Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 148
Filtrar
1.
J Chromatogr A ; 1730: 465131, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-39002508

RESUMO

Simulations were conducted to evaluate the potential of several hundred reversed-phase columns to separate small molecules. By calculating the retention factor of compounds in randomly generated virtual mixtures via the HSM (hydrophobic subtraction model) and applying basic chromatography theory, the simulation can estimate the retention time and peak width of every virtual compound and calculate the resolution between every adjacent pair of compounds. A preferred column set based on the number of successful separations of randomly generated virtual mixtures was developed. The tandem-column liquid chromatography (TC-LC) approach can separate 53.2 % of the 16-compound samples using 20 tandem-column pairs, while a single-column approach can only separate 42.6 % of the 16-compound samples with 20 single columns. The preferred set of columns obtained from the simulation was almost the same as the empirical set of columns previously obtained. In screening applications, TC-LC can achieve a comparably successful separation factor (selectivity) with a smaller column inventory (nine 50-mm columns) compared to the larger inventory needed by single-column LC (twenty-one 100-mm columns).

2.
Sci Rep ; 14(1): 16564, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39019887

RESUMO

Bitter gourd is an economically important horticultural crop for its edible and medicinal value. However, the regulatory mechanisms of bitter gourd in response to cold stress are still poorly elucidated. In this study, phytohormone determination and comparative transcriptome analyses in XY (cold-tolerant) and QF (cold-sensitive) after low temperature treatment were conducted. Under cold stress, the endogenous contents of abscisic acid (ABA), jasmonic acid (JA) and salicylic acid (SA) in XY were significantly increased at 24 h after treatment (HAT), indicating that ABA, JA and SA might function in regulating cold resistance. RNA-seq results revealed that more differentially expressed genes were identified at 6 HAT in QF and 24 HAT in XY, respectively. KEGG analysis suggested that the plant hormone signal transduction pathway was significantly enriched in both genotypes at all the time points. In addition, transcription factors showing different expression patterns between XY and QF were identified, including CBF3, ERF2, NAC90, WRKY51 and WRKY70. Weighted gene co-expression network analysis suggested MARK1, ERF17, UGT74E2, GH3.1 and PPR as hub genes. These results will deepen the understanding of molecular mechanism of bitter gourd in response to cold stress and the identified genes may help to facilitate the genetic improvement of cold-resistant cultivars.


Assuntos
Resposta ao Choque Frio , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genótipo , Momordica charantia , Reguladores de Crescimento de Plantas , Momordica charantia/genética , Momordica charantia/metabolismo , Resposta ao Choque Frio/genética , Perfilação da Expressão Gênica/métodos , Reguladores de Crescimento de Plantas/metabolismo , Transcriptoma , Oxilipinas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácido Salicílico/metabolismo , Ácido Abscísico/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ciclopentanos/metabolismo
3.
Sensors (Basel) ; 24(11)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38894400

RESUMO

Dynamic liquid level monitoring and measurement in oil wells is essential in ensuring the safe and efficient operation of oil extraction machinery and formulating rational extraction policies that enhance the productivity of oilfields. This paper presents an intelligent infrasound-based measurement method for oil wells' dynamic liquid levels; it is designed to address the challenges of conventional measurement methods, including high costs, low precision, low robustness and inadequate real-time performance. Firstly, a novel noise reduction algorithm is introduced to effectively mitigate both periodic and stochastic noise, thereby significantly improving the accuracy of dynamic liquid level detection. Additionally, leveraging the PyQT framework, a software platform for real-time dynamic liquid level monitoring is engineered, capable of generating liquid level profiles, computing the sound velocity and liquid depth and visualizing the monitoring data. To bolster the data storage and analytical capabilities, the system incorporates an around-the-clock unattended monitoring approach, utilizing Internet of Things (IoT) technology to facilitate the transmission of the collected dynamic liquid level data and computed results to the oilfield's central data repository via LoRa and 4G communication modules. Field trials on dynamic liquid level monitoring and measurement in oil wells demonstrate a measurement range of 600 m to 3000 m, with consistent and reliable results, fulfilling the requirements for oil well dynamic liquid level monitoring and measurement. This innovative system offers a new perspective and methodology for the computation and surveillance of dynamic liquid level depths.

