Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Appl Physiol Nutr Metab ; 49(6): 762-772, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38346295

RESUMO

Sarcopenia was recently reported to be relevant to an increased macro-and microvascular disease risk. Sarcopenia index (SI) has been identified as a surrogate marker for sarcopenia. The aim of the present study was to investigate the association between macro- and microvascular disease and SI in patients with type 2 diabetes mellitus (T2DM). A total of 783 patients with T2DM were enrolled in this cross-sectional study. The SI was calculated by (serum creatinine [mg/dL]/cystatin C [mg/L]) × 100. The subjects were divided into three groups according to SI tertiles: T1 (41.27-81.37), T2 (81.38- 99.55), and T3 (99.56-192.31). Parameters of macro- and microvascular complications, including diabetic retinopathy (DR), micro- and macroalbuminuria (MAU), diabetic peripheral neuropathy (DPN), and lower extremity peripheral artery disease (LEAD) were evaluated. Multivariate logistic regression analysis revealed that when taking the top tertile of SI as a reference, an increasing trend of the prevalence of DR, MAU, DPN, and LEAD were presented (all P for trend  < 0.05), where the OR (95% CI) for DR prevalence was 1.967 (1.252-3.090) in T2, 2.195 (1.278-3.769) in T1, for MAU was 1.805 (1.149-2.837) in T2, 2.537 (1.490-4.320) in T1, for DPN was 2.244 (1.485-3.391) in T2, 3.172 (1.884-5.341) in T1, and for LEAD was 2.017 (1.002-4.057) in T2, 2.405 (1.107-5.225) in T1 (all P < 0.05). Patients with lower SI were more inclined to have an increased risk of macro- and microvascular damage in T2DM population, which may be related to sarcopenia.


Assuntos
Diabetes Mellitus Tipo 2 , Sarcopenia , Humanos , Sarcopenia/epidemiologia , Sarcopenia/complicações , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/epidemiologia , Masculino , Feminino , Estudos Transversais , Pessoa de Meia-Idade , Idoso , Retinopatia Diabética/epidemiologia , Angiopatias Diabéticas/epidemiologia , Neuropatias Diabéticas/epidemiologia , Prevalência , Albuminúria/epidemiologia , Creatinina/sangue , Cistatina C/sangue , Fatores de Risco , Doença Arterial Periférica/epidemiologia , Doença Arterial Periférica/complicações
2.
Aging Dis ; 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37815911

RESUMO

Aging leads to progressive deterioration of the structure and function of arteries, which eventually contributes to the development of vascular aging-related diseases. N6-methyladenosine (m6A) is the most prevalent modification in eukaryotic RNAs. This reversible m6A RNA modification is dynamically regulated by writers, erasers, and readers, playing a critical role in various physiological and pathological conditions by affecting almost all stages of the RNA life cycle. Recent studies have highlighted the involvement of m6A in vascular aging and related diseases, shedding light on its potential clinical significance. In this paper, we comprehensively discuss the current understanding of m6A in vascular aging and its clinical implications. We discuss the molecular insights into m6A and its association with clinical realities, emphasizing its significance in unraveling the mechanisms underlying vascular aging. Furthermore, we explore the possibility of m6A and its regulators as clinical indicators for early diagnosis and prognosis prediction and investigate the therapeutic potential of m6A-associated anti-aging approaches. We also examine the challenges and future directions in this field and highlight the necessity of integrating m6A knowledge into patient-centered care. Finally, we emphasize the need for multidisciplinary collaboration to advance the field of m6A research and its clinical application.

