that the BC/PVA/NGO hydrogel treatment group facilitated improved wound healing in the mouse skin injury model compared to the control group and the BC/PVA group. This enhanced wound healing capability was attributed primarily to the excellent antibacterial and tissue repair properties of the BC/PVA/NGO hydrogel.


Assuntos
Antibacterianos , Celulose , Grafite , Hidrogéis , Álcool de Polivinil , Cicatrização , Grafite/química , Grafite/farmacologia , Álcool de Polivinil/química , Antibacterianos/farmacologia , Antibacterianos/química , Cicatrização/efeitos dos fármacos , Animais , Celulose/química , Celulose/farmacologia , Camundongos , Hidrogéis/química , Hidrogéis/farmacologia , Pele/efeitos dos fármacos
4.
JACS Au ; 4(5): 1935-1940, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38818075

RESUMO

Chiral N-alkoxy amines are increasingly vital substrates in bioscience. However, asymmetric synthetic strategies for these compounds remain scarce. Catalytic kinetic resolution represents an attractive approach to prepare structurally diverse enantiopure N-alkoxy amines, which has remained elusive due to the notably reduced nucleophilicity of the nitrogen atom together with the low bond dissociation energies of labile NO-C and N-O bonds. We here report a general kinetic resolution of N-alkoxy amines through chemo- and enantioselective oxygenation. The mild and green titanium-catalyzed approach features broad substrate scope (55 examples), noteworthy functional group compatibility, high catalyst turnover number (up to 5200), excellent selectivity factor (s > 150), and scalability.

5.
Adv Sci (Weinh) ; 11(18): e2307476, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38445968

RESUMO

Förster resonance energy transfer (FRET) has demonstrated its potential to enhance the light energy utilization ratio of perovskite solar cells by interacting with metal-organic frameworks (MOFs) and perovskite layers. However, comprehensive investigations into how MOF design and synthesis impact FRET in perovskite systems are scarce. In this work, nanoscale HIAM-type Zr-MOF (HIAM-4023, HIAM-4024, and HIAM-4025) is meticulously tailored to evaluate FRET's existence and its influence on the perovskite photoactive layer. Through precise adjustments of amino groups and acceptor units in the organic linker, HIAM-MOFs are synthesized with the same topology, but distinct photoluminescence (PL) emission properties. Significant FRET is observed between HIAM-4023/HIAM-4024 and the perovskite, confirmed by spectral overlap, fluorescence lifetime decay, and calculated distances between HIAM-4023/HIAM-4024 and the perovskite. Conversely, the spectral overlap between the PL emission of HIAM-4025 and the perovskite's absorption spectrum is relatively minimal, impeding the energy transfer from HIAM-4025 to the perovskite. Therefore, the HIAM-4023/HIAM-4024-assisted perovskite devices exhibit enhanced EQE via FRET processes, whereas the HIAM-4025 demonstrates comparable EQE to the pristine. Ultimately, the HIAM-4023-assisted perovskite device achieves an enhanced power conversion efficiency (PCE) of 24.22% compared with pristine devices (PCE of 22.06%) and remarkable long-term stability under ambient conditions and continuous light illumination.

6.
Adv Sci (Weinh) ; 11(20): e2307837, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38488694

RESUMO

Endo-microscopy is crucial for real-time 3D visualization of internal tissues and subcellular structures. Conventional methods rely on axial movement of optical components for precise focus adjustment, limiting miniaturization and complicating procedures. Meta-device, composed of artificial nanostructures, is an emerging optical flat device that can freely manipulate the phase and amplitude of light. Here, an intelligent fluorescence endo-microscope is developed based on varifocal meta-lens and deep learning (DL). The breakthrough enables in vivo 3D imaging of mouse brains, where varifocal meta-lens focal length adjusts through relative rotation angle. The system offers key advantages such as invariant magnification, a large field-of-view, and optical sectioning at a maximum focal length tuning range of ≈2 mm with 3 µm lateral resolution. Using a DL network, image acquisition time and system complexity are significantly reduced, and in vivo high-resolution brain images of detailed vessels and surrounding perivascular space are clearly observed within 0.1 s (≈50 times faster). The approach will benefit various surgical procedures, such as gastrointestinal biopsies, neural imaging, brain surgery, etc.