4.
Adv Sci (Weinh) ; : e2402838, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38896788

RESUMO

Chemoselective modification of specific residues within a given protein poses a significant challenge, as the microenvironment of amino acid residues in proteins is variable. Developing a universal molecular platform with tunable chemical warheads can provide powerful tools for precisely labeling specific amino acids in proteins. Cysteine and lysine are hot targets for chemoselective modification, but current cysteine/lysine-selective warheads face challenges due to cross-reactivity and unstable reaction products. In this study, a versatile fluorescent platform is developed for highly selective modification of cysteine/lysine under biocompatible conditions. Chloro- or phenoxy-substituted NBSe derivatives effectively labeled cysteine residues in the cellular proteome with high specificity. This finding also led to the development of phenoxy-NBSe phototheragnostic for the diagnosis and activatable photodynamic therapy of GSH-overexpressed cancer cells. Conversely, alkoxy-NBSe derivatives are engineered to selectively react with lysine residues in the cellular environment, exhibiting excellent anti-interfering ability against thiols. Leveraging a proximity-driven approach, alkoxy-NBSe probes are successfully designed to demonstrate their utility in bioimaging of lysine deacetylase activity. This study also achieves integrating a small photosensitizer into lysine residues of proteins in a regioselective manner, achieving photoablation of cancer cells activated by overexpressed proteins.

5.
Heliyon ; 10(10): e31575, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38831812

RESUMO

1-3 piezoelectric composites have been widely used in transmitting transducers, medical devices, navigation, aerospace, etc. However, due to poor thermal conduction of inside piezoelectric composites, performance degradation and service life shortening of transmitting transducers are easily caused while working under high-power or continuously operated states. In this paper, a solution is provided by designing and creating highly efficient thermally conductive paths in 1-1-3 piezoelectric composite. This novel design resulted in two-fold increase in heat dissipation rate compared with traditional 1-3 piezoelectric composites, while maintaining high piezoelectric properties. Furthermore, we designed and fabricated an efficient heat dissipation transducer (EHDT) with the novel 1-1-3 piezoelectric composite as the core material, which can relief heat accumulation effectively compared with conventional transducers (CT). The EHDT can achieve three times more power output than the CT at the same temperature threshold of 90 °C.

6.
RSC Adv ; 14(25): 17814-17823, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38832239

RESUMO

Polysaccharides are considered to be ideal green raw materials for enhancing biocompatibility and dispersion effects of nanoparticles. In this study, we coated and dispersed ZnO nanoparticles (NPs) using the denaturation-renaturation process of a triple helix glucan lentinan (LNT), induced by changes in pH value within the reaction system. Various ZnO/LNT composites with different particle sizes and crystal morphologies were prepared and characterized. The results demonstrated that renatured LNT (r-LNT) effectively encapsulated the {101̄0} crystal planes of ZnO, preventing crystal growth during the renaturation process and resulting in smaller, uniformly dispersed nanoparticles. Among the samples, ZnO/r-LNT-2 exhibited significantly higher antimicrobial activity, and it had a certain inhibitory effect on various plant pathogens. It also displayed the highest inhibitory effect against Candida albicans, with a minimum inhibitory concentration (MIC) of up to 8 µg mL-1. Consistently, ZnO/r-LNT-2 generated the highest amount of reactive oxygen species (ROS), thus exhibiting the most effective antimicrobial activity. However, excessive introduction of the dispersant LNT may reduce these activities. This study provides a foundation for further exploring the detailed mechanism of ROS generation catalyzed by ZnO and for harnessing the full potential of this type of antimicrobial agent.

7.
Luminescence ; 39(6): e4798, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38825785

RESUMO

Cellular hypoxia is a common pathological process in various diseases. Detecting cellular hypoxia is of great scientific significance for early diagnosis of tumors. The hypoxia fluorescence probe analysis method can efficiently and conveniently evaluate the hypoxia status in tumor cells. These probes are covalently linked by hypoxic recognition groups and organic fluorescent molecules. Currently, the fluorescent molecules used in these probes often exhibit the aggregation-caused quenching effect, which is not conducive to fluorescence imaging in water. Herein, an activatable hypoxia fluorescence probe was constructed by covalently linking aggregation-induced emission luminogens to the hypoxic recognition group azobenzene. It does not emit fluorescence in solution and in solid state under light excitation due to the presence of photosensitive azo bonds. It can be cleaved by intracellular azoreductase into fluorescent amino derivatives with aggregation-induced emission characteristic. As the concentration of oxygen in cells decreases, its fluorescence intensity increases, making it suitable for fluorescence imaging to detect hypoxic environment in live cancer cells. This work broadens the molecular design approach for activatable hypoxia fluorescent probes.