3.
Aging Dis ; 14(3): 794-824, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37191431

RESUMO

Sirtuins (SIRT1-SIRT7), a family of nicotinamide adenine dinucleotide (NAD+)-dependent enzymes, are key regulators of life span and metabolism. In addition to acting as deacetylates, some sirtuins have the properties of deacylase, decrotonylase, adenosine diphosphate (ADP)-ribosyltransferase, lipoamidase, desuccinylase, demalonylase, deglutarylase, and demyristolyase. Mitochondrial dysfunction occurs early on and acts causally in the pathogenesis of neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD). Sirtuins are implicated in the regulation of mitochondrial quality control, which is highly associated with the pathogenesis of neurodegenerative diseases. There is growing evidence indicating that sirtuins are promising and well-documented molecular targets for the treatment of mitochondrial dysfunction and neurodegenerative disorders by regulating mitochondrial quality control, including mitochondrial biogenesis, mitophagy, mitochondrial fission/fusion dynamics, and mitochondrial unfolded protein responses (mtUPR). Therefore, elucidation of the molecular etiology of sirtuin-mediated mitochondrial quality control points to new prospects for the treatment of neurodegenerative diseases. However, the mechanisms underlying sirtuin-mediated mitochondrial quality control remain obscure. In this review, we update and summarize the current understanding of the structure, function, and regulation of sirtuins with an emphasis on the cumulative and putative effects of sirtuins on mitochondrial biology and neurodegenerative diseases, particularly their roles in mitochondrial quality control. In addition, we outline the potential therapeutic applications for neurodegenerative diseases of targeting sirtuin-mediated mitochondrial quality control through exercise training, calorie restriction, and sirtuin modulators in neurodegenerative diseases.

4.
Diab Vasc Dis Res ; 20(2): 14791641231169246, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36990072

RESUMO

BACKGROUND: Our previous studies have shown that the basic helix-loop-helix family member e40 (Bhlhe40) plays a critical role in regulating calcification and senescence of vascular smooth muscle cells induced by high glucose. In this study, we determined the association between serum Bhlhe40 levels and subclinical atherosclerosis in patients with type 2 diabetes mellitus (T2DM). METHODS: 247 patients with T2DM were included in this cross-sectional study between June 2021 and July 2022. The presence of subclinical atherosclerosis was evaluated by carotid ultrasonography. Serum Bhlhe40 concentrations were measured with an ELISA kit. RESULTS: Serum Bhlhe40 levels were remarkably higher in the subclinical atherosclerosis group than in the subjects without subclinical atherosclerosis (p < 0.001). Correlation analysis showed a positive correlation between serum Bhlhe40 and carotid intima-media thickness (C-IMT) (r = 0.155, p = 0.015). The optimal threshold of serum Bhlhe40 > 5.67 ng/mL had an area under the ROC curve (AUC) was 0.709 (p < 0.001). In addition, serum Bhlhe40 levels were associated with the prevalence of subclinical atherosclerosis (OR: 1.790, 95% CI: 1.414-2.266, p < 0.001). CONCLUSION: Serum Bhlhe40 levels were significantly higher in T2DM subjects with subclinical atherosclerosis and positively associated with C-IMT.


Assuntos
Aterosclerose , Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/diagnóstico , Estudos Transversais , Espessura Intima-Media Carotídea , Fatores de Risco , Aterosclerose/diagnóstico por imagem , Aterosclerose/epidemiologia , Proteínas de Homeodomínio , Fatores de Transcrição Hélice-Alça-Hélice Básicos
5.
Aging Dis ; 14(1): 170-183, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36818559

RESUMO

Vascular calcification and aging often increase morbidity and mortality in patients with diabetes mellitus (DM); however, the underlying mechanisms are still unknown. In the present study, we found that Bcl-2 modifying factor (BMF) and BMF antisense RNA 1 (BMF-AS1) were significantly increased in high glucose-induced calcified and senescent vascular smooth muscle cells (VSMCs) as well as artery tissues from diabetic mice. Inhibition of BMF-AS1 and BMF reduced the calcification and senescence of VSMCs, whereas overexpression of BMF-AS1 and BMF generates the opposite results. Mechanistic analysis showed that BMF-AS1 interacted with BMF directly and up-regulated BMF at both mRNA and protein levels, but BMF did not affect the expression of BMF-AS1. Moreover, knocking down BMF-AS1 and BMF suppressed the calcification and senescence of VSMCs, and BMF knockout (BMF-/-) diabetic mice presented less vascular calcification and aging compared with wild type diabetic mice. In addition, higher coronary artery calcification scores (CACs) and increased plasma BMF concentration were found in patients with DM, and there was a positive correlation between CACs and plasma BMF concentration. Thus, BMF-AS1/BMF plays a key role in promoting high glucose-induced vascular calcification and aging both in vitro and in vivo. BMF-AS1 and BMF represent potential therapeutic targets in diabetic vascular calcification and aging.