Assuntos
Encéfalo , Aprendizado Profundo , Imageamento Tridimensional , Microscopia de Fluorescência , Animais , Camundongos , Encéfalo/diagnóstico por imagem , Imageamento Tridimensional/métodos , Microscopia de Fluorescência/métodos , Microscopia de Fluorescência/instrumentação , Desenho de Equipamento/métodos
7.
Chem Sci ; 15(9): 3174-3181, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38425507

RESUMO

Zirconium-based metal-organic frameworks (Zr-MOFs) have been extensively studied due to their very rich structural chemistry. The combination of nearly unlimited carboxylic acid-based linkers and Zr6 clusters with multiple connectivities has led to diverse structures and specific properties of resultant Zr-MOFs. Herein, we demonstrate the successful use of reticular chemistry to construct two novel Zr-MOFs, HIAM-4040 and HIAM-4040-OH, with zfu topology. Based on a thorough structural analysis of (4,4)-connected lvt-type Zr-tetracarboxylate frameworks and a judicious linker design, we have obtained the first example of a Zr-pentacarboxylate framework featuring unprecedented 5-connected organic linkers and 5-connected Zr6 clusters. Compared with HIAM-4040, a larger Stokes shift is achieved in HIAM-4040-OH via hydroxyl group induced excited-state intramolecular proton transfer (ESIPT). HIAM-4040-OH exhibits high chemical and thermal stability and is used for HClO detection in aqueous solution with excellent sensitivity and selectivity.

8.
Chem Sci ; 15(8): 2867-2882, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38404376

RESUMO

The regulation of enzymes and development of polyamine analogs capable of controlling the dynamics of endogenous polyamines to achieve anti-tumor effects is one of the biggest challenges in polyamine research. However, the root of the problem remains unsolved. This study represents a significant milestone as it unveils, for the first time, the comprehensive catalytic map of acetylpolyamine oxidase that includes chemical transformation and product release kinetics, by utilizing multiscale simulations with over six million dynamical snapshots. The transportation of acetylspermine is strongly exothermic, and high binding affinity of enzyme and reactant is observed. The transfer of hydride from polyamine to FAD is the rate-limiting step, via an H-shift coupled electron transfer mechanism. The two products are released in a detour stepwise mechanism, which also impacts the enzymatic efficiency. Inspired by these mechanistic insights into enzymatic catalysis, we propose a novel strategy that regulates the polyamine level and catalytic progress through the action of His64. Directly suppressing APAO by mutating His64 further inhibited growth and migration of tumor cells and tumor tissue in vitro and in vivo. Therefore, the network connecting microcosmic and macroscopic scales opens up new avenues for designing polyamine compounds and conducting anti-tumor research in the future.

9.
Int J Biol Macromol ; 258(Pt 2): 129154, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38171443

RESUMO

Agricultural by-products like rice husk, bran, and spray corn husks, often utilized as feed, are considered less desirable. This study aims to enhance the utilization rate of these materials by subjecting then to liquid hot water (LHW) pretreatment, followed by enzymatic hydrolysis to produce fermentable sugars. We investigated the production of L-lactic acid using two methods: simultaneous saccharification fermentation (SSF) and separate hydrolysis fermentation (SHF), following varying intensities of LHW pretreatment. The results showed that the optimal enzymatic hydrolysis efficiency was achieved from spray corn husks under the pretreatment conditions of 155 °C and 15 min. SHF was generally more effective than SSF. The glucose L-lactic acid conversion rate in SHF using spray corn husks can reach more than 90 %. Overall, this work proposed a novel, environmental-friendly strategy for efficient and for L- lactic acid production from spray corn husks.


Assuntos
Celulose , Zea mays , Zea mays/metabolismo , Celulose/metabolismo , Ácido Láctico , Fermentação , Água , Hidrólise
10.
Molecules ; 28(23)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38067607

RESUMO

The construction of hybrid junctions remains challenging for the rational design of visible light-driven photocatalysts. Herein, In2S3/CdS/N-rGO hybrid nanosheets were successfully prepared via a one-step pyrolysis method using deep eutectic solvents as precursors. Benefiting from the surfactant-free pyrolysis method, the obtained ultrathin hybrid nanosheets assemble into stable three-dimensional self-standing superstructures. The tremella-like structure of hybrid In2S3/N-rGO exhibits excellent photocatalytic hydrogen production performance. The hydrogen evolution rate is 10.9 mmol·g-1·h-1, which is greatly superior to CdS/N-rGO (3.7 mmol·g-1·h-1) and In2S3/N-rGO (2.6 mmol·g-1·h-1). This work provides more opportunities for the rational design and fabrication of hybrid ultrathin nanosheets for broad catalytic applications in sustainable energy and the environment.