Assuntos
Hipóxia Celular , Corantes Fluorescentes , Imagem Óptica , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Humanos , Estrutura Molecular , Compostos Azo/química , Células HeLa , Fluorescência
8.
J Phys Chem Lett ; 15(24): 6435-6442, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38865163

RESUMO

The cathodic mechanism of Li-N2 batteries is similar to Li-mediated N2 reduction (LiNR). Herein, the Li-N2, LiNR, and Cu-Li battery were amalgamated to a milliliter-scale Cu(N2)-Li system. The utilization of a lithium anode with lithium oxidation reaction (LiOR), ensures an uninterrupted supply of lithium ions to active N2. LiOR not only enhances electrolyte stability but also reduces voltage by stripping Li ions, in contrast to the inert platinum anode, commonly employed in LiNR. Notably, an unusual observation of ammonia accumulation within the anode chamber elucidates the presence and role of reaction intermediates. The charging process aimed at lithium regeneration faces high polarization, and a cycling procedure involving low-current charging was proposed to improve cycling. This study integrates insights from three distinct research directions to leverage their respective advantages and scientific insights. The Li-N2 battery emerges as a highly advantageous strategy for ammonia synthesis due to the progressiveness of lithium anode.

9.
Chemistry ; : e202400741, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38745544

RESUMO

To address key concerns on solid-state pyrene-based luminescent materials, we propose a novel and efficient mechanical bond strategy. This strategy results in a transformation from ACQ to AIE effect and a remarkable enhancement of pyrene emission in the solid state. Moreover, an unusual purification of emission is also achieved. Through computational calculation and experimental characterisation, finally determined by X-ray diffraction analysis, we prove that the excellent emissions result from mechanical bond induced refinement of molecular arrangements, including reduced π-π stacking, well-ordered packing and enhanced structural stability. This work demonstrates the potential of mechanical bond in the field of organic luminescent molecules, providing a new avenue for developing high-performance organic luminescent materials.

10.
Artigo em Inglês | MEDLINE | ID: mdl-38776048

RESUMO

Exosomes, nano-sized small extracellular vesicles, have been shown to serve as mediators between intercellular communications by transferring bioactive molecules, such as non-coding RNA, proteins, and lipids from secretory to recipient cells, modulating a variety of physiological and pathophysiological processes. Recent studies have gradually demonstrated that altered exosome charges may represent a key mechanism driving the pathological process of ferroptosis. This review summarizes the potential mechanisms and signal pathways relevant to ferroptosis and then discusses the roles of exosome in ferroptosis. As well as transporting iron, exosomes may also indirectly convey factors related to ferroptosis. Furthermore, ferroptosis may be transmitted to adjacent cells through exosomes, resulting in cascading effects. It is expected that further research on exosomes will be conducted to explore their potential in ferroptosis and will lead to the creation of new therapeutic avenues for clinical diseases.

11.
Angew Chem Int Ed Engl ; 63(29): e202406534, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38693606

RESUMO

Stimuli-responsive patterned photonic actuators, characterized by their patterned nano/microscale structures and capacity to demonstrate synergistic color changes and shape morphing in response to external stimuli, have attracted intense scientific attention. However, traditional patterned photonic actuator systems still face limitations such as cumbersome and time-consuming preparation processes and small-scale deformations. Herein, we introduce a facile approach involving an athermal embossing technique to rapidly fabricate patterned photonic actuators based on near-infrared (NIR) light-responsive liquid crystal elastomers. The resulting patterned photonic actuators demonstrate remarkable features, including brilliant angle-dependent structural color, complex three-dimensional actuation, and good color durability under NIR light stimulation. As illustrative demonstrations of the proof-of-concept, we fabricate two light-fuelled patterned photonic soft actuators: a butterfly-inspired actuator that can produce wing-flapping dynamic changes in structural color, and an origami crane-shaped actuator with shape memory, structural color information storage, and dynamic display properties. This strategy provides distinct insights into the design and fabrication of various patterned photonic soft robotic devices and intelligent actuators.