6.
Front Aging Neurosci ; 14: 949074, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36062157

RESUMO

Alzheimer's disease (AD) is the most common cause of dementia with no effective therapies. Aging is a dominant risk factor for AD. The neurovascular unit (NVU) plays an important role in maintaining homeostasis of the brain microenvironment. The accelerated aging of NVU cells may directly impair NVU function and contribute to AD pathogenesis. However, the expression patterns of aging-related genes (AGs) in NVU cells of AD remain unclear. In this study, we performed single-nucleus transcriptome analysis of 61,768 nuclei from prefrontal cortical samples of patients with AD and normal control (NC) subjects. Eight main cell types were identified, including astrocytes, microglia, excitatory neurons, inhibitory neurons, oligodendrocytes, oligodendrocyte precursor cells, pericytes, and endothelial cells. Transcriptomic analysis identified the expression patterns of AGs in NVU cells of AD. Gene set enrichment analysis confirmed the key aging-associated cellular pathways enriched in microglia and oligodendrocytes. These aging-related transcriptomic changes in NVU were cross-validated using bulk transcriptome data. The least absolute shrinkage and selection operator regression method was used to select the crucial AGs most associated with AD: IGF1R, MXI1, RB1, PPARA, NFE2L2, STAT5B, FOS, PRKCD, YWHAZ, HTT, MAPK9, HSPA9, SDHC, PRKDC, and PDPK1. This 15-gene model performed well in discriminating AD from NC samples. Among them, IGF1R, MXI1, PPARA, YWHAZ, and MAPK9 strongly correlated with pathologic progression in AD, were identified as critical regulators of AD. Although most AGs showed similar trends of expression changes in different types of NVU cells in AD, certain AGs were expressed in a cell-specific manner. Our comprehensive analysis of brain NVU from patients with AD reveals previously unknown molecular changes associated with aging that may underlie the functional dysregulation of NVU, providing important insights for exploring potential cell-specific therapeutic targets to restore brain homeostasis in AD.

7.
Signal Transduct Target Ther ; 7(1): 231, 2022 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-35817770

RESUMO

Aging-induced alternations of vasculature structures, phenotypes, and functions are key in the occurrence and development of vascular aging-related diseases. Multiple molecular and cellular events, such as oxidative stress, mitochondrial dysfunction, vascular inflammation, cellular senescence, and epigenetic alterations are highly associated with vascular aging physiopathology. Advances in nanoparticles and nanotechnology, which can realize sensitive diagnostic modalities, efficient medical treatment, and better prognosis as well as less adverse effects on non-target tissues, provide an amazing window in the field of vascular aging and related diseases. Throughout this review, we presented current knowledge on classification of nanoparticles and the relationship between vascular aging and related diseases. Importantly, we comprehensively summarized the potential of nanoparticles-based diagnostic and therapeutic techniques in vascular aging and related diseases, including cardiovascular diseases, cerebrovascular diseases, as well as chronic kidney diseases, and discussed the advantages and limitations of their clinical applications.


Assuntos
Doenças Cardiovasculares , Nanopartículas , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/terapia , Senescência Celular , Humanos , Nanopartículas/uso terapêutico , Estresse Oxidativo
8.
Front Mol Neurosci ; 15: 844193, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35359573

RESUMO

Aging-related neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS), are gradually becoming the primary burden of society and cause significant health-care concerns. Aging is a critical independent risk factor for neurodegenerative diseases. The pathological alterations of neurodegenerative diseases are tightly associated with mitochondrial dysfunction, inflammation, and oxidative stress, which in turn stimulates the further progression of neurodegenerative diseases. Given the potential research value, lncRNAs have attracted considerable attention. LncRNAs play complex and dynamic roles in multiple signal transduction axis of neurodegeneration. Emerging evidence indicates that lncRNAs exert crucial regulatory effects in the initiation and development of aging-related neurodegenerative diseases. This review compiles the underlying pathological mechanisms of aging and related neurodegenerative diseases. Besides, we discuss the roles of lncRNAs in aging. In addition, the crosstalk and network of lncRNAs in neurodegenerative diseases are also explored.