11.
Adv Mater ; : e2310134, 2023 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-38042993

RESUMO

Fluid flow behavior is visualized through particle image velocimetry (PIV) for understanding and studying experimental fluid dynamics. However, traditional PIV methods require multiple cameras and conventional lens systems for image acquisition to resolve multi-dimensional velocity fields. In turn, it introduces complexity to the entire system. Meta-lenses are advanced flat optical devices composed of artificial nanoantenna arrays. It can manipulate the wavefront of light with the advantages of ultrathin, compact, and no spherical aberration. Meta-lenses offer novel functionalities and promise to replace traditional optical imaging systems. Here, a binocular meta-lens PIV technique is proposed, where a pair of GaN meta-lenses are fabricated on one substrate and integrated with a imaging sensor to form a compact binocular PIV system. The meta-lens weigh only 116 mg, much lighter than commercial lenses. The 3D velocity field can be obtained by the binocular disparity and particle image displacement information of fluid flow. The measurement error of vortex-ring diameter is ≈1.25% experimentally validates via a Reynolds-number (Re) 2000 vortex-ring. This work demonstrates a new development trend for the PIV technique for rejuvenating traditional flow diagnostic tools toward a more compact, easy-to-deploy technique. It enables further miniaturization and low-power systems for portable, field-use, and space-constrained PIV applications.

12.
Front Pharmacol ; 14: 1321880, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38108067

RESUMO

Tanshinone IIA (Tan IIA) is a fat-soluble compound extracted from Salvia miltiorrhiza, which has a protective effect against atherosclerosis (AS). Tan IIA can inhibit oxidative stress and inflammatory damage of vascular endothelial cells (VECs) and improve endothelial cell dysfunction. Tan IIA also has a good protective effect on vascular smooth muscle cells (VSMCs). It can reduce vascular stenosis by inhibiting the proliferation and migration of vascular smooth muscle cells (VSMCs), and improve the stability of the fibrous cap of atherosclerotic plaque by inhibiting apoptosis and inflammation of VSMCs. In addition, Tan IIA inhibits the inflammatory response of macrophages and the formation of foam cells in atherosclerotic plaques. In summary, Tan IIA improves AS through a complex pathway. We propose to further study the specific molecular targets of Tan IIA using systems biology methods, so as to fundamentally elucidate the mechanism of Tan IIA. It is worth mentioning that there is a lack of high-quality evidence-based medical data on Tan IIA treatment of AS. We recommend that a randomized controlled clinical trial be conducted to evaluate the exact efficacy of Tan IIA in improving AS. Finally, sodium tanshinone IIA sulfonate (STS) can cause adverse drug reactions in some patients, which needs our attention.

13.
Polymers (Basel) ; 15(21)2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37959928

RESUMO

In this work, an effective flame retardant consisting of nanoscale zinc oxide doped on the surface of hexagonal lamellar magnesium hydrate (ZO@MH) has been successfully synthesized via a hydrothermal process. Approximately 3-methacryloxypropyltrimethoxysilane (KH-570) is chosen as a modifier of ZO@MH for the purpose of enhancing the interfacial interaction between ZO@MH and the polypropylene (PP) matrix and reducing the agglomeration of ZO@MH. Afterwards, ZO@MH and KH-570 modified ZO@MH (KZO@MH) filled PP (PP/ZO@MH and PP/KZO@MH) composites are respectively prepared via the melt blending method. The flame retardant and smoke suppression properties of PP/ZO@MH and PP/KZO@MH composites are estimated by a cone calorimetry test (CCT). The peak value of the heat release rate of the PP/40KZO@MH composite is 327.0 kW/m2, which is 6.1% and 31.2% lower than that of the PP/40ZO@MH and PP/40MH composites, respectively. The lowest peak values of CO and CO2 production, 0.008 and 0.62 g/s, also appeared in the PP/40KZO@MH composite, which are 11.1% and 10.1% lower than those of the PP/40ZO@MH composite. Analysis of char residues indicates that nanoscale ZO and modification of KH-570 improve the amount and quality of char residues, which should be the main reason for the good flame retardant and smoke suppression properties of KZO@MH. Impact strength and nominal strain at break results show that the PP matrix is toughened by ZO@MH rather than KZO@MH. Tensile properties and the quantitative interfacial interaction calculated by the Turcsányi equation both prove the reinforcement of KZO@MH on the PP matrix.

14.
Dalton Trans ; 52(47): 17679-17683, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37997636

RESUMO

Herein, three tritopic carboxylic acids were used to construct three Zr-MOFs, HIAM-4033, HIAM-4034, and HIAM-4035, to investigate the effect of carboxyl position on the MOF structures. The results showed that HIAM-4033 and HIAM-4034 possess (3,9)-c models with different underlying nets, whereas HIAM-4035 exhibits the same underlying net as UiO-68. Nanosized HIAM-4033 exhibits excellent sensitivity and selectivity for detecting aromatic acids, such as benzoic acid and 2-fluorobenzoic acid, compared with aliphatic acids and inorganic acids. This study offers new insights into achieving an organic linker directed structure evolution of Zr-MOFs, which might facilitate the discovery of unprecedented underlying nets.