12.
Angew Chem Int Ed Engl ; 63(29): e202406417, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38712562

RESUMO

Responsive organic luminescent aggregates have a wide range of application fields, but currently there is still a lack of reasonable molecular design strategies. Introducing ion-π interactions into molecules can effectively alter their luminescent properties. However, current research typically focuses on ion localization at luminescent conjugated groups with the strong interaction forces. In this work, we introduce the flexible alkoxy chain spacers between fluorescent conjugated groups and ion-π interaction sites, and then adjust the fluorescence performance of the molecule by changing the strength of ion-π interactions. Bromine ion-based molecules with strong ion-π interactions exhibit high and stable fluorescence quantum yields in crystals and amorphous powders under the external stimuli. Hexafluorophosphate ion-based molecules with weak ion-π interactions have the high fluorescence quantum yield in crystals and very low fluorescence quantum yield in amorphous powders, showing variable fluorescence intensities under external stimuli. This demonstrates a new class of responsive organic luminescent solid-state materials.

13.
Front Immunol ; 15: 1331846, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38605970

RESUMO

Foxp3+ TREG cells have been at the focus of intense investigation for their recognized roles in preventing autoimmunity, facilitating tissue recuperation following injury, and orchestrating a tolerance to innocuous non-self-antigens. To perform these critical tasks, TREG cells undergo deep epigenetic, transcriptional, and post-transcriptional changes that allow them to adapt to conditions found in tissues both at steady-state and during inflammation. The path leading TREG cells to express these tissue-specialized phenotypes begins during thymic development, and is further driven by epigenetic and transcriptional modifications following TCR engagement and polarizing signals in the periphery. However, this process is highly regulated and requires TREG cells to adopt strategies to avoid losing their regulatory program altogether. Here, we review the origins of tissue-resident TREG cells, from their thymic and peripheral development to the transcriptional regulators involved in their tissue residency program. In addition, we discuss the distinct signalling pathways that engage the inflammatory adaptation of tissue-resident TREG cells, and how they relate to their ability to recognize tissue and pathogen-derived danger signals.


Assuntos
Autoimunidade , Linfócitos T Reguladores , Fatores de Transcrição Forkhead/metabolismo , Timo/metabolismo
14.
Bioengineering (Basel) ; 11(4)2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38671776

RESUMO

Accurate inferior alveolar nerve (IAN) canal segmentation has been considered a crucial task in dentistry. Failing to accurately identify the position of the IAN canal may lead to nerve injury during dental procedures. While IAN canals can be detected from dental cone beam computed tomography, they are usually difficult for dentists to precisely identify as the canals are thin, small, and span across many slices. This paper focuses on improving accuracy in segmenting the IAN canals. By integrating our proposed frequency-domain attention mechanism in UNet, the proposed frequency attention UNet (FAUNet) is able to achieve 75.55% and 81.35% in the Dice and surface Dice coefficients, respectively, which are much higher than other competitive methods, by adding only 224 parameters to the classical UNet. Compared to the classical UNet, our proposed FAUNet achieves a 2.39% and 2.82% gain in the Dice coefficient and the surface Dice coefficient, respectively. The potential advantage of developing attention in the frequency domain is also discussed, which revealed that the frequency-domain attention mechanisms can achieve better performance than their spatial-domain counterparts.

15.
Int J Mol Sci ; 25(8)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38673996

RESUMO

Gene function verification is a crucial step in studying the molecular mechanisms regulating various plant life activities. However, a stable and efficient homologous genetic transgenic system for herbaceous peonies has not been established. In this study, using virus-induced gene silencing technology (VIGS), a highly efficient homologous transient verification system with distinctive advantages was proposed, which not only achieves true "intact-plant" infiltration but also minimizes the operation. One-year-old roots of the representative species, Paeonia lactiflora Pall., were used as the materials; prechilling (4 °C) treatment for 3-5 weeks was applied as a critical precondition for P. lactiflora to acquire a certain chilling accumulation. A dormancy-related gene named HOMEOBOX PROTEIN 31 (PlHB31), believed to negatively regulate bud endodormancy release (BER), was chosen as the target gene in this study. GFP fluorescence was detected in directly infiltrated and newly developed roots and buds; the transgenic plantlets exhibited remarkably earlier budbreak, and PlHB31 was significantly downregulated in silenced plantlets. This study established a homologous transient silencing system featuring intact-plant infiltration and minimized manipulation for gene function research, and also offers technical support and serves as a theoretical basis for gene function discovery in numerous other geophytes.