9.
Aging Dis ; 12(8): 1948-1963, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34881079

RESUMO

High incidences of morbidity and mortality associated with age-related diseases among the elderly population are a socio-economic challenge. Aging is an irreversible and inevitable process that is a risk factor for pathological progression of diverse age-related diseases. Spermidine, a natural polyamine, plays a critical role in molecular and cellular interactions involved in various physiological and functional processes. Spermidine has been shown to modulate aging, suppress the occurrence and severity of age-related diseases, and prolong lifespan. However, the precise mechanisms through which spermidine exerts its anti-aging effects have not been established. In this review, we elucidate on the mechanisms and roles underlying the beneficial effects of spermidine in aging from a molecular and cellular perspective. Moreover, we provide new insights into the promising potential diagnostic and therapeutic applications of spermidine in aging and age-related diseases.

10.
Signal Transduct Target Ther ; 6(1): 383, 2021 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-34753929

RESUMO

Exosomes play a role as mediators of cell-to-cell communication, thus exhibiting pleiotropic activities to homeostasis regulation. Exosomal non-coding RNAs (ncRNAs), mainly microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), are closely related to a variety of biological and functional aspects of human health. When the exosomal ncRNAs undergo tissue-specific changes due to diverse internal or external disorders, they can cause tissue dysfunction, aging, and diseases. In this review, we comprehensively discuss the underlying regulatory mechanisms of exosomes in human diseases. In addition, we explore the current knowledge on the roles of exosomal miRNAs, lncRNAs, and circRNAs in human health and diseases, including cancers, metabolic diseases, neurodegenerative diseases, cardiovascular diseases, autoimmune diseases, and infectious diseases, to determine their potential implication in biomarker identification and therapeutic exploration.


Assuntos
Exossomos/genética , MicroRNAs/genética , RNA Circular/genética , RNA Longo não Codificante/genética , Doenças Autoimunes/genética , Doenças Cardiovasculares/genética , Doenças Transmissíveis/genética , Humanos , Doenças Metabólicas/genética , Neoplasias/genética , Doenças Neurodegenerativas/genética
11.
Front Cardiovasc Med ; 8: 733985, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34692785

RESUMO

Atherosclerosis, a complex chronic inflammatory disease, involves multiple alterations of diverse cells, including endothelial cells (ECs), vascular smooth muscle cells (VSMCs), monocytes, macrophages, dendritic cells (DCs), platelets, and even mesenchymal stem cells (MSCs). Globally, it is a common cause of morbidity as well as mortality. It leads to myocardial infarctions, stroke and disabling peripheral artery disease. Extracellular vesicles (EVs) are a heterogeneous group of cell-derived membranous structures that secreted by multiple cell types and play a central role in cell-to-cell communication by delivering various bioactive cargos, especially microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). Emerging evidence demonstrated that miRNAs and lncRNAs in EVs are tightly associated with the initiation and development of atherosclerosis. In this review, we will outline and compile the cumulative roles of miRNAs and lncRNAs encapsulated in EVs derived from diverse cells in the progression of atherosclerosis. We also discuss intercellular communications via EVs. In addition, we focused on clinical applications and evaluation of miRNAs and lncRNAs in EVs as potential diagnostic biomarkers and therapeutic targets for atherosclerosis.