15.
Burns Trauma ; 11: tkad028, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37719178

RESUMO

Currently, clinical strategies for the treatment of wounds are limited, especially in terms of achieving rapid wound healing. In recent years, based on the technique of electrospinning (ES), cell electrospinning (C-ES) has been developed to better repair related tissues or organs (such as skin, fat and muscle) by encapsulating living cells in a microfiber or nanofiber environment and constructing 3D living fiber scaffolds. Therefore, C-ES has promising prospects for promoting wound healing. In this article, C-ES technology and its advantages, the differences between C-ES and traditional ES, the parameters suitable for maintaining cytoactivity, and material selection and design issues are summarized. In addition, we review the application of C-ES in the fields of biomaterials and cells. Finally, the limitations and improved methods of C-ES are discussed. In conclusion, the potential advantages, limitations and prospects of C-ES application in wound healing are presented.

16.
Dalton Trans ; 52(35): 12198-12202, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37609945

RESUMO

Herein, organic linker-based near-infrared-I (NIR-I) emissive metal-organic frameworks (MOFs), with a maximum emission peak at 741 nm, were synthesized via linker engineering. By integration of stronger acceptor and donor groups into one linker, a significant bathochromic-shift is realized. This MOF exhibits great selectivity and sensitivity for aniline and p-phenylenediamine detection. This finding provides new insights into the rational design of NIR-MOFs for sensing and related applications.

17.
Int J Cardiol ; 390: 131233, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37532154

RESUMO

PURPOSE: The relationship between circulating osteoprotegerin (OPG) levels and the risk of cardiovascular diseases (CVDs) has been the subject of conflicting results in previous observational and experimental studies. To assess the causal effect of genetically predicted OPG levels on the risk of a wide range of CVDs, we used the Mendelian randomization design. DESIGN: We initially extracted information of genetic variants on OPG levels and their corresponding effect values from the summary data based on the European ancestry genome-wide association study. Subsequently, we performed two-sample Mendelian randomization analyses to assess the causal effect of genetically predicted OPG levels on CVDs by using inverse variance weighting (IVW), MR-Egger, weighted median, and MR-PRESSO methods. We also conducted sensitivity analyzes as well as complementary analyses with a more relaxed threshold for the exposure genetic instrumental variable (P < 5 × 10-6) to test the robustness of our results. RESULTS: Our results indicated that genetically predicted OPG levels causally reduce the risk of atrial fibrillation (IVW OR = 0.84; 95% CI = 0.72-0.98; P = 0.0241), myocardial infarction(IVW OR = 0.89; 95% CI = 0.80-0.98; P = 0.0173) and coronary heart disease (IVW: OR = 0.90; 95% CI = 0.82-0.99; P = 0.0286). Further complementary analyses also confirmed the above results remain robust and we also identified a potential causal association of OPG levels with a reduced risk of hypertensive diseases(IVW OR = 0.94;95% CI = 0.88-1.00; P = 0.0394). CONCLUSION: This study provides compelling evidence for a causal relationship between genetically predicted OPG levels and risk reduction of coronary heart disease, myocardial infarction, and atrial fibrillation, indicating that OPG could potentially serve as a cardiovascular risk marker in clinical practice.


Assuntos
Fibrilação Atrial , Doenças Cardiovasculares , Infarto do Miocárdio , Humanos , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/genética , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Osteoprotegerina/genética
18.
PLoS One ; 18(8): e0290725, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37651373

RESUMO

INTRODUCTION: Tranexamic acid (TXA) has been proven to prevent thrombolysis and reduce bleeding and blood transfusion requirements in various surgical settings. However, the optimal dose of TXA that effectively reduce intraoperative bleeding and blood product infusion in patients undergoing neurosurgical resection of meningioma with a diameter ≥ 5 cm remains unclear. METHODS: This is a single-center, randomized, double-blinded, paralleled-group controlled trial. Patients scheduled to receive elective tumor resection with meningioma diameter ≥ 5 cm will be randomly assigned the high-dose TXA group, the low-dose group, and the placebo. Patients in the high-dose TXA group will be administered with a loading dose of 20 mg/kg TXA followed by continuous infusion TXA at a rate of 5 mg/kg/h. In the low-dose group, patients will receive the same loading dose of TXA followed by a continuous infusion of normal saline. In the control group, patients will receive an identical volume of normal saline. The primary outcome is the estimated intraoperative blood loss calculated using the following formula: collected blood volume in the suction canister (mL)-the volume of flushing (mL) + the volume from the gauze tampon (mL). Secondary outcomes include calculated intraoperative blood loss, intraoperative coagulation function assessed using thromboelastogram (TEG), intraoperative cell salvage use, blood product infusion, and other safety outcomes. DISCUSSION: Preclinical studies suggest that TXA could reduce intraoperative blood loss, yet the optimal dose was controversial. This study is one of the early studies to evaluate the impact of intraoperative different doses infusion of TXA on reducing blood loss in neurological meningioma patients. TRIAL REGISTRATION: ClinicalTrials.gov, NCT05230381. Registered on February 8, 2022.