Assuntos
Regulação da Expressão Gênica de Plantas , Inativação Gênica , Raízes de Plantas , Plantas Geneticamente Modificadas , Plantas Geneticamente Modificadas/genética , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Paeonia/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo
16.
Cell Reprogram ; 26(2): 67-78, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38598278

RESUMO

Repair strategies for injured peripheral nerve have achieved great progresses in recent years. However, the clinical outcomes remain unsatisfactory. Recent studies have found that exosomes secreted by dental pulp stem cells (DPSC-exos) have great potential for applications in nerve repair. In this study, we evaluated the effects of human DPSC-exos on improving peripheral nerve regeneration. Initially, we established a coculture system between DPSCs and Schwann cells (SCs) in vitro to assess the effect of DPSC-exos on the activity of embryonic dorsal root ganglion neurons (DRGs) growth in SCs. We extracted and labeled human DPSC-exos, which were subsequently utilized in uptake experiments in DRGs and SCs. Subsequently, we established a rat sciatic nerve injury model to evaluate the therapeutic potential of DPSC-exos in repairing sciatic nerve damage. Our findings revealed that DPSC-exos significantly promoted neurite elongation by enhancing the proliferation, migration, and secretion of neurotrophic factors by SCs. In vivo, DPSC-exos administration significantly improved the walking behavior, axon regeneration, and myelination in rats with sciatic nerve injuries. Our study underscores the vast potential of DPSC-exos as a therapeutic tool for tissue-engineered nerve construction.


Assuntos
Exossomos , Regeneração Nervosa , Ratos , Humanos , Animais , Regeneração Nervosa/fisiologia , Ratos Sprague-Dawley , Axônios , Polpa Dentária , Nervo Isquiático/fisiologia , Células-Tronco , Células de Schwann
17.
Curr Mol Med ; 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38500285

RESUMO

INTRODUCTION: Skeletal muscle degeneration is a common effect of chronic muscle injuries, including fibrosis and fatty infiltration, which is the replacement of preexisting parenchymal tissue by extracellular matrix proteins and abnormal invasive growth of fibroblasts and adipocytes. METHOD: This remodeling limits muscle function and strength, eventually leading to reduced quality of life for those affected. Chemokines play a major role in the regulation of immunocyte migration, inflammation, and tissue remodeling and are implicated in various fibrotic and degenerative diseases. In this study, we aimed to investigate the role of the B-cell chemokine CXCL13 in the gastrocnemius muscle of the Achilles tendon rupture model mouse. We hypothesize that CXCL13 may promote fibrosis and aggravate skeletal muscle degeneration. We performed RNA sequencing and bioinformatics analysis of gastrocnemius muscle from normal and model mice to identify differentially expressed genes and signal pathways related to skeletal muscle degeneration and fibrosis. RESULTS: Our results show that CXCL13 is highly expressed in chronically degenerating skeletal muscle. Furthermore, CXCL13-neutralising antibodies with therapeutic potential were observed to inhibit fibrosis and adipogenesis in vivo and in vitro. CONCLUSION: Our study reveals the underlying therapeutic implications of CXCL13 inhibition for clinical intervention in skeletal muscle degeneration, thereby improving patient prognosis.

18.
Exp Cell Res ; 437(1): 114007, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38499142

RESUMO

Gastric cancer metastasis is a major cause of poor prognosis. Our previous research showed that methionine restriction (MR) lowers the invasiveness and motility of gastric carcinoma. In this study, we investigated the particular mechanisms of MR on gastric carcinoma metastasis. In vitro, gastric carcinoma cells (AGS, SNU-5, MKN7, KATO III, SNU-1, and MKN45) were grown in an MR medium for 24 h. In vivo, BALB/c mice were given a methionine-free (Met-) diet. Transwell assays were used to investigate cell invasion and migration. The amounts of Krüppel like factor 10 (KLF10) and cystathionine ß-synthase (CBS) were determined using quantitative real-time PCR and Western blot. To determine the relationship between KLF10 and CBS, chromatin immunoprecipitation and a dual-luciferase reporter experiment were used. Hematoxylin-eosin staining was used to detect lung metastasis. Liquid chromatography-mass spectrometry was used to determine cystathionine content. MR therapy had varying effects on the invasion and migration of gastric carcinoma cells AGS, SNU-5, MKN7, KATO III, SNU-1, and MKN45. KLF10 was highly expressed in AGS cells but poorly expressed in KATO III cells. KLF10 improved MR's ability to prevent gastric carcinoma cell invasion and migration. In addition, KLF10 may interact with CBS, facilitating transcription. Further detection revealed that inhibiting the KLF10/CBS-mediated trans-sulfur pathway lowered Met-'s inhibitory effect on lung metastasis development. KLF10 transcription activated CBS, accelerated the trans-sulfur pathway, and increased gastric carcinoma cells' susceptibility to MR.