12.
Ageing Res Rev ; 72: 101480, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34601136

RESUMO

Vascular aging is a major cause of morbidity and mortality in the elderly population. Endothelial cells (ECs) and vascular smooth muscle cells (VSMCs), forming the intima and media layers of the vessel wall respectively, are closely associated with the process of vascular aging and vascular aging-related diseases. Numerous studies have revealed the pathophysiologic mechanism through which lncRNA contributes to vascular aging, hence more attention is now paid to the role played by antisense long non-coding RNA (AS-lncRNA) in the pathogenesis of vascular aging. Nonetheless, only a small number of studies focus on the specific mechanism through which AS-lncRNA mediates vascular aging. In this review, we summarize the roles and functions of AS-lncRNA with regards to the development of vascular aging and vascular aging-related disease. We also aim to deepen our understanding of this process and provide alternative therapeutic modalities for vascular aging-related diseases.


Assuntos
RNA Longo não Codificante , Idoso , Envelhecimento/genética , Células Endoteliais , Humanos , Músculo Liso Vascular , Miócitos de Músculo Liso , RNA Longo não Codificante/genética
13.
Aging Dis ; 12(5): 1323-1336, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34341711

RESUMO

Vascular aging is defined as organic and functional changes in blood vessels, in which decline in autophagy levels, DNA damage, MicroRNA (miRNA), oxidative stress, sirtuin, and apoptosis signal-regulated kinase 1 (ASK1) are integral thereto. With regard to vascular morphology, the increase in arterial stiffness, atherosclerosis, vascular calcification and high amyloid beta levels are closely related to vascular aging. Further closely related thereto, at the cellular level, is the aging of vascular endothelial cells (ECs) and vascular smooth muscle cells (VSMCs). Vascular aging seriously affects the health, economy and life of patients, but can be delayed by SGLT2 inhibitors through the improvement of vascular function. In the present article, a review is conducted of recent domestic and international progress in research on SGLT2 inhibitors,vascular aging and diseases related thereto, thereby providing theoretical support and guidance for further revealing the relationship between SGLT2 inhibitors and diseases related to vascular aging.

14.
Front Cell Dev Biol ; 9: 699374, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34262910

RESUMO

Vascular aging is a pivotal risk factor promoting vascular dysfunction, the development and progression of vascular aging-related diseases. The structure and function of endothelial cells (ECs), vascular smooth muscle cells (VSMCs), fibroblasts, and macrophages are disrupted during the aging process, causing vascular cell senescence as well as vascular dysfunction. DNA methylation, an epigenetic mechanism, involves the alteration of gene transcription without changing the DNA sequence. It is a dynamically reversible process modulated by methyltransferases and demethyltransferases. Emerging evidence reveals that DNA methylation is implicated in the vascular aging process and plays a central role in regulating vascular aging-related diseases. In this review, we seek to clarify the mechanisms of DNA methylation in modulating ECs, VSMCs, fibroblasts, and macrophages functions and primarily focus on the connection between DNA methylation and vascular aging-related diseases. Therefore, we represent many vascular aging-related genes which are modulated by DNA methylation. Besides, we concentrate on the potential clinical application of DNA methylation to serve as a reliable diagnostic tool and DNA methylation-based therapeutic drugs for vascular aging-related diseases.

15.
Front Cardiovasc Med ; 8: 778674, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35004893

RESUMO

Forkhead box O3 (FOXO3) has been proposed as a homeostasis regulator, capable of integrating multiple upstream signaling pathways that are sensitive to environmental changes and counteracting their adverse effects due to external changes, such as oxidative stress, metabolic stress and growth factor deprivation. FOXO3 polymorphisms are associated with extreme human longevity. Intriguingly, longevity-associated single nucleotide polymorphisms (SNPs) in human FOXO3 correlate with lower-than-average morbidity from cardiovascular diseases in long-lived people. Emerging evidence indicates that FOXO3 plays a critical role in vascular aging. FOXO3 inactivation is implicated in several aging-related vascular diseases. In experimental studies, FOXO3-engineered human ESC-derived vascular cells improve vascular homeostasis and delay vascular aging. The purpose of this review is to explore how FOXO3 regulates vascular aging and its crucial role in aging-related vascular diseases.