Assuntos
Neoplasias Meníngeas , Meningioma , Ácido Tranexâmico , Humanos , Perda Sanguínea Cirúrgica/prevenção & controle , Ácido Tranexâmico/uso terapêutico , Meningioma/cirurgia , Solução Salina , Neoplasias Meníngeas/cirurgia , Encéfalo , Ensaios Clínicos Controlados Aleatórios como Assunto
19.
BMJ Open ; 13(7): e070185, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37433729

RESUMO

INTRODUCTION: Parkinson's disease is one of the most common neurodegenerative diseases. Deep brain stimulation (DBS) can improve motor symptoms in patients with middle and late Parkinson's disease, reduce the use of levodopa, and thus reduce drug-related side effects. Postoperative delirium can significantly reduce the short-term and long-term quality of life in elderly patients, which can be alleviated by dexmedetomidine (DEX). However, whether prophylactic DEX could reduce the incidence of postoperative delirium in patients with Parkinson's disease was still unknown. METHODS AND ANALYSIS: This is a single-centre, randomised, double-blinded, placebo-controlled group trial. A total of 292 patients aged 60 years and above elected for DBS will be stratified according to DBS procedure, subthalamic nucleus or globus pallidus interna, then randomly allocated to the DEX group or the placebo control group with a 1:1 ratio, respectively. In the DEX group, patients will be injected with the DEX continuously with an electronic pump at a rate of 0.1 µg/kg/hour for 48 hours at the beginning of general anaesthesia induction. In the control group, normal saline will be administered at the same rate for patients as in the DEX group. The primary endpoint is the incidence of postoperative delirium within 5 days after surgery. Postoperative delirium is assessed by the combination of the Richmond Anxiety Scale and the Confusion Assessment Method (CAM) for the intensive care unit or the 3-minute diagnostic interview for CAM as applicable. The secondary endpoints include the incidence of adverse events and non-delirium complications, the length of stay in the intensive care unit and hospital and all-cause 30-day mortality after the operation. ETHICS AND DISSEMINATION: The protocol has been approved by the Ethics Committee of Beijing Tiantan Hospital of Capital Medical University (KY2022-003-03). The results of this study will be disseminated through presentation at scientific conferences and publication in scientific journals. TRIAL REGISTRATION NUMBER: NCT05197439.


Assuntos
Estimulação Encefálica Profunda , Dexmedetomidina , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Delírio do Despertar , Doença de Parkinson , Idoso , Humanos , Doença de Parkinson/complicações , Doença de Parkinson/terapia , Dexmedetomidina/uso terapêutico , Qualidade de Vida , Método Duplo-Cego , China/epidemiologia , Confusão , Ensaios Clínicos Controlados Aleatórios como Assunto
20.
Angew Chem Int Ed Engl ; 62(35): e202308506, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37416970

RESUMO

The development of nanoscaled luminescent metal-organic frameworks (nano-LMOFs) with organic linker-based emission to explore their applications in sensing, bioimaging and photocatalysis is of great interest as material size and emission wavelength both have remarkable influence on their performances. However, there is lack of platforms that can systematically tune the emission and size of nano-LMOFs with customized linker design. Herein two series of fcu- and csq-type nano-LMOFs, with precise size control in a broad range and emission colors from blue to near-infrared, were prepared using 2,1,3-benzothiadiazole and its derivative based ditopic- and tetratopic carboxylic acids as the emission sources. The modification of tetratopic carboxylic acids using OH and NH2 as the substituent groups not only induces significant emission bathochromic shift of the resultant MOFs, but also endows interesting features for their potential applications. As one example, we show that the non-substituted and NH2 -substituted nano-LMOFs exhibit turn-off and turn-on responses for highly selective and sensitive detection of tryptophan over other nineteen natural amino acids. This work sheds light on the rational construction of nano-LMOFs with specific emission behaviours and sizes, which will undoubtedly facilitate their applications in related areas.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...