Assuntos
Carcinoma , Neoplasias Pulmonares , Neoplasias Gástricas , Camundongos , Animais , Metionina/metabolismo , Cistationina beta-Sintase/genética , Cistationina beta-Sintase/metabolismo , Neoplasias Gástricas/patologia , Racemetionina , Enxofre , Neoplasias Pulmonares/genética , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Fatores de Transcrição de Resposta de Crescimento Precoce/metabolismo
19.
J Craniomaxillofac Surg ; 52(3): 347-354, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38368209

RESUMO

This study evaluated the feasibility of simultaneous temporomandibular joint (TMJ) arthroscopy and orthognathic surgery as a new treatment strategy for anterior disc displacement without reduction (ADDwoR) patients with severe jaw deformities. Twelve ADDwoR patients with facial deformities who underwent arthroscopy and orthognathic surgery between September 2015 and December 2019 were retrospectively evaluated. Pre- and postoperative maximum incisal opening (MIO) and joint pain were recorded. Computed tomography (CT) and three-dimensional cephalometric analysis were performed at 3 (T1) and ≥6 (T2) months postoperatively. Magnetic resonance imaging (MRI) of the TMJ was performed before, ≤7 days after and ≥6 months after surgery. The lateral profile radiological findings, the symmetry of the maxilla and mandible, and the MRI measurements were compared. Anterior disc displacement did not recur, and the maximum incisal opening (MIO) increased from 27.4 mm to 32.7 mm after surgery (p < 0.05). No significant differences were found in the lateral profile, symmetry indices or condylar height via MRI between T1 and T2. Joint morphology and the position of both the maxilla and mandible remained stable during postoperative follow-up, while joint symptoms were markedly relieved and facial appearance was noticeably improved. Combined arthroscopy and orthognathic surgery is effective and recommended for ADDwoR patients with jaw deformities.


Assuntos
Anormalidades Maxilomandibulares , Luxações Articulares , Cirurgia Ortognática , Transtornos da Articulação Temporomandibular , Humanos , Estudos Retrospectivos , Artroscopia , Estudos de Viabilidade , Transtornos da Articulação Temporomandibular/diagnóstico por imagem , Transtornos da Articulação Temporomandibular/cirurgia , Articulação Temporomandibular/cirurgia , Mandíbula/cirurgia , Imageamento por Ressonância Magnética/métodos , Luxações Articulares/cirurgia
20.
Anal Chem ; 96(6): 2406-2414, 2024 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-38308568

RESUMO

Glioblastoma multiforme (GBM) is a highly aggressive primary brain tumor associated with limited treatment options and high drug resistance, presenting significant challenges in the pursuit of effective treatment strategies. Epigenetic modifications have emerged as promising diagnostic biomarkers and therapeutic targets for GBM. For instance, histone deacetylase 6 (HDAC6) has been identified as a potential pharmacological target for GBM. Furthermore, the overexpression of monoamine oxidase A (MAO A) in glioma has been linked to tumor progression, making it an attractive target for therapy. In this study, we successfully engineered HDAC-MB, an activatable multifunctional small-molecule probe with the goal of efficiently detecting and killing glioma cells. HDAC-MB can be selectively activated by HDAC6, leading to the "turn on" of near-infrared fluorescence and effective inhibition of MAO A, along with potent photodynamic therapy (PDT) effects. Consequently, HDAC-MB not only enables the imaging of HDAC6 in live glioma cells but also exhibits the synergistic effect of MAO A inhibition and PDT, effectively inhibiting glioma invasion and inducing cellular apoptosis. The distinctive combination of features displayed by HDAC-MB positions it as a versatile and highly effective tool for the accurate diagnosis and treatment of glioma cells. This opens up opportunities to enhance therapy outcomes and explore future applications in glioma theranostics.


Assuntos
Glioblastoma , Glioma , Humanos , Desacetilase 6 de Histona/farmacologia , Desacetilase 6 de Histona/uso terapêutico , Glioma/diagnóstico por imagem , Glioma/tratamento farmacológico , Glioblastoma/patologia , Apoptose , Monoaminoxidase , Linhagem Celular Tumoral , Inibidores de Histona Desacetilases/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...