16.
Aging (Albany NY) ; 12(24): 26080-26094, 2020 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-33316776

RESUMO

The accumulation of senescent adipose-derived mesenchymal stem cells (AMSCs) in subcutaneous white adipose tissue (WAT) is the main cause for the deterioration of WAT and the subsequent age-related disorders in obesity. The number of AMSCs staining positively for senescence-associated-ß-galactosidase (SA-ß-Gal) increased significantly after incubation with postprandial triglyceride-rich lipoproteins (TRL), accompanied by an impaired cell proliferation capacity and increased expression of inflammatory factors. Besides, the expression of anti-aging protein, silent mating-type information regulation 2 homolog 1 (SIRT1), was downregulated significantly, while those of acetylated p53 (Ac-p53), total p53, and p21 proteins were upregulated significantly during postprandial TRL-induced premature senescence of AMSCs. Furthermore, the production of intracellular reactive oxygen species (ROS) in the TRL group increased significantly, while pretreatment with the ROS scavenger N-acetyl-L-cysteine effectively attenuated the premature senescence of AMSCs by decreasing ROS production and upregulating SIRT1 level. Thus, postprandial TRL induced premature senescence of AMSCs through the SIRT1/p53/Ac-p53/p21 axis, partly through increased oxidative stress.


Assuntos
Senescência Celular , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Lipoproteínas/metabolismo , Células-Tronco Mesenquimais/metabolismo , Obesidade/metabolismo , Sirtuína 1/metabolismo , Triglicerídeos/metabolismo , Proteína Supressora de Tumor p53/metabolismo , beta-Galactosidase/metabolismo , Acetilação , Acetilcisteína/farmacologia , Adipogenia , Animais , Proliferação de Células , Regulação para Baixo , Inflamação , Camundongos , Estresse Oxidativo , Período Pós-Prandial , Espécies Reativas de Oxigênio , Gordura Subcutânea/citologia , Regulação para Cima
17.
Aging Med (Milton) ; 3(3): 178-187, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33103038

RESUMO

OBJECTIVE: Cardiovascular diseases and vascular aging are common in patients with diabetes. High glucose is a major cause of vascular aging and cardiovascular diseases. Premature senescence of vascular smooth muscle cells (VSMCs) is one of the main contributors to vascular aging. Adiponectin has been demonstrated to have an anti-aging effect. The present study explored the mechanisms by which adiponectin protects VSMCs against high-glucose-induced senescence. METHODS: Senescence-associated ß-galactosidase (SA-ß-gal) staining was used to detect senescence cells. Western blot was used for measuring protein levels. Flow cytometry was carried out to detect the cell cycle and telomeric repeat amplification protocol (TRAP)-polymerase chain reaction (PCR) silver staining was selected to measure the telomerase activity. RESULTS: Premature senescence of VSMCs was induced by high glucose (30 mM) in a time-dependent manner, which was verified by an increased number of senescence cells, p21 and p53 expression, as well as the decreased proliferation index. High glucose reduced telomerase activity of VSMCs via inhibition of the AMPK/TSC2/mTOR/S6K1 pathway and activation of the PI3K/Akt/mTOR/S6K1 pathway, while adiponectin treatment significantly increased telomerase activity of VSMCs through activation of AMPK/TSC2/mTOR/S6K1 signaling and inhibition of PI3K/Akt/mTOR/S6K1 signaling. CONCLUSION: Adiponectin attenuated the high-glucose-induced premature senescence of VSMCs via increasing telomerase activity of VSMCs, which was achieved by activation of AMPK/TSC2/mTOR/S6K1 signaling and inhibition of PI3K/Akt/mTOR/S6K1 signaling.

18.
Ageing Res Rev ; 64: 101176, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32971257

RESUMO

The aging of the vasculature plays a crucial role in the pathological progression of various vascular aging-related diseases. As endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) are essential parts in the inner and medial layers of vessel wall, respectively, the structural and functional alterations of ECs and VSMCs are the major causes of vascular aging. Milk fat globule-epidermal growth factor 8 (MFG-E8) is a multifunctional glycoprotein which exerts a regulatory role in the intercellular interactions involved in a variety of biological and pathological processes. Emerging evidence suggests that MFG-E8 is a novel and outstanding modulator for vascular aging via targeting at ECs and VSMCs. In this review, we will summarise the cumulative roles and mechanisms of MFG-E8 in vascular aging and vascular aging-related diseases with special emphasis on the functions of ECs and VSMCs. In addition, we also aim to focus on the promising diagnostic function as a biomarker and the potential therapeutic application of MFG-E8 in vascular aging and the clinical evaluation of vascular aging-related diseases.


Assuntos
Células Endoteliais , Fator VIII , Envelhecimento , Antígenos de Superfície , Glicolipídeos , Glicoproteínas , Humanos , Gotículas Lipídicas , Proteínas do Leite
19.
Ann N Y Acad Sci ; 1474(1): 61-72, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32483833

RESUMO

Long noncoding RNAs (lncRNAs) have been investigated as novel regulatory molecules involved in diverse biological processes. Our previous study demonstrated that lncRNA-ES3 is associated with the high glucose-induced calcification/senescence of human aortic vascular smooth muscle cells (HA-VSMCs). However, the mechanism of lncRNA-ES3 in vascular calcification/aging remained largely unknown. Here, we report that the expression of basic helix-loop-helix family member e40 (Bhlhe40) was decreased significantly in HA-VSMCs treated with high glucose, whereas the expression of basic leucine zipper transcription factor (BATF) was increased. Overexpression of Bhlhe40 and inhibition of BATF alleviated calcification/senescence of HA-VSMCs, as confirmed by Alizarin Red S staining and the presence of senescence-associated ß-galactosidase-positive cells. Moreover, we identified that Bhlhe40 regulates lncRNA-ES3 in HA-VSMCs by binding to the promoter region of the lncRNA-ES3 gene (LINC00458). Upregulation or inhibition of lncRNA-ES3 expression significantly promoted or reduced calcification/senescence of HA-VSMCs, respectively. Additionally, we identified that lncRNA-ES3 functions in this process by suppressing the expression of miR-95-5p, miR-6776-5p, miR-3620-5p, and miR-4747-5p. The results demonstrate that lncRNA-ES3 triggers gene silencing of multiple miRNAs by binding to Bhlhe40, leading to calcification/senescence of VSMCs. Our findings suggest that pharmacological interventions targeting lncRNA-ES3 may be therapeutically beneficial in ameliorating vascular calcification/aging.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Inativação Gênica/fisiologia , Proteínas de Homeodomínio/metabolismo , MicroRNAs/genética , Músculo Liso Vascular/patologia , RNA Longo não Codificante/genética , Calcificação Vascular/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Linhagem Celular , Senescência Celular , Glucose/metabolismo , Humanos , Regiões Promotoras Genéticas/genética , Interferência de RNA , RNA Longo não Codificante/antagonistas & inibidores , RNA Interferente Pequeno/genética , Calcificação Vascular/patologia , beta-Galactosidase/metabolismo
20.
Aging Dis ; 11(1): 164-178, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32010490

RESUMO

Aging is a progressive loss of physiological integrity and functionality process which increases susceptibility and mortality to diseases. Vascular aging is a specific type of organic aging. The structure and function changes of endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) are the main cause of vascular aging, which could influence the threshold, process, and severity of vascular related diseases. Accumulating evidences demonstrate that exosomes serve as novel intercellular information communicator between cell to cell by delivering variety biologically active cargos, especially exosomal non-coding RNAs (ncRNAs), which are associated with most of aging-related biological and functional disorders. In this review, we will summerize the emerging roles and mechanisms of exosomal ncRNAs in vascular aging and vascular aging related diseases, focusing on the role of exosomal miRNAs and lncRNAs in regulating the functions of ECs and VSMCs. Moreover, the relationship between the ECs and VSMCs linked by exosomes, the potential diagnostic and therapeutic application of exosomes in vascular aging and the clinical evaluation and treatment of vascular aging and vascular aging related diseases will also be discